Bonn-Gatchina analysis of photoproduction data
|
|
- Σωφρονία Μαρκόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 atchina analysis of photoproduction data ECT workshop, Trento Bonn-Gatchina analysis of photoproduction data A. Sarantsev Petersburg Nuclear Physics Institute HISKP, Bonn (Bonn University) PNPI, Gatchina (Russia) 3-7 June 4
2 atchina analysis of photoproduction data ECT workshop, Trento The spin wave function S = 3/ : fully symmetric S = / : ( ) mixed symmetry.. The flavor wave function SU() SU(3) = SU(6) = 56 S 7 M 7 M A 56 = = = 8 4.
3 atchina analysis of photoproduction data ECT workshop, Trento (56, 3 ) S S = 3/;L = ; N= / (9) 3/ (94) 5/ (93) 95 MeV S S = /;L = ; N= N / (895) N 3/ (875) 866 MeV 3 rd band (7,3 3 ) S 3 S = /;L = 3; N= 5/ (3) 7/ () 3 MeV S 5 S = 3/;L = 3; N= N 3/ (5) N 9/ (5) 3 MeV N 5/ (6) N 7/ (9) S 4 S = /;L = 3; N= 5 MeV (56,3 3 ), (,3 3 ), (7, 3 ), (7, 3 ), (7, 3 ), (, 3 ) : Many states predicted, no candidates known (56, + ) S S = 3/;L = ; N= / +(9) 3/ +(9) 5/ +(95) 7/ +(95) 95 MeV S S = /;L = ; N= N 3/ +(7) N 5/ +(6) 779 MeV (7, + ) S 3 S = /;L = ; N= 3/ + 5/ + 95 MeV S 5 S = 3/;L = ; N= N / +(88) N 3/ +(96) N 5/ +() N 7/ +(99) 95 MeV S 4 S = /;L = ; N= N 3/ +(9) N 5/ +(86) 866 MeV nd band (, + ) S 6 S = /;L = ; N= N / + N 3/ + 8 MeV (56, + ) S S = 3/;L = ; N= 3/ +(6) 63 MeV S S = /;L = ; N= N / +(44) 43 MeV (7, + ) S 3 S = /;L = ; N= / + 63 MeV S 5 S = 3/;L = ; N= N 3/ + 63 MeV S 4 S = /;L = ; N= N / + 53 MeV (7, ) S 3 S = /;L = ; N= / (6) 3/ (7) 63 MeV st band S 5 S = 3/;L = ; N= N / (65) N 3/ (7) N 5/ (675) 63 MeV S 4 S = /;L = ; N= N / (535) N 3/ (5) 53 MeV Ground (56, + ) S S = 3/;L = ; N= 3/ +(3) 3 MeV state S S = /;L = ; N= N / +(939) 939 MeV 3
4 atchina analysis of photoproduction data ECT workshop, Trento Bonn-Gatchina partial wave analysis group: A. Anisovich, E. Klempt, V. Nikonov, A. Sarantsev, U. Thoma. The new solutions BG4- and BG4- will be released next week 4
5 atchina analysis of photoproduction data ECT workshop, Trento Baryon data base DATA BG added in BG4 πn πn ampl. γp πn γn πn γn ηn γp ηp γp K + Λ γp K + Σ γp K Σ + π p ηn π p K Λ π p K Σ π p K + Σ π + p K + Σ + π p π π n γp π π p γp π ηp γp ωp SAID or Hoehler energy fixed dσ dσ dω,σ,t,p,e dσ,σ dω dσ,σ dω dω,σ,p,t,c x,c z,o x,o z dσ,σ,p,c dω x,c z dσ,σ,p dω dσ dσ dσ dω dω,p,β dσ,p dω dσ dω,p,β dσ dω,σ,e,i dω c,i s dσ,σ,i dω c,i s dσ Σ (CLAS),T,P,G,H,E (CB-ELSA) dσ,σ,t,p dω dσ dω (MAMI) T,P,H,E (CB-ELSA) dσ dω (MAMI) dσ dω (MAMI) Σ (CLAS),Σ,P (CB-ELSA) dσ dω dω (MAMI,CB-ELSA),Σ,I c,i s (CB-ELSA) dσ,i dω c,i s (CB-ELSA) dσ dω,σ,ρ ij,ρ ij,ρ ij,e,g (CB-ELSA) 5
