FUNKTSIONAALNE PROGRAMMEERIMINE. Skeemid. Eesmärk: esitada riistvara skeeme ja teisi andmevoodiagrammidel baseeruvaid kirjeldusi Haskellis
|
|
- Βοανηργες Αλεξόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Skeemid Eesmärk: esitada riistvara skeeme ja teisi andmevoodiagrammidel baseeruvaid kirjeldusi Haskellis VARMO VENE 1
2 Skeemid Skeemid koosnevad juhtmetest ja komponentidest Läbi juhtmete voolavad etteantud tüüpi väärtused Komponendid omavad sisend- ja väljundjuhtmeid input a output Kommunikatsioon on sünkroone a b = a b VARMO VENE 2
3 Skeemid Skeemide konstrueerimine pure unctions composition bypass eedback primitive components VARMO VENE 3
4 Nooled class Arrow a where pure :: (b -> c) -> a b c b c (>>>) :: a b c -> a c d -> a b d b c g d irst :: a b c -> a (b,d) (c,d) b d c d VARMO VENE 4
5 Noolte aksioomid pure id >>> = = >>> pure id = = ( >>> g) >>> h = >>> (g >>> h) g h pure (g. ) = pure >>> pure g g VARMO VENE 5
6 Noolte aksioomid irst (pure ) = pure ( * id) where * g = \(x,y) -> ( x, g y) irst ( >>> g) = irst >>> irst g g irst >>> pure (id * g) = pure (id * g) >>> irst g = g VARMO VENE 6
7 Noolte aksioomid irst >>> pure st = pure st >>> = irst (irst ) >>> pure assoc = pure assoc >>> irst where assoc ((x,y),z) = (x,(y,z)) VARMO VENE 7
8 Noolte kombinaatoreid arr :: Arrow a => (b -> c) -> a b c arr = pure returna :: Arrow a => a b b returna = arr id second :: Arrow a => a b c -> a (d,b) (d,c) second = arr swap >>> irst >>> arr swap where swap ~(x,y) = (y,x) d b d c VARMO VENE 8
9 Noolte kombinaatoreid (***) :: Arrow a => a b c -> a b c -> a (b,b ) (c,c ) *** g = irst >>> second g b b c g c (&&&) :: Arrow a => a b c -> a b d -> a b (c,d) &&& g = arr (\b -> (b,b)) >>> *** g b g c d VARMO VENE 9
10 Tsüklitega nooled class Arrow a => ArrowLoop a where loop :: a (b,d) (c,d) -> a b c b d c VARMO VENE 10
11 Konkreetseid nooli Funktsioonid instance Arrow (->) where arr = >>> g = g. irst = \ ~(x,y) -> ( x, y) trace :: ((b,d) -> (c,d)) -> b -> c trace b = let (c,d) = (b,d) in c instance ArrowLoop (->) where loop = trace VARMO VENE 11
12 Konkreetseid nooli Olekuteisendajad newtype State s i o = ST ((s,i) -> (s,o)) instance Arrow (State s) where pure = ST (id * ) ST >>> ST g = ST (g. ) irst (ST ) = ST (assoc. ( * id). unassoc) instance ArrowLoop (->) where loop (ST ) = ST (trace (unassoc.. assoc)) VARMO VENE 12
13 Konkreetseid nooli Monaadid newtype Kleisli m a b = Kleisli (a -> m b) instance Monad m => Arrow (Kleisli m) where arr = Kleisli (return. ) Kleisli >>> Kleisli g = Kleisli (\b -> b >>= g) irst (Kleisli ) = Kleisli (\ ~(b,d) -> b >>= \c -> return (c,d)) instance MonadFix m => ArrowLoop (Kleisli m) where loop (Kleisli ) = Kleisli (litm st. mix. ) where x y = (x, snd y) VARMO VENE 13
14 Konkreetseid nooli Monaadid newtype Kleisli m a b = Kleisli (a -> m b) instance Monad m => Arrow (Kleisli m) where arr = Kleisli (return. ) Kleisli >>> Kleisli g = Kleisli (\b -> b >>= g) irst (Kleisli ) = Kleisli (\ ~(b,d) -> b >>= \c -> return (c,d)) instance MonadFix m => ArrowLoop (Kleisli m) where loop (Kleisli ) = Kleisli (litm st. mix. ) where x y = (x, snd y) VARMO VENE 14
15 Konkreetseid nooli Striimprotsessorid data Stream a = Cons a (Stream a) zipstr :: (Stream a, Stream b) -> Stream (a,b) zipstr (Cons x xs, Cons y ys) = Cons (x,y) (zipstr (xs,ys)) unzipstr :: Stream (a,b) -> (Stream a, Stream b) unzipstr (Cons (x,y) xys) = (Cons x xs, Cons y ys) where (xs,ys) = unzipstr xys instance Functor Stream where map (Cons x xs) = Cons ( x) (map xs) VARMO VENE 15
