A note on special cases of Van Aubel s theorem

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A note on special cases of Van Aubel s theorem"

Transcript

1 Int. J. Adv. Appl. Math. and Mech ISSN: 7-59 Journal homepage: IJAAMM International Journal of Advances in Applied Mathematics and Mechanics A note on special cases of Van Aubel s theorem Dasari Naga Vijay Krishna Department of Mathematics Narayana Educational Instutions Machilipatnam Bengalore India Research Article Received 0 February 018; accepted in revised version 09 May 018 Abstract: MSC: In this short paper we study some properties of the lines associated with van Aubel s theorem in the special case when squares constructed on the sides of an arbitrary quadrilateral are replaced with equilateral triangles as well as isosceles triangles. 97K0 68R10 Keywords: Van Aubel s theorem Van Aubel s point Orthodiagonal quadrilateral Equilateral triangle Kiepert hyperbola 018 The Authors. This is an open access article under the CC BY-NC-ND license 1. Introduction Van Aubel s theorem Consider an arbitrary Quadrilateral ABCD the quadrilateral S 1 S S S formed by joining the four corresponding centers S 1 S S S of the squares thus constructed on each side of ABCD is an iso-ortho diagonal quadrilateral [6]. That is S 1 S S S and S 1 S S S. From Fig. 1 it is clear S 1 S S S and S 1 S S S. Fig. 1. address: vijay @gmail.com 0

2 Dasari Naga Vijay Krishna / Int. J. Adv. Appl. Math. and Mech The theorem we just stated above is attributed to Van Aubel Von Aubel in [Gardner p ] could also be found in their work de Villiers Yaglom Finney among others. In this article we study the properties of the lines S 1 S and S S when the squares are replaced with equilateral triangles and isosceles triangles our present study about the special case of Van Aubel s theorem when the squares are replaced with equilateral triangles and further generalization is not actually new since some of the authors studied about this earlier in 90 s can be found in [ ]. Even though it is not a new study and the results presented in this article seems to be very elementary but are quite new and interesting. In this short note we also study about a point named as Van Aubel s point its geometricalruler and compass construction its location in general case and few more generalizations of van Aubel s theorem associated with Kiepert hyperbola.. Preliminaries We use the following lemmas in proving the results. Lemma.1. If Ax 1 y 1 Bx y are the two vertices of an arbitrary triangle ABC whose base angles are A and B then the coordinates of third vertex C x y is given by x1 tan A + x tanb ± tan A tanb y 1 y tan A + tanb y1 tan A + y tanb tan A tanb x 1 x tan A + tanb x1 cotb + x cot A ± y 1 y cot A + cotb or y1 cotb + y cot A x 1 x cot A + cotb Proof. Consider x 1 y 1 1 Λcot A + cotb det x y 1 x 1 cotb + x cot A ± y 1 y y1 cotb + y cot A x 1 x cot A + cotb By doing row operation on R using R 1 and R we get x 1 y 1 1 Λcot A + cotb x y 1 ± y 1 y x1 x 0 Which implies {Λcot A + cotb} ± [x 1 x + ] y 1 y ±AB 0 We have area of triangle ABC 1 x 1 y 1 1 det x y 1 x 1 cotb+x cot A±y 1 y cot A+cotB y 1 cotb+y cot A x 1 x cot A+cotB 1 1 x 1 1 y 1 1 cot A + cotb det x y 1 x 1 cotb + x cot A ± y 1 y y1 cotb + y cot A x 1 x cot A + cotb 1 1 {Λcot A + cotb} cot A + cotb 1 1 cot A + cotb ±AB AB 0 since cot A + cotb 0 cot A + cotb It proves that area of triangle ABC is not equal to zero which means that there is a triangle with A B and C as vertices.