6 atchina analysis of photoproduction data ECT workshop, Trento N/D based (D-matrix) analysis of the data π η K J m J K m δ JK D jm = D jk α Bα km (s) M m s + δ jm Mj s π η K ˆD = ˆκ(I ˆBˆκ) ( ) ˆκ = diag M s, M s,..., MN s,r,r... ˆB ij = α B ij α = α ds π g (R)i α ρ α (s,m α,m α )g (L)j α s s i 6
7 atchina analysis of photoproduction data ECT workshop, Trento In the present fits we calculate the elements of theb ij α the channel thresholdm α = (m α +m α ): using one subtraction taken at B ij α(s) = B ij α(m α)+(s M α) ds π g (R)i α ρ α (s,m α,m α )g α (L)j (s s i)(s Mα). m a In this case the expression for elements of the ˆB matrix can be rewritten as: Bα(s) ij = g a (R)i b α +(s M α) m a ds π ρ α (s,m α,m α ) (s s i)(s Mα) g (L)j β = g a (R)i B α g (L)j β and D-matrix method equivalent to the K-matrix method with loop diagram with real part taken into account: A = ˆK(I ˆB ˆK) B αβ = δ αβ B α 7
8 atchina analysis of photoproduction data ECT workshop, Trento Minimization methods. The two body final statesπn,γn πn,ηn,kλ,kσ,ωn,k Λ:χ method. For n measured bins we minimize χ = n j (σ j (PWA) σ j (exp)) ( σ j (exp)) Present solutionχ = 487 for38 points.χ /N F =.6. Reactions with three or more final states are analyzed with logarithm likelihood method.πn,γn ππn,πηn,ωp,k Λ. The minimization function: f = N(data) j ln N(recMC) m σ j (PWA) σ m (PWA) This method allows us to take into account all correlations in many dimensional phase space. Above 5 data events are taken in the fit. 8
9 atchina analysis of photoproduction data ECT workshop, Trento Differential cross sectionγp pπ η (CB-ELSA) dσ/d M(pπ ) (µb/.35 GeV) dσ/d M(π η) (µb/.36 GeV) M(pπ ) (GeV) M(π η) (GeV) 9
10 atchina analysis of photoproduction data ECT workshop, Trento Differential cross sectionγp pπ η (CB-ELSA) dσ/d cos θ(π ) (µb/.) dσ/d cos θ(η) (µb/.) cos θ(π ) cos θ(η)
11 atchina analysis of photoproduction data ECT workshop, Trento γp pπ η (CB-ELSA)with linear polarized photon dσ dω = ( ) dσ {+δ l [I s sin(φ)+i c cos(φ)]}, () dω Σ = π I c dφ
12 atchina analysis of photoproduction data ECT workshop, Trento Σ forγp pπ η (CB-ELSA).5 Σ(p) W=76 Σ(p) W=834 Σ(p) W=946.5 Σ(p) W=76 Σ(p) W=834 Σ(p) W= cos θ(p) cos θ(p) cos θ(p) M(π η) (MeV) M(π η) (MeV) M(π η) (MeV).5 Σ(π ) W=76 Σ(π ) W=834 Σ(π ) W=946.5 Σ(η) W=76 Σ(η) W=834 Σ(η) W= cos θ(π ) cos θ(π ) cos θ(π ) 3 4 M(pπ ) (MeV) 3 4 M(pπ ) (MeV) 3 4 M(pπ ) (MeV).5 Σ(η) W=76 Σ(η) W=834 Σ(η) W=946.5 Σ(π ) W=76 Σ(π ) W=834 Σ(π ) W= cos θ(η) cos θ(η) cos θ(η) 6 8 M(pη) (MeV) 6 8 M(pη) (MeV) 6 8 M(pη) (MeV) Bonn-Gatchina M. Döring et al. A. Fix et al.