16 Konkreetseid nooli Striimprotsessorid (järg) newtype StrProc b c = SP (Stream b -> Stream c) instance Arrow StrProc where pure = SP (map ) SP >>> SP g = SP (g. ) irst (SP ) = SP (zipstr. ( * id). unzipstr) instance ArrowLoop StrProc where loop (SP ) = SP (loop (unzipstr.. zipstr)) VARMO VENE 16
17 Konkreetseid nooli Viivitusega nooled class ArrowLoop a => ArrowCircuit a where delay :: b -> a b b instance ArrowCircuit StrProc where delay b = SP (Cons b) VARMO VENE 17
18 Konkreetseid nooli Näide: alglaetav londur reset const 0 i output next +1 delay 0 counter :: ArrowCircuit a => a Bool Int counter = loop (pure cond >>> pure dup >>> second (pure (+1) >>> delay 0)) where cond (reset,next) = i reset then 0 else next dup x = (x,x) VARMO VENE 18
19 Konkreetseid nooli Automaadid newtype Auto i o = A (i -> (o,auto i o)) instance Arrow Auto where pure = A (\b -> ( b, pure )) A >>> A g = A (\b -> let (c, ) = b (d,g ) = g c in (d, >>> g )) irst (A ) = A (\(b,d) -> let (c, ) = b in ((c,d), irst )) instance ArrowLoop Auto where loop (A ) = A (\b -> let (~(c,d), ) = (b,d) in (c, loop )) instance ArrowCircuit Auto where delay b = A (\b -> (b, delay b )) VARMO VENE 19
20 Noolte notatsioon Noolte süntaks exp =... proc pat-> cmd cmd = exp-< exp do { stmt;... ; stmt; cmd } stmt = pat <- cmd cmd rec { stmt;... ; stmt } VARMO VENE 20
21 Noolte notatsioon Transleerimisreeglid proc p-> -< a = pure(λp a)>>> i FV(p) FV( ) = pure(λp (, a))>>>app otherwise proc p-> do { c } = proc p-> c proc p-> do { p <- c; B } = ((proc p-> c)&&&returna)>>> proc (p, p)-> do { B } proc p-> do { c; B } = proc p-> do {_<- c; B } proc p-> do { rec { A }; B } = returna&&&loop(proc (p, p A )-> do { A;returnA-< (p B, p A )})>>> proc (p, p B )-> do { B } VARMO VENE 21
22 Alglaetav londur reset const 0 i output next +1 delay 0 counter :: ArrowCircuit a => a Bool Int counter = proc reset -> do rec output <- returna -< i reset then 0 else next next <- delay 0 -< output + 1 returna -< output VARMO VENE 22
Συναρτησιακός Προγραμματισμός 2008 Λύσεις στο Δεύτερο Φύλλο Ασκήσεων
Συναρτησιακός Προγραμματισμός 2008 Λύσεις στο Δεύτερο Φύλλο Ασκήσεων 1. Στις Σημ. 4, είδαμε τη δημιουργία της κλάσης Condition που μας επιτρέπει να χρησιμοποιούμε αριθμούς, λίστες και ζεύγη ως αληθοτιμές
ΚΥΡΙΑ ΜΟΝΤΕΛΑ ΓΛΩΣΣΩΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
ΚΥΡΙΑ ΜΟΝΤΕΛΑ ΓΛΩΣΣΩΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ 27 Κύρια προγραμματιστικά μοντέλα (1) Προστακτικός προγραμματισμός (imperative programming) FORTRAN, Algol, COBOL, BASIC, C, Pascal, Modula-2, Ada Συναρτησιακός προγραμματισμός
ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1
(1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..
Μοντέλα Προγραµµατισµού
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/~pagour/introcs/shmmy/ Επιµέλεια: (nickie@softlab.ntua.gr) Συναρτησιακός προγραµµατισµός Λογικός προγραµµατισµός Αντικειµενοστρεφής
Πολυμορφισμός και Υπερφόρτωση
Πολυμορφισμός και Υπερφόρτωση Γιάννης Κασσιός Σε αυτές τις σημειώσεις, θα ασχοληθούμε με πιο προχωρημένα θέματα του συστήματος τύπων της Haskell και πιο συγκεκριμένα με τις έννοιες του πολυμορφισμού (polymorphism)
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
Ορισμός Συναρτήσεων στην ΜL
Ορισμός Συναρτήσεων στην ΜL Ονόματα και δεσμεύσεις: ησυνάρτησηval Τα ονόματα σταθερών δεσμεύονται με τιμές σταθερών μέσω ορισμών της συνάρτησης val. val codeof0 = ord 0 val codeof9 = codeof0 + 9 Τα ονόματα
2 using namespace s t d ; 4 { 12 int t= x ; 6 x=y ; 7 y=t ; 8 } 9 11 { 13 x= y ; 14 y=t ; 15 } {
Δυναμική κατανομή μνήμης Ιωάννης Γ. Τσ ούλος 2014 1 Χρήσ η δεικτών Οι δείκτες μπορούν να χρησ ιμοποιηθούν προκειμένου να αναφερθούν σ ε διευθύνσ εις μεταβλητών και όχι απευθείας σ τις ίδιες τις μεταβλητές.