3 A note on special cases of Van Aubel s theorem Now let us prove that base angles of triangle ABC are A and B if the third vertex either C or C 1 where x1 cotb + x cot A + y 1 y C y 1 cotb + y cot A x 1 x cot A + cotb cot A + cotb and C 1 x1 cotb + x cot A y 1 y y 1 cotb + y cot A + x 1 x cot A + cotb cot A + cotb Clearly the midpoint D of C C 1 lies on the line AB since C 1 is the image of C with respect to the base AB of triangle ABC its coordinate is given by x1 cotb + x cot A D y 1 cotb + y cot A cot A + cotb cot A + cotb And also D divides AB in the ratio given by Hence AD DB cot A cotb Now AD AB cot A cot A + cotb DB AB cotb cot A + cotb C D C D AB AB cot A + cotb Since C DC D 1 are the heights of the triangle ABC triangle ABC 1 hence C D AD C D AD tan A C D DB C D DB tanb This proves that the base angles are A and B. Note:.1 is true even if one of the angles either A or B is right angle. Proof. We start with A 90 o So By considering the point C given in the.1 we have to prove that C Aand AB are perpendicular to each other and t anb C A AB. As we have angle A 90 0 so cot A 0 and cotb 0. Hence x1 cotb + y 1 y C y 1 cotb x 1 x cotb cotb Slope of the line C A Hence C A AB C A AB 1 AB y1 y cotb x1 x y 1 y Slope of the line AB x1 x + 1 AB tanb cotb AB cotb y1 y x 1 x. It is clear that slope of C A slope of AB 1 This Proves that the point C so defined as in the statement of the lemma is in fact the third vertex of the triangle ABC when A A nalogously it is shown for C 1 the same occurs when B 90 0.

4 Dasari Naga Vijay Krishna / Int. J. Adv. Appl. Math. and Mech Corollary.1. If ang l e A ang l eb θ that is triangle ABC is an isosceles triangle then the coordinates of C are given by x1 + x ± tanθ y 1 y y1 + y tanθ x1 x Corollary.. If A B 60 o that is triangleabc is an equilateral triangle then the coordinates of C are given by x1 + x ± y 1 y y1 + y x1 x Lemma.. If Ax 1 y 1 Bx y C x y are the three vertices of an arbitrary triangle ABC then the coordinates of its circum center are given by x1 sina + x sinb + x sinc sina + sinb + sinc where ABC are the angles of the triangle. y 1 sina + y sinb + y sinc sina + sinb + sinc Corollary.. The coordinates of the circum center of an isosceles triangle whose vertices are Ax 1 y 1 Bx y x1 + x ± tanθ y 1 y y1 + y tanθ x1 x and C Where θ is the base angle are given by x1 + x cotθ y 1 y y1 + y ± cotθ x1 x. Lemma.. If x 1 y 1 x y x y are the three vertices of an equilateral triangle then the coordinates of its center are given by x1 + x + x y 1 + y + y. Corollary.. The coordinates of the center of an equilateral triangle whose vertices are x 1 y 1 x y and x1 +x ± y 1 y x1 x y1 y are given by + x 1 +x y 1+y x x 1 + y 1 +y. Main results Theorem.1. If S 1 S S S are the centers of the equilateral triangles ABP BCQ C DR D AT are constructed which lie entirely out wards on the sides AB abc bc D c and AD d of an arbitrary quadrilateral ABC D respectively then the lines PR QS are respectively perpendicular to the lines S S S 1 S. That is S 1 S QT S S PR. [] Proof. With out loss of generality let us consider the coordinates of vertices of the quadrilateral ABC D as A x 1 y 1 B x y C x y and D x y. Then using. we have x1 + x + y 1 y y1 + y x1 x P and x + x + y y Q y + y x x x + x + y y y + y x x R x + x 1 + y y 1 y + y 1 x x 1 T

5 A note on special cases of Van Aubel s theorem Fig.. From Fig. it is clear S 1 S QT and S S PR and it is clear that S 1 A + B + P y 1 y + x 1 + x B +C +Q y y + x + x S S C + D + R y y + x + x S D + A + T y y 1 + x + x 1 So x x 1 + y 1 + y x x + y + y x x + y + y x 1 x + y + y 1 y1 + y y y + x + x x x 1 Slope of the line PR x 1 + x x x y + y y y 1 y + y y y 1 + x + x x 1 x Slope of the line QT x + x x x 1 y + y y 1 y x 1 + x x x y + y y y 1 Slope of the line S S y1 + y y y + x + x x x 1 x + x x x 1 y + y y 1 y Slope of the line S 1 S y + y y y 1 + x + x x 1 x Now it is clear that slope of PR slope of S S 1 slope of QT slope of S 1 S. Hence S 1 S QT S S PR Theorem.. If S 1 S S and S are the centers of the equilateral triangles ABP BCQ C DR D AT are constructed which lie entirely inwards on the sides AB a BC b CD c and AD d of an arbitrary quadrilateral ABCD respectively then the lines P R Q T are respectively perpendicular to the liness S and S 1 S. That is S 1 S Q T S S P R.