13 atchina analysis of photoproduction data ECT workshop, Trento I c andi s forγp pπ η (CB-ELSA).5 Ip c Ip c Ip c W=76 W=834 W=946.5 Ip s Ip s Ip s W=76 W=834 W= Iπ c Iπ c Iπ c W=76 W=834 W=946.5 Iπ s Iπ s Iπ s W=76 W=834 W= I c η W=76 I c η W=834 I c η W=946.5 I s η W=76 I s η W=834 I s η W= Φ* (deg) 3 Φ* (deg) 3 Φ* (deg) 3 Φ* (deg) 3 Φ* (deg) 3 Φ* (deg) Bonn-Gatchina M. Döring et al. A. Fix et al. 3
14 atchina analysis of photoproduction data ECT workshop, Trento Branching ratios of nucleon and resonances Resonance πn N(535)π (3)η N(7)/ + 5±3% 5±6% - N(88)/ + 6±3% 8±4% - N(9)3/ + 3±3% 7±3% - N()/ + 3±% ±8% - N()3/ 5±3% 5±8% - (7)3/ ±4% ±.5% 5±% (9)/ 7±% - ±% (95)5/ + 3±% % 4±% (9)/ + ±3% 5±3% 9±4% (9)3/ + 8±4% % ±6% (94)3/ ±% 8±6% ±6% (95)7/ + 46±% % 4
15 atchina analysis of photoproduction data ECT workshop, Trento Differential cross sectionγp pπ π (CB-ELSA) ) (pπ ) (GeV M ) (pπ ) (GeV M M M (pπ (pπ ) (GeV ) (GeV ) ) 5
16 atchina analysis of photoproduction data ECT workshop, Trento Differential cross sectionγp pπ π (CB-ELSA) dσ/d M(πp), µb/.35 GeV M(πp), GeV dσ/d M(ππ), µb/.35 GeV M(ππ), GeV 6
17 atchina analysis of photoproduction data ECT workshop, Trento Differential cross sectionγp pπ π (CB-ELSA) dσ/d cos θ(p), µb/ dσ/d cos θ(ππ), µb/ cos θ(p) cos θ(ππ) (hel) 7
18 atchina analysis of photoproduction data ECT workshop, Trento I c andi s forγp pπ π (CB-ELSA).5.5 I c p 97- I c p -45 I c p Iπ s (- -.5) -45 (- -.5) (- -.5) I s p 97- I s p -45 I s p (-.5 ) -45 (-.5 ) (-.5 ) I c π 97- I c π -45 I c π (.5) -45 (.5) (.5) I s π 97- I s π -45 I s π (.5 ) -45 (.5 ) (.5 ) Φ*, deg Φ*, deg Φ*, deg Φ*, deg Φ*, deg Φ*, deg 8
19 atchina analysis of photoproduction data ECT workshop, Trento I c andi s forγp pπ π (CB-ELSA) Ip c (- -.5) -45 (- -.5) (- -.5) Ip s (- -.5) -45 (- -.5) (- -.5) (-.5 ) -45 (-.5 ) (-.5 ) (-.5 ) -45 (-.5 ) (-.5 ) (.5) -45 (.5) (.5) (.5) -45 (.5) (.5) (.5 ) -45 (.5 ) (.5 ) (.5 ) -45 (.5 ) (.5 ) Φ*, deg Φ*, deg Φ*, deg Φ*, deg Φ*, deg Φ*, deg 9
20 atchina analysis of photoproduction data ECT workshop, Trento I c andi s forγp pπ π (CB-ELSA) Ip c (8-5) 97- (5-35) 97- (35-45) Ip s (8-5) 97- (5-35) 97- (35-45) (45-64) -45 (8-5) -45 (5-4) (45-64) -45 (8-5) -45 (5-4) (4-5) -45 (5-76) (8-5) (4-5) -45 (5-76) (8-5) (5-45) (45-6) (6-85) (5-45) (45-6) (6-85) Φ*, deg Φ*, deg Φ*, deg Φ*, deg Φ*, deg Φ*, deg
21 atchina analysis of photoproduction data ECT workshop, Trento The partial wave contributions to two meson photoproduction reactions γp π ηp γp π π p σ tot (µb) GRAAL MAMI CB/TAPS CB/TAPS η N(535)π a (98)p σ tot, µb D 3 D 3 P 3 P 3 F E γ (MeV) E γ, MeV
22 atchina analysis of photoproduction data ECT workshop, Trento Width and branching ratios of resonances in the nd and3 rd resonance region Γ (MeV) Nπ Nππ N(44)/ + 35±5.65±..35±.5 N(5)3/ 3±3.6±..5±. N(535)/ 5±5.45±..5±.5 N(65)5/ 55±3.7±..5±.5 N(675)5/ 5±.4±.5.55±.5 N(68)5/ + 3±.68±.3.35±.5 N(7)3/ 75±75.65±..35±.5 N(7)/ + 5±.3±.8.65±.5 N(7)3/ + 75±5.±.3.8±. (6)/ 4±.5±.5.5±.5 (7)3/ 3±.5±.5.75±.5