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 12 : Υποπρογράµµατα 1 ο Φύλλο Εργασιών : Διαδικασίες 1. Ποιες από τις παρακάτω επικεφαλίδες διαδικασιών δεν είναι σωστές και γιατί; α) procedure BB(P,Q:integer; Q,R:integer)
Προαπαιτούμενες Ασκήσεις 5 ου Εργαστηρίου. Dose stoixeio (integer) : 25 Found stoixeio in position 7 Dose stoixeio (integer) :94 Value not found
Α. Πρώτη προαπαιτούµενη Κάθε οµάδα θα πρέπει να δηµιουργήσει τον ζητούµενο παρακάτω πίνακα και α. να εµφανίσει τα στοιχεία του, β. να τυπώσει τον µέσο όρο των στοιχείων του, γ. να ταξινοµήσει τα στοιχεία
ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο οριζουμε. Την καμπυλη αδιαφοριας(indifference curve,level set) της f
Page 1 of 13 covexity Ορισμος Για καθε συναρτηση ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f : S R και καθε αριθμο οριζουμε Την καμπυλη αδιαφοριας(idifferece curve,level set) της f I { xs, f( x ) } Το υπερτερο
Σχεδίαση Ψηφιακών Συστημάτων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ψηφιακών Συστημάτων Ενότητα 4: Σχεδιασμός Σειριακού Αθροιστή Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
Ψηθιακά ςζηήμαηα - Διζαγωγή. ΣΔΙ Πάηπαρ, Σμήμα Ηλεκηπολογίαρ Καθ. Π. Βλασόποςλορ
Ψηθιακά ςζηήμαηα - Διζαγωγή Καθ. Π. Βλασόποςλορ 1 Κςκλώμαηα Γιακοπηών και Λογικέρ Πύλερ Καθ. Π. Βλασόποςλορ 2 Κςκλώμαηα Γιακοπηών και Λογικέρ Πύλερ Καθ. Π. Βλασόποςλορ 3 Κςκλώμαηα Γιακοπηών και Λογικέρ
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Ψηφιακά Αντικείμενα Μάθημα 1 Δραστηριότητα 1. Προγραμματισμός Φυσικών Συστημάτων. Νέα Ψηφιακά Αντικείμενα
Σκοπός Ψηφιακά Αντικείμενα Μάθημα 1 Δραστηριότητα 1 ΜΕΤΡΩΝΤΑΣ ΑΠΟΣΤΑΣΗ ΜΕ ΤΟΝ ΑΙΣΘΗΤΗΡΑ ΥΠΕΡΗΧΩΝ (SR04). Ψηφιακά Αντικείμενα Μικροελεγκτής Προγραμματισμός Φυσικών Συστημάτων Νέα Ψηφιακά Αντικείμενα Αισθητήρες
ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 1 ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ / Γραμμική Άλγεβρα
ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ /00- Γραμμική Άλγεβρα Διανυσματικά γινόμενα Να αποδείξετε ότι για τα διανύσματα, b,cισχύουν : (i) 0b, = c και b= c b= c (ii) +b+c= 0 b=b c= c (iii) ( b) ( c ) = (,b,c)
ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΙΣΤΗΜΟΝΩΝ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΕΛΟΣ IFIP, IOI
20 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΦΑΣΗΣ Με εξαίρεση το 3ο θέμα, στα 2 πρώτα, υποβλήθηκαν περισσότερες από μία βέλτιστες λύσεις (100% σημείων επιτυχίας). Από αυτές τελείως
x E[x] x xµº λx. E[x] λx. x 2 3x +2
¾ λ¹ ÐÓÒ Ó ÙÖ ½ ¼ º õ ¹ ¹ ÙÖ ¾ ÙÖ º ÃÐ ¹ ½ ¼º ¹ Ð Ñ ÐÙÐÙ µ λ¹ λ¹ ÐÙÐÙ µº λ¹ º ý ½ ¼ ø λ¹ ÃÐ º λ¹ ÌÙÖ Ò ÌÙÖ º ÌÙÖ Ò ÚÓÒ Æ ÙÑ ÒÒ ¹ ÇÊÌÊ Æ Ä Çĺ ý λ¹ ¹ º Ö ÙØ ÓÒ Ñ Ò µ Ø ¹ ÓÛ ÓÑÔÙØ Ö µ ¹ λ¹ º λ¹ ÙÒØ ÓÒ Ð
Κεφάλαιο 4 Σημασιολογία μιας Απλής Προστακτικής Γλώσσας
Κεφάλαιο 4 Σημασιολογία μιας Απλής Προστακτικής Γλώσσας Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή - 1 Μία κλασσική γλώσσα προγραμματισμού αποτελείται από: Εκφράσεις (των
!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%
" #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @
ΑΣΚΗΣΗ 2: Σχεδίαση και προσομοίωση κυκλωμάτων καταχωρητών και μετρητών
ΑΣΚΗΣΗ 2: Σχεδίαση και προσομοίωση κυκλωμάτων καταχωρητών και μετρητών Θέμα Β.1: Απλός καταχωρητής 1 bit (D Flip-Flop) preset D D Q Q clk clear Σχήμα 2.1: D Flip-Flop με εισόδους preset και clear Με τη
ΑΝΧΣΑΣΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΡΖΣΖ-ΖΡΑΚΛΔΗΟ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΗΑ
ΑΝΧΣΑΣΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΡΖΣΖ-ΖΡΑΚΛΔΗΟ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΗΑ ΘΔΜΑ: ΑΝΑΠΣΤΞΖ ΔΝΟ ΓΗΓΑΚΣΗΚΟΤ ΤΣΖΜΑΣΟ ΜΗΑ ΒΑΘΜΗΓΑ ΔΝΟ ΔΝΗΥΤΣΖ ΚΟΗΝΟΤ ΔΚΠΟΜΠΟΤ ΟΝΟΜΑΣΑ ΠΟΤΓΑΣΧΝ: ΜΔΛΗΟ ΓΔΧΡΓΗΟ ΦΟΤΝΣΑ ΥΑΡΑΛΑΜΠΟ ΔΗΖΓΖΣΖ: ΠΟΤΛΖ
Περαιτέρω για Συναρτήσεις
Περαιτέρω για Συναρτήσεις Πέρασµα µέσω διευθύνσεως παράµετροι εξόδου Εµβέλεια ονοµασιών Παράµετροι συναρτήσεις οκιµή και αποσφαλµάτωση ενός προγράµµατος Παράδειγµα: Ρίζες ευτεροβάθµιας Εξίσωσης ax 2 +
UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:
UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences EECS 150 Fall 2001 Prof. Subramanian Midterm II 1) You are implementing an 4:1 Multiplexer that has the following specifications:
. visual basic. int sum(int a, int b){ return a+b;} : : :
: : : : (),, : (),( )-,() - :,, -,( ) -1.... visual basic int sum(int a, int b){ return a+b; float f=2.5; main(){ float A[10]; A[f]=15; int x=sum(int(f), 10, A[2]);. -2.... -3.foolowpos(3) * ( a b c) (
ECE570 Lecture 6: Rewrite Systems
ECE570 Lecture 6: Rewrite Systems Jeffrey Mark Siskind School of Electrical and Computer Engineering Fall 2017 Siskind (Purdue ECE) ECE570 Lecture 6: Rewrite Systems Fall 2017 1 / 18 Simplification Rules
Προβολές και Μετασχηματισμοί Παρατήρησης
Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει
Neural'Networks' Robot Image Credit: Viktoriya Sukhanova 123RF.com
Neural'Networks' These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides
Δομημένος Προγραμματισμός
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Δομημένος Προγραμματισμός Ενότητα: Εισαγωγή στη C θεωρία Δ. Ε. Μετάφας Τμ. Ηλεκτρονικών Μηχ. Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κεφάλαιο 2: Τυπικές γλώσσες
Κεφάλαιο 2: Τυπικές γλώσσες (μέρος 2ο) Νίκος Παπασπύρου, Κωστής Σαγώνας Μεταγλωττιστές Μάρτιος 2017 47 / 216 Γλώσσες χωρίς συμφραζόμενα (i) Γραμματικές χωρίς συμφραζόμενα: Σε κάθε παραγωγή ένα μη τερματικό
Αποτελέσματα προόδου
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://courses.softlab.ntua.gr/progintro/ Διδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) Δημήτρης Φωτάκης (fotakis@cs.ntua.gr)
Π. Σταθοπούλου ή Οµάδα Α (Φοιτητές µε µονό αριθµό Μητρώου ) ιδασκαλία : Παρασκευή 11πµ-13µµ ΗΛ7
Π. Σταθοπούλου pstath@ece.upatras.gr ή pstath@upatras.gr Οµάδα Α (Φοιτητές µε µονό αριθµό Μητρώου ) ιδασκαλία : Παρασκευή 11πµ-13µµ ΗΛ7 Φροντιστήριο : ευτέρα 11πµ-12πµ ΗΛ4 Προηγούµενη ιάλεξη Προτάσεις,
Εισαγωγή στη Γλώσσα ML. Juan Miró
Εισαγωγή στη Γλώσσα ML Juan Miró Κωστής Σαγώνας Συναρτησιακός και Προστακτικός Προγραμματισμός Ένας τρόπος διαχωρισμού Ο προστακτικός προγραμματισμός επικεντρώνει στο πώς θα υλοποιήσουμε
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 12 : Υποπρογράµµατα 1 ο Φύλλο Εργασιών: Διαδικασίες ΑΠΑΝΤΗΣΕΙΣ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 12 : Υποπρογράµµατα 1 ο Φύλλο Εργασιών: Διαδικασίες ΑΠΑΝΤΗΣΕΙΣ 1. Ποιες από τις παρακάτω επικεφαλίδες διαδικασιών δεν είναι σωστές και γιατί; α) procedure BB(P,Q:integer;
The Full OAT Language Type System
The Full OAT Language Type System March 24, 2011 n Constant int b Constant bool cstr Constant string id Identifiers cid Class identifiers,, m Index typ ::= Types bot bottom bool bool int int ref reference
Ευφυής Προγραμματισμός
Ευφυής Προγραμματισμός Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Συναρτήσεις-Δομές Ελέγχου : 1. Συναρτήσεις Χρήστη 2. Έλεγχος Ροής Προγράμματος 3.