6 Dasari Naga Vijay Krishna / Int. J. Adv. Appl. Math. and Mech Proof. Without loss of generality let us consider the coordinates of vertices of the quadrilateral ABC D as A x 1 y 1 B x y C x y and D x y. Then using. we have P Q R T x1 + x y 1 y x + x y y x + x y y x + x 1 y y 1 And it is clear that S B +C +Q y y 1 + x 1 + x 1 S C + D + R y y + x + x S C + D + R y y + x + x S D + A + T y 1 y + x + x 1 y1 + y + x1 x y + y + x x y + y + x x y + y 1 + x x 1 x 1 x + y 1 + y x x + y + y x x + y + y x x 1 + y + y 1 So Slope of the line P R y1 + y y y x + x x x 1 x 1 + x x x + y + y y y 1 Slope of the line QT y + y y y 1 x + x x 1 x x + x x x 1 + y + y y 1 y Slope of the line S S x 1 + x x x + y + y y y 1 y1 + y y y x + x x x 1 Slope of the line S 1 S x + x x x 1 + y + y y 1 y y + y y y 1 x + x x 1 x Now it is clear that slope of P R slope of S S 1 slope of Q T slope of S 1 S. Hence S 1 S Q T S S P R. Theorem.. Let V 1 V V and V are the points of intersection of the lines PR QT S 1 S and S S then the four points V 1 V V and V are concyclic see Fig.. Proof. From Theorem.1 it is clear that V 1 V V V and V V V V 1. Hence the four points V 1 V V and V are concyclic which completes the proof of the Theorem.. Theorem.. Let V 1 V V and V are the points of intersection of the lines P R Q T S 1 S and S S then the four points V 1 V V and V are concyclic see Fig.. Proof. From Theorem. it is clear that V 1 V V V and V V V V 1. Hence the four points V 1 V V and V are concyclic which completes the proof of the Theorem..

7 6 A note on special cases of Van Aubel s theorem Fig.. Fig.. Theorem.5. The quadrilaterals PQ RT P QR T S 1 S S S and S 1 S S S are parallelograms. Proof. To prove the quadrilateral PQ RT P QR TS 1 S S S S 1 S S S are parallelograms It is enough to prove that diagonals bisect each other. It is clear that The mid point of PR The mid point of Q T M 1 x1 + x + x + x + y 1 y + y y y1 + y + y + y x1 x + x x

8 Dasari Naga Vijay Krishna / Int. J. Adv. Appl. Math. and Mech The mid point of QT The mid point of P R x1 + x + x + x y 1 y + y y y1 + y + y + y + x1 x + x x M The mid point of S 1 S The mid point of S S y1 y + y y + x1 + x + x + x M x 1 x + x x + y 1 + y + y + y The mid point of S S The mid point of S 1 S y1 y + y y + x1 + x + x + x M x 1 x + x x + y 1 + y + y + y Hence Theorem.5 is proved. Theorem.6. Let M 1 M M M are the point of intersections of the diagonals of the parallelograms PQ RT P QR T S 1 S S S and S 1 S S S respectively then M 1 M M M are collinear and they lies on the line for recognisation sake let us call this line as van aubel s line given by x 1 x + x x x + y 1 y + y y y x 1 + x x + x + y 1 + y y + y Proof. Consider λ x 1 + x + x + x β y 1 + y + y + y γ x 1 x + x x and δ y 1 y + y y. So x1 + x + x + x + y 1 y + y y y1 + y + y + y x1 x + x x λ + δ M 1 β γ x1 + x + x + x y 1 y + y y y1 + y + y + y + x1 x + x x λ δ M β + γ y1 y + y y + x1 + x + x + x M x 1 x + x x + y 1 + y + y + y δ + λ γ + β and y1 y + y y + x1 + x + x + x M x 1 x + x x + y 1 + y + y + y δ + λ γ + β Consider a line γx + δy λγ + βδ 1 Clearly the four points M 1 M M and M lies on this line 1. Hence the four points M 1 M M and M are collinear. The line through these points is γx + δy λγ + βδ. That is x 1 x + x x x + y 1 y + y y y x 1 + x x + x + y 1 + y y + y Remark It is clear that the Mid Point of M 1 M the Mid Point of M M M λ β x 1 +x +x +x y 1+y +y +y.. The point M is also the point of intersection of diagonals of the parallelograms formed by joining the midpoints of the quadrilaterals PQRS and P Q R S.. For recognization sake let us call the point M as Van Aubel s point of the quadrilateral ABC D. The point M acts as midpoint of the diagonals for any arbitrary parallelogram rectangle rhombus square