23 atchina analysis of photoproduction data ECT workshop, Trento Branching ratios (in %) for decays of nucleon and resonances N π L π L<J π L>J N(44)π L N(5)π L N(535)π L N(535)/ 5±5.5±.5 ±8 - - N(5)3/ 6± 9±4 9± N(65)/ 5±4 ±6 6± - - N(7)3/ 5±6 65±5 7±4 <4 - - N(675)5/ 4± 3± (6)/ 8± 6± 6±3 - - (7)3/ ±4 ± ±6-3± - N(7)3/ + ±4 6±5 6±6 3 < - - N(68)5/ + 6±4 3 7±3 ± (9)/ + ±3 5±6 6±3 - - (9)3/ + 8±4 8± 58±4 3 < 4 < 5 < (95)5/ + 3± 3 35± < (95)7/ + 46± 3 5±
24 atchina analysis of photoproduction data ECT workshop, Trento Branching ratios (in %) for decays of nucleon and resonances N π L π L<J π L>J N(44)π L N(5)π L N(535)π L N(88)/ + 6±3 3± - - 8±4 N(9)3/ + 3± 7±8 33± 3-5±8 7±3 N()5/ + 8±4 3 ± 34±5 3 - ± - N(99)7/ +.5± ± N(99)7/ + ±.5 3 6± N(895)/ ± 4±7 7±7 5±3 < - N(875)3/.5±.5 7± (9)/ 7± 5± - ± 6±4 - (94)3/ ± 46± ± N()3/ 5±3 5± ± N(6)5/ ± 7±3-4 9±5 5±5-3 N(9)7/ 6± 4 5± N(7)/ + 5±3 7± N(7)/ + 5±3 5± N()/ + 6±5 ± ±4 4
25 atchina analysis of photoproduction data ECT workshop, Trento Theγp KΛ reaction (CLAS 9) and MAMI. dσ/dω, µb/sr dσ/dω, µb/sr cos θ cm cos θ cm 5
26 atchina analysis of photoproduction data ECT workshop, Trento Theγp K + Σ reaction (CLAS 9) and MAMI.. dσ/dω, µb/sr dσ/dω, µb/sr cos θ cm cos θ cm 6
27 atchina analysis of photoproduction data ECT workshop, Trento First double polarization data from CB-ELSA: Helicity asymmetry andgobservable inγp π p E(γp π p) G(γp π p) cos θ π cos θ π Bonn-Gatchina, SAID (CM), MAID Bonn-Gatchina, SAID (CM), MAID dashed - predicted, full -fit 7
28 atchina analysis of photoproduction data ECT workshop, Trento Double polarization data from CB-ELSA (TPH)γp π p γp π p (T) CB cos θ γp π p (P) CB γp π p (H) CB cos θ cos θ 8
29 atchina analysis of photoproduction data ECT workshop, Trento Beam asymmetryγp nπ + andγp pπ (CLAS) Σ 3 π + n Σ 3 π p
30 atchina analysis of photoproduction data ECT workshop, Trento Observation of the (????) 7 dσ/dω, µb/sr Σ 3 χ total χ π p cos θ cm cos θ cm χ π + n χ KΣ M(G 37 ), MeV (????) 7 : M= MeVΓ=6±3 MeV. This state can not be a chiral partner of the (95) 7 + state. 3
31 atchina analysis of photoproduction data ECT workshop, Trento Parity doublets ofn and resonances at high mass region Parity doublets must not interact by pion emission and could have a small coupling toπn. J= J= 3 J= 5 J= 7 J= 9 N / +(88) ** N / (89) ** / +(9) **** / (9) ** N 3/ +(9) *** N 3/ (875) ** 3/ +(94) *** 3/ (99) ** N 5/ +(88) ** N 5/ (6) ** 5/ +(94) **** 5/ (93) *** N 7/ +(98) ** N 7/ (7) **** 7/ +(9) **** 7/ () * N 9/ +() **** N 9/ (5) **** 9/ +(3) ** 9/ (4) ** J= 5 J= 7 J= 9 N 5/ +(9) ** N 5/ (6) ** 5/ +(94) **** 5/ (93) *** N 7/ +() ** N 7/ (5) **** 7/ +(95) **** 7/ () * N 9/ +() **** N 9/ (5) **** 9/ +(3) ** 9/ (4) a ** 3
32 atchina analysis of photoproduction data ECT workshop, Trento Energy independent analysis of theπ p KΛ data magnitude magnitude magnitude..5. S. P P W(GeV). W(GeV) W(GeV) phase (deg) phase (deg) 5 P W(GeV) P W(GeV) However this is not a unique solution S magnitude W(GeV) P magnitude W(GeV) P 3 magnitude W(GeV) P phase (deg) W(GeV) phase (deg) P 3 W(GeV)