Εισαγωγή στη Γλώσσα ML
Συναρτησιακός και Προστακτικός Προγραμματισμός Εισαγωγή στη Γλώσσα ML Ένας τρόπος διαχωρισμού Ο προστακτικός προγραμματισμός επικεντρώνει στο πως θα υλοποιήσουμε τα συστατικά του προγράμματός μας Ο συναρτησιακός
ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts
r s r t r t t tr t t 2 t2 str t s s t2 s r PP rs t P r s r t r2 s r r s ts t 2 t2 str t s s s ts t2 t r2 r s ts r t t t2 s s r ss s q st r s t t s 2 r t t s t t st t t t 2 tr t s s s t r t s t s 2 s ts
17TimeThis.h function returns reference pointer to same object { return *this; }
Προαπαιτούµενη Κάθε οµάδα θα πρέπει να εµπλουτίσει το ίδιο πρόγραµµα, που έκανε την προηγούµενη φορά, προσθέτοντας στην κλάση του έναν ή περισσότερους υπερφορτωµένους τελεστές (όπως , ++, +,-,+=..)
Γλώσσες Προγραμματισμού Μεταγλωττιστές
Γλώσσες Προγραμματισμού Μεταγλωττιστές Παραγωγή Ενδιάμεσου Κώδικα Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου Δομή Παραγωγή ενδιάμεσου κώδικα. Ενδιάμεσες γλώσσες. Αφηρημένα
Κεφάλαιο 11 Εκφραστικές δυνατότητες της Haskell
Κεφάλαιο 11 Εκφραστικές δυνατότητες της Haskell Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται οι περιφραστικές λίστες, μια δυνατότητα που παρέχει η Haskell και με την οποία μπορούμε πολύ εύκολα να ορίσουμε διάφορες
ΣΥΝΑΡΤΗΣΕΙΣ Παραδείγματα χρήσης συναρτήσεων
ΣΥΝΑΡΤΗΣΕΙΣ Παραδείγματα χρήσης συναρτήσεων ΠΟΛΛΕΣ ΕΝΤΟΛΕΣ ΕΠΙΣΤΡΟΦΗΣ Να γραφτεί ένα πρόγραμμα που να διπλασιάζει ένα ποσό που του δίνει ο χρήστης μεταξύ 0 και 1000. Να ελέγχει εάν το ποσό που εισήχθη
add $t0,$zero, $zero I_LOOP: beq $t0,$s3, END add $t1, $zero,$zero J_LOOP: sub $t2, $s3, $t0 add $t2, $t2, $s1 int i, j, tmp; int *arr, n;
Άσκηση 1 η Μέρος Α Ζητούμενο: Δίνεται το παρακάτω πρόγραμμα σε C καθώς και μια μετάφραση του σε assembly MIPS. Συμπληρώστε τα κενά. Σας υπενθυμίζουμε ότι ο καταχωρητής $0 (ή $zero) είναι πάντα μηδέν. int
Υπολογιστικά Συστήματα
Υπολογιστικά Συστήματα Ενότητα 6: Ασκήσεις στη Visual Basic for Applications (VBA) Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΦΑΣΗΣ Οι παρακάτω λύσεις είναι απολύτως ενδεικτικές
21 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΦΑΣΗΣ Οι παρακάτω λύσεις είναι απολύτως ενδεικτικές Θέμα 1 ο : HydroloGIS C++ Γαϊτανίδης Απόστολος Ιδ. ΓΕΛ Εκπ/τηρίων Μαντουλίδη LANG:
Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Γιώργος Δημητρίου Μάθημα 2 ο Αλφάβητα και Γλώσσες Αλφάβητο: Ένα μη κενό και πεπερασμένο σύνολο συμβόλων Γλώσσα: Ένα οποιοδήποτε υποσύνολο των συμβολοσειρών ενός αλφαβήτου (οι προτάσεις της γλώσσας, πχ.