33 atchina analysis of photoproduction data ECT workshop, Trento Energy independent analysis of theγp KΛ data dσ/dω[mb/sr].4 W = MeV W= MeV Σ W = MeV.5.5 T W = MeV CLAS_ GRAAL_7 GRAAL_9 MAMI3 z -.5 z -.5 z P Ox Oz W = MeV.5 W = MeV.5 W = MeV.5.5 dσ/dω[mb/sr].4 W = MeV W= MeV Σ W = MeV.5.5 T W = MeV GRAAL_7 GRAAL_9 CLAS_6 CLAS_ MAMI3 z -.5 z -.5 z P Ox Oz W = MeV.5 W = MeV.5 W = MeV CLAS_ GRAAL_7 - GRAAL_9 z -.5 z Cx Cz W = MeV.5 W = MeV.5 - GRAAL_9 z - CLAS_ GRAAL_7 - GRAAL_9 z -.5 z Cx Cz W = MeV.5 W = MeV.5 - GRAAL_9 z CLAS_6 z CLAS_6 z - CLAS_6 z CLAS_6 z Black line: BnGa 4, dashed line: Kaon-MAID prediction. Dotted lines: PWA withl =, Dot-dashed line: PWA withl =,, 33
34 atchina analysis of photoproduction data ECT workshop, Trento Energy independent analysis of theγp KΛ data. Fit without penalty function magnitude[mfm] E magnitude[mfm] E E phase[deg] magnitude[mfm] M M phase[deg] magnitude[mfm] M M phase[deg] magnitude[mfm] E E phase[deg] magnitude[mfm] E E phase[deg] M magnitude[mfm] phase[deg] M magnitude[mfm] M M phase[deg]
35 atchina analysis of photoproduction data ECT workshop, Trento Energy independent analysis of theγp KΛ data χ pen = α (M α M, α ) (δm, α ) + α (E α Eα, ) (δeα,, ) magnitude[mfm] E magnitude[mfm].8 E E phase[deg] magnitude[mfm].5 M M phase[deg] magnitude[mfm] M M phase[deg] magnitude[mfm] E E phase[deg] E magnitude[mfm] E phase[deg] magnitude[mfm] M M phase[deg] magnitude[mfm] M M phase[deg]
36 atchina analysis of photoproduction data ECT workshop, Trento Energy independent analysis of theγp KΛ data. χ pen = α (M α M,, αbg ) (δm,, + αbg ) α (E α E,, αbg ) (δe,,, αbg ) magnitude[mfm] E magnitude[mfm] E E phase[deg] magnitude[mfm] M M phase[deg] magnitude[mfm] M M phase[deg] magnitude[mfm].45 E E phase[deg] E magnitude[mfm] phase[deg] 5 E magnitude[mfm].5 M M phase[deg] magnitude[mfm] M M phase[deg]
37 atchina analysis of photoproduction data ECT workshop, Trento New MAMI Data onγn ηn reaction Fermi motion smearing σ tot [µb] CB-ELSA CB-ELSA σ[µb] MAMI.5 H, this work 8 σ n /σ p H, Jaegle et al E γ [GeV] M(γn) [MeV] σ p σ n.8..4 E γ [GeV] B. Krusche group B. Krusche group 37
38 atchina analysis of photoproduction data ECT workshop, Trento Full event reconstruction Energy resolution of η: W =-4 MeV (W=5-85 MeV) [-.,-.9] [-.9,-.8] [-.8,-.7] [-.7,-.6] σ[µb] 5 σ n /σ p σ p (3/)*σ n σ p, free H, this work H, Jaegle et al..6.8 dσ/dω [µb/sr] [-.6,-.5] [-.,-.] [.,.3].5 [.6,.7] [-.5,-.4] [-.,.] [.3,.4].5 [.7,.8] [-.4,-.3] [.,.] [.4,.5].5 [.8,.9] [-.3,-.] [.,.] [.5,.6] [.9,.] data total func. S BW backgr. BW signal BW W[MeV] 38
39 atchina analysis of photoproduction data ECT workshop, Trento Simulation for thes andp interference 39
40 atchina analysis of photoproduction data ECT workshop, Trento Solution with interference betweens states σ, µb 5 σ n /σ p W, MeV 5 σ p 3/ σ n W, MeV 4
41 atchina analysis of photoproduction data ECT workshop, Trento Solutions with thep (68) states 4
42 atchina analysis of photoproduction data ECT workshop, Trento The description of the new data as well as GRAAL data is notably worse Limit for the production ofp (68): A Br(ηn) <5 Gev 3 4
43 atchina analysis of photoproduction data ECT workshop, Trento Photoproduction of vector mesons. γp pω (A.Wilson) dσ/dω (γp ωp), µb/sr cos θ ω 43
44 atchina analysis of photoproduction data ECT workshop, Trento Density matrices dσ = dσ W(cosΘ dec,φ dec ) dω ω dω dec dω ω γp pω(π + π π ) W(cosΘ,Φ) = 3 ( 4π ( ρ )+ (3ρ )cos Θ Reρ sinθcosφ ρ sin ΘcosΦ). cosθ,φ direction of the vectorn = ε ijkm p π+ j p π k p π m in theω rest frame. γp pω(γπ ) W(cosΘ,Φ) = 3 ( 8π (+cos Θ)+ ( 3cos Θ)ρ + Reρ sin(θ)cosφ+ρ sin ΘcosΦ). cosθ,φ angles of photon fromω decay in theω rest frame 44
45 atchina analysis of photoproduction data ECT workshop, Trento γp pω (CB-ELSA) (full) and CLAS (open circles) data ρ
46 atchina analysis of photoproduction data ECT workshop, Trento Fit of the density matrices γp pω (CB-ELSA) (A.Wilson) ρ ρ ρ ρ cos θ ω cos θ ω 46
47 atchina analysis of photoproduction data ECT workshop, Trento Polarized density matricesγp pω p(γπ ) dσ pol = dσ ( W +cos(φω )W sin(φ ω )W ) dω ω dω dec dω ω W (cosθ,φ) = 3 ( 8π (+cos Θ)ρ +sin Θρ + Reρ sin(θ)cosφ+ρ sin ΘcosΦ). W (cosθ,φ) = 3 8π ( Imρ sin(θ)sinφ+ρ sin ΘsinΦ) 47
48 atchina analysis of photoproduction data ECT workshop, Trento Fit of the polarized density matrices γp pω (A.Wilson) ρ ρ ρ ρ cos θ ω cos θ ω 48
49 atchina analysis of photoproduction data ECT workshop, Trento Fit of the polarized density matrices γp pω (A.Wilson) ρ ρ.5.5 ρ ρ cos θ ω cos θ ω 49
50 atchina analysis of photoproduction data ECT workshop, Trento Fit of the polarized density matrices γp pω (A.Wilson) ρ ρ ρ Im ρ cos θ ω cos θ ω 5
51 atchina analysis of photoproduction data ECT workshop, Trento Omega photoproduction and polarization observables from CB-ELSA H.Eberhard (PhD thesis) E Σ Σ π cos θ ω cos θ ω G G π cos θ ω cos θ ω cos θ ω 5
52 atchina analysis of photoproduction data ECT workshop, Trento Photoproduction of vector mesons. γp pω (A.Wilson) σ tot (γp ωp), µb P-exchange / 3/ + / 3/ / 5/ M(γp), MeV Strong contribution from the P 3 partial wave: interference of P 3 (7) and P 3 (9) states. A confirmation of thef 5 () state. A structure in the D 3 partial wave in the region MeV. No large contributions either from 7/ + or 7/ states are found 5
53 atchina analysis of photoproduction data ECT workshop, Trento SUMMARY The new polarized data on π photoproduction confirm the Bonn-Gatchina solution below GeV and provide an important information about resonances in the mass region -.3 GeV. The new data on double meson photoproduction were successfully fitted. The vector photoproduction data provide an important constraint for the combined analysis and reveal signals from resonances above GeV. However... A large amount of new data will be available soon and it looks like they are not well predicted by any model: new discoveries will come soon. 53
Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis
Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis Petersburg Nuclear Physics Institute A. Sarantsev
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
K + Λ photoproduction in a dynamical coupled-channel approach