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07
Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public
Στοίβες - Ουρές. Στοίβα (stack) Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής
Στοίβες - Ουρές Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής οµές εδοµένων 1 Στοίβα (stack) οµή τύπουlifo: Last In - First Out (τελευταία εισαγωγή πρώτη εξαγωγή) Περιορισµένος
Δομές Δεδομένων & Αλγόριθμοι. Στοίβες. Εργαστήριο Γνώσης & Ευφυούς Πληροφορικής 1
Στοίβες Πληροφορικής 1 Περίληψη Ο Αφηρημένος Τύπος Δεδομένων (ΑΔΤ) : στοίβα Εφαρμογές στοίβας Υλοποίηση βασισμένη σε πίνακα Αυξανόμενη Στοίβα βασισμένη σε πίνακα Infix to Postfix Πληροφορικής 2 Αφηρημένος
Εντολές εισόδου - εξόδου. Εισαγωγή στη C++
Εντολές εισόδου - εξόδου Εισαγωγή στη C++ Το πρώτο πρόγραμμα //my first program #include using namespace std; int main(){ cout
Δομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 9: Μνήμη Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
Προγραμματισμός Ι. Πίνακες, Δείκτες, Αναφορές και Δυναμική Μνήμη. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Προγραμματισμός Ι Πίνακες, Δείκτες, Αναφορές και Δυναμική Μνήμη Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Πίνακες Αντικειμένων Όπως στην C μπορούμε να έχουμε πίνακες από
Διαδικασίες ΙI. ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι. Διάλεξη 5
ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 5 Διαδικασίες ΙI Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Εισαγωγή στους Η/Υ (ΗΥ134) 1 Κατανομή μνήμης Κείμενο
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Μεταγλωττιστές. Δημήτρης Μιχαήλ. Ακ. Έτος 2011-2012. Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Μεταγλωττιστές Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2011-2012 Ανοδική Κατασκευή Συντακτικού Δέντρου κατασκευή δέντρου
Λύσεις Σειράς Ασκήσεων 5
Άσκηση 1 (α) {x = 12 y = 7} skip {y = 7} Λύσεις Σειράς Ασκήσεων 5 Η προδιαγραφή αυτή είναι ορθή τόσο με την έννοια της μερικής ορθότητας όσο και με την έννοια της ολικής ορθότητας. Αυτό οφείλεται στο γεγονός
Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 3: Καταχωρητές - Απαριθμητές Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: ΕΠΛ 131 Αρχές Προγραµµατισµού I 3-2
Εισαγωγή στην C Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Σύνταξη και Σηµασιολογία της C Σχολιασµός Μεταβλητές / Σταθερές Τύποι εδοµένων και Τελεστές Βιβλίο µαθήµατος: Chapter 2,, Sec.
Τεχνολογίες Υλοποίησης Αλγορίθµων
Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Γρηγόρης Πράσινος Υποψήφιος ιδάκτωρ Τµήµα Μηχ/κων Η/Υ &
ΘΕΜΑ Α ΦΑΣΗΣ. Υπολογιστικά Νέφη Ενδεικτικές Απαντήσεις
24 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ Α ΦΑΣΗΣ Υπολογιστικά Νέφη Ενδεικτικές Απαντήσεις Οι παρακάτω κώδικες αποτελούν ενδεικτικές λύσεις του προβλήματος. Πολλοί μαθητές υπέβαλαν εξ ίσου αξιόλογους
2. 3. OCaml. Scheme[13] do CPS. On optimization for recursive programs without tailcalls.
34 (2017 ) CPS 1 or while 1 1. 2. 3. 2 On optimization or recursive programs without tailcalls. Shutaro Kobayashi, Hideyuki Kawabata, and Tetsuo Hironaka,, Hiroshima City University. 1 2 https://www.quora.com/why-dont-pureunctional-programming-languages-provide-aloop-construct
1o ΕΠΑΛ- Ε.Κ. Συκεών -Τομέας: Ηλεκτρονικής, Ηλεκτρολογίας και Αυτοματισμού Εκπαιδευτικοί: Μπουλταδάκης Στέλιος Μαυρίδης Κώστας
1o ΕΠΑΛ- Ε.Κ. Συκεών -Τομέας: Ηλεκτρονικής, Ηλεκτρολογίας και Αυτοματισμού Εκπαιδευτικοί: Μπουλταδάκης Στέλιος Μαυρίδης Κώστας Μάθημα: Ρομποτική, Μεταφορά και Έλεγχος Δεδομένων Αντικείμενο : Μεταφορά δεδομένων
ΗΥ-150. Προγραμματισμός
ΗΥ-150 Προγραμματισμός Επανάληψη Προγραμματισμός Σειριακή εκτέλεση εντολών Όλα τα προγράμματα «γράφονται» χρησιμοποιώντας 3 είδη ροής εντολών: Σειριακή Σε διακλάδωση if, if/else, switch Επαναληψηπτικά
Αφαίρεση στον FP. Πολυμορφισμός Συναρτήσεις υψηλότερης τάξης Οκνηρός και Άπληστος Υπολογισμός
Αφαίρεση στον FP Πολυμορφισμός Συναρτήσεις υψηλότερης τάξης Οκνηρός και Άπληστος Υπολογισμός Πολυμορφισμός Θα χρησιμοποιήσουμε σαν παράδειγμα τη συνάρτηση ταυτότητας Ι, που ορίζεται ως: fun I x = x Ο ορισμός
Άσκηση 2.1 Να σχεδιαστεί το διάγραµµα ροής πρωτοβάθµιας εξίσωσης της µορφής:
Άσκηση 2.1 Να σχεδιαστεί το διάγραµµα ροής πρωτοβάθµιας εξίσωσης της µορφής: y = bx+ c Αρχή εµφάνισε " ώσε τιµές στα b,cι διάβασε b,c b=0 c=0 x=-c/b εµφάνισε A ΥΝΑΤΗ εµφάνισε AOPIΣΤΗ εµφάνισε Λύση x=:,x
FOSSCOMM 2013 6ο Συνέδριο Κοινοτήτων Ανοιχτού Λογισμικού Σάββατο 20 Απριλίου 2013. Ομάδα Σχολής Ικάρων Εργαστήριο Arduino
FOSSCOMM 2013 6ο Συνέδριο Κοινοτήτων Ανοιχτού Λογισμικού Σάββατο 20 Απριλίου 2013 Ομάδα Σχολής Ικάρων Εργαστήριο Arduino Arduino Workshop LAB 1 : Παιχνίδι με έναν αισθητήρα φωτός Τι θα χρειαστούμε: 1 LED
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Πληκτρολόγιο Gaming GK1 Pro
Πληκτρολόγιο Gaming GK1 Pro ΕΓΚΑΤΑΣΤΑΣΗ: Πρώτα συνδέστε το πληκτρολόγιο gaming με το PC και στη συνέχεια εγκαταστήστε τον οδηγό όπως περιγράφεται παρακάτω: 1. Εκτελέστε το αρχείο που περιέχει τον οδηγό
Γ7.1 Επανάληψη ύλης Β Λυκείου. Γ Λυκείου Κατεύθυνσης
Γ7.1 Επανάληψη ύλης Β Λυκείου Γ Λυκείου Κατεύθυνσης Απλά προγράμματα Ένα πρόγραμμα στη C++ που υπολογίζει το άθροισμα 2 ακέραιων αριθμών. // simple program #include using namespace std; int main(){
Απλή Δομή Επιλογής. Ο κώδικας. //με χρήση μεταβλητών. delay (3000);
Απλή Δομή Επιλογής Να κατασκευάσετε το κύκλωμα το οποίο θα υλοποιεί τα φανάρια. Στη συνέχεια να αναπτύξετε τον κατάλληλο κώδικα ώστε όταν ανάβει το κόκκινο θα ανάβει και το άσπρο, όταν θα σβήνει το κόκκινο
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
Ergasthriak 'Askhsh 5
Kefˆlaio 5 Ergasthriak 'Askhsh 5 Οπου θα εξηγήσουμε πώς μπορεί να γίνει εφικτή η επαναληπτική ε- κτέλεση μιας ενέργειας και πώς μια ενέργεια μπορεί να εφαρμοσθεί σε κάθε στοιχείο μιας λίστας στοιχείων.
είκτες και Πίνακες Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα:
είκτες και Πίνακες Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Αριθµητική εικτών Πολυδιάστατοι πίνακες Πέρασµα παραµέτρων σε προγράµµατα C ΕΠΛ 132 Αρχές Προγραµµατισµού ΙΙ 1-1 είκτες (pointers)
Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα
Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήμερα Διάλεξη 9 - Δευτέρα while() τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές
Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Υλοποίηση Λιστών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμές Απλά και Διπλά Συνδεδεμένες Λίστες Κυκλικές Απλά και Διπλά Συνδεδεμένες Λίστες Τεχνικές Μείωσης Μνήμης ΕΠΛ 231 Δομές
Τι σημαίνουν οι τύποι συναρτήσεων στην ML. Παράδειγμα επισημειώσεων τύπων στην ML. Επισημειώσεις τύπων (type annotations) f : A B σημαίνει:
Τι σημαίνουν οι τύποι συναρτήσεων στην ML f : A B σημαίνει: Για κάθε x A, f(x) = για κάποιο στοιχείο y = f(x) B ατέρμονη εκτέλεση η εκτέλεση τερματίζει εγείροντας κάποια εξαίρεση Με λόγια: εάν η αποτίμηση
Κεφάλαιο : Επαναλήψεις (for, do-while)
Κεφάλαιο 5.4-5.11: Επαναλήψεις (for, do-while) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήµερα while(){ τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές Παραδείγµατα Σήµερα for(){ Η εντολές break/continue;
Γλώσσες προγραµµατισµού. Ανάπτυξη Συστηµάτων Λογισµικού
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ http://courses.softlab.ntua.gr/softeng/ ιδάσκοντες: (nickie@softlab.ntua.gr) Βασίλης Βεσκούκης (bxb@softlab.ntua.gr) Γλώσσες Προγραµµατισµού και Ανάπτυξη Συστηµάτων Λογισµικού ΤΛ
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Μηχανές Πεπερασμένων Καταστάσεων
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Μηχανές Πεπερασμένων Καταστάσεων Παρασκευάς Κίτσος http://diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής ΤΕ
Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης
Γ7.5 Αλγόριθμοι Αναζήτησης Γ Λυκείου Κατεύθυνσης Εισαγωγή Αλγόριθμος αναζήτησης θεωρείται ένας αλγόριθμος, ο οποίος προσπαθεί να εντοπίσει ένα στοιχείο με συγκεκριμένες ιδιότητες, μέσα σε μία συλλογή από
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
Μεταγλωττιστές. Εργαστήριο 5. Εισαγωγή στο BISON. Γεννήτρια Συντακτικών Αναλυτών. 2 η Φάση Μεταγλώττισης Συντακτική Ανάλυση
Μεταγλωττιστές Εργαστήριο 5 Εισαγωγή στο BISON Γεννήτρια Συντακτικών Αναλυτών 2 η Φάση Μεταγλώττισης Συντακτική Ανάλυση Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι 2015-1016 Φάσεις Μεταγλώττισης
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Πακέτα και Συστατικά Στοιχεία (Υποκυκλώματα)
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Πακέτα και Συστατικά Στοιχεία (Υποκυκλώματα) Παρασκευάς Κίτσος http://diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής
ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (JAVA) 11/3/2008
ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (JAVA) 11/3/2008 Κατασκευαστές (Constructors) Ειδικός τύπος μεθόδων, οι οποίες: - είναι public και έχουν το ίδιο όνομα με αυτό της κλάσης - χρησιμοποιούνται για να αρχικοποιήσουν κάποιες
Rewrite semantics for guarded recursion with universal quantification over clocks
Rewrite semantics for guarded recursion with universal quantification over clocks (Work in progress) Aleš Bizjak 1 Rasmus Møgelberg 2 1 Aarhus University 2 IT University of Copenhagen May 18, 2015 Overview
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ
Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Διαμόρφωση Ελέγχου Ροής Προγράμματος Δομημένος Προγραμματισμός Ο πιο απλός και συνηθισμένος
Β. Εισαγωγή στον Προγραμματισμό Η/Υ με την JavaScript
Β. Εισαγωγή στον Προγραμματισμό Η/Υ με την JavaScript Β.1 Τύποι Δεδομένων Όλες οι γλώσσες προγραμματισμού (πρέπει να) υποστηρίζουν πέντε (5) πρωταρχικούς τύπους δεδομένων: char (character) int (integer)
Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &
Η γλώσσα ML σε βάθος. Τι σημαίνουν οι τύποι συναρτήσεων στην ML. Παράδειγμα επισημειώσεων τύπων στην ML. Επισημειώσεις τύπων (type annotations)
Η γλώσσα ML σε βάθος Τι σημαίνουν οι τύποι συναρτήσεων στην ML f : A B σημαίνει: Για κάθε x A, f(x) = για κάποιο στοιχείο y=f(x) B ατέρμονη εκτέλεση η εκτέλεση τερματίζει εγείροντας κάποια εξαίρεση Με
Εισαγωγή στο Bison. Μεταγλωττιστές, Χειμερινό εξάμηνο
Εισαγωγή στο Bison Μεταγλωττιστές, Χειμερινό εξάμηνο 2014-2015 Συντακτική Ανάλυση Αποτελεί την δεύτερη φάση της μετάφρασης. Εύρεση της σχέσης που υπάρχει των λεκτικών μονάδων ενός προγράμματος. Παράδειγμα
Ενδεικτικές Λύσεις σε Επιλεγμένα Θέματα της C++
Ενδεικτικές Λύσεις σε Επιλεγμένα Θέματα της C++ class ListNode public: T data; ListNode * next; ListNode(const ListNode & src) ; data = src.data; if (src.next!=null) next = new ListNode ((const
ρ ρ s ::= sd sd ::= K x sk xotse se sk ::= K (sk x) se ::= x K se se se x = se xotse se xotse se x sp se se l lo sp ::= x l K sp x(x ) l ::= char number lo ::= se (+ = = < > ) se se se ot ::= τ ɛ τ
Συναρτήσεις-Διαδικασίες
ΗΥ 232 Οργάνωση και Σχεδίαση Υπολογιστών Διάλεξη 4 Συναρτήσεις-Διαδικασίες Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Διαδικασίες (procedures) Γνωστές και σαν υπορουτίνες (subroutines)
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', '##' '# '## & - #% '##'.//0 #( 111111111111111111111111111111111111111111111111111 &2(!%#(345#" 6##7 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111
Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8
Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 1000 1001 1002 1003 1004 1005 12 9.8 9976 3 1010 26 1006 1007 1008 1009 1010 1011 16 125 1299 a 13 1298 Δήλωση Δήλωση Τύπος
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
Καταχωρητες (Registers) Μετρητες (Counters)
Καταχωρητες (Registers) Μετρητες (Counters) Καταχωρητής (register) Ομαδα από flip-flops μαζί με συνδυαστικο κυκλωμα για εκτελεση διαφορων λειτουργιων όπως μεταφορα, αποθηκευση και επεξεργασια πληροφοριων.