+ Λ photoproduction in a dynamical coupled-channel approach Deborah Rönchen HISP, Bonn University In collaboration with M. Döring, U.-G. Meißner, J. Haidenbauer, H. Haberzettl,. akayama PWA/ATHOS5 July
Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration
Λ b Baryon Studies Dongliang Zhang (University of Michigan) on behalf of Collaboration Hadron215, Jefferson Lab September 13-18, 215 Introduction Λ b reconstruction Lifetime measurement Helicity study
L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28
L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
Electronic structure and spectroscopy of HBr and HBr +
Electronic structure and spectroscopy of HBr and HBr + Gabriel J. Vázquez 1 H. P. Liebermann 2 H. Lefebvre Brion 3 1 Universidad Nacional Autónoma de México Cuernavaca México 2 Universität Wuppertal Wuppertal
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Solar Neutrinos: Fluxes
Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
Large β 0 corrections to the energy levels and wave function at N 3 LO
Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
EE 570: Location and Navigation
EE 570: Location and Navigation INS Initialization Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h
PHOS π, ask PHOS π analysis, for production, R AA, and Flow analysis, Henrik Qvigstad henrik.qvigstad@fys.uio.no University of Oslo --5 PHOS π, ask ask he task we use, AliaskPiFlow was written prior, for
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
The Θ + Photoproduction in a Regge Model
The Θ + Photoproduction in a Regge Model Herry Kwee College of illiam and Mary Cascade 5 Jefferson Lab December 3, 5 1 1. Introduction. Photoproduction γn Θ + K for spin-1/ Θ + γp Θ + K for spin-1/ Θ +
ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:
4 Πρόλογος Η παρούσα διπλωµατική εργασία µε τίτλο «ιερεύνηση χωρικής κατανοµής µετεωρολογικών µεταβλητών. Εφαρµογή στον ελληνικό χώρο», ανατέθηκε από το ιεπιστηµονικό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Andreas Peters Regensburg Universtity
Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun,
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 An experimental and theoretical study of the gas phase kinetics of atomic chlorine
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
Table of Contents 1 Supplementary Data MCD
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Supporting Information for Magnetic circular dichroism and density functional theory
ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
AdS black disk model for small-x DIS
AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March
Spectrum Representation (5A) Young Won Lim 11/3/16
Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 6 3 1 7 7 7 6 4 0 6 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2013 Candidates answer
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.
φ φ φ φ Figure 1 Resampling of a rock-physics model from velocity-porosity to lithology-porosity space. C i are model results for various clay contents. φ ρ ρ δ Figure 2 Bulk modulus constraint cube in