9 8 A note on special cases of Van Aubel s theorem Fig. 5.. Using Theorem.5 and Theorem.6 it can also be stated as The midpoints of PR M 1 S 1 S M QT M S S M are collinear and M is the midpoint of M 1 M and M M. In the similar manner the midpoints of P R M S 1 S M Q T M 1 S S M are collinear and M is the midpoint of M 1 M and M M 5. Using Theorem.5 and Theorem.6 we can see how to locate the point M using only ruler and compass If some arbitrary quadrilateral ABC D is given construct the equilateral triangles on the sides either inside or outside Let PQRT be its affix vertices locate the midpoints of the sides of quadrilateral PQRT then the point of intersection of the diagonals of quadrilateral formed by the midpoints of sides of PQRT is required M. see Fig If I 1 I I I and O 1 O O O and G 1 G G G are incentres circumcenters and centroids of the triangles AB MBC MC DM and D AM respectively then the sets {I 1 I I I } and {O 1 O O O }and {G 1 G G G } are con cyclic when ABC D is kite or square. The orthocenters H 1 H H H of the triangles AB MBC MC DM and D AM are collinear when ABC D is kite and coincides with M when ABC D is square see Fig Generalizations Theorem.7. If S 1 S S S are the circumcenters of the isosceles triangles ABP BCQ C DR D AT whose base angle is θ constructed entirely out wards on the sides of quadrilateral ABCD Then a The midpoints of PR M 1 S 1 S M QT M S S M are collinear and lie on the van Aubel s line given by x 1 x + x x x + y 1 y + y y y x 1 + x x + x + y 1 + y y + y b Van Aubel s point M is the midpoint of M 1 M and M M see figure-7 Proof. We have by.1 the coordinates of PQRS are given by x1 + x + tanθ y 1 y P y1 + y tanθ x1 x

10 Dasari Naga Vijay Krishna / Int. J. Adv. Appl. Math. and Mech Fig. 6. x + x + tanθ y y Q x + x + tanθ y y R x + x 1 + tanθ y y 1 T y + y tanθ x x y + y tanθ x x y + y 1 tanθ x x 1 And using. the circumcenters S 1 S S and S are given by x1 + x cotθ y 1 y y1 + y + cotθ x1 x S 1 x + x cotθ y y y + y + cotθ x x S x + x cotθ y y y + y + cotθ x x S x + x 1 cotθ y y 1 y + y 1 + cotθ x x 1 S The mid point of PR x1 + x + x + x + tanθ y 1 y + y y y1 + y + y + y tanθ x1 x + x x M 1 The mid point of QT x1 + x + x + x tanθ y 1 y + y y y1 + y + y + y + tanθ x1 x + x x M The mid point of S 1 S x1 + x + x + x cotθ y 1 y + y y y1 + y + y + y + cotθ x1 + x + x + x M

11 0 A note on special cases of Van Aubel s theorem Fig. 7. The mid point of S S x1 + x + x + x + cotθ y 1 y + y y y1 + y + y + y cotθ x1 + x + x + x M Hence M The Midpoint of M 1 M The Mid point of M M x1 + x + x + x y 1 + y + y + y Hence b is proved. Now to prove a consider λ x 1 + x + x + x β y 1 + y + y + y γ x 1 x + x x and δ y 1 y + y y then λ + tanθ δ M 1 β tanθ γ λ tanθ δ M β + tanθ γ λ cotθ δ M β + cotθ γ and λ + cotθ δ M β cotθ γ Consider a line γx + δy λγ + βδ Clearly the four points M 1 M M and M lies on this line. Hence the four points M 1 M M and M are collinear. From Theorem.7 Clearly the line is Van Aubel s line L. Its equation is given by x 1 x + x x x + y 1 y + y y y x 1 + x x + x + y 1 + y y + y

12 Dasari Naga Vijay Krishna / Int. J. Adv. Appl. Math. and Mech Theorem.8. If S 1 S S S are the circumcenters of an isosceles triangles ABP BCQ C DR D AT whose base angle is θ constructed entirely inwards on the sides of quadrilateral ABCD. Then a The midpoints of P R M 1 S 1 S M Q T M S S M are collinear and lies on the Van Aubel s Line L b Van Aubel s point M is the midpoint of M 1 M and M M Proof. We have by.1 the coordinates of P Q R T are given by P x1 + x tanθ y 1 y y1 + y + tanθ x 1 x Q x + x tanθ y y y + y + tanθ x x R x + x tanθ y y T x + x 1 tanθ y y 1 y + y + tanθ x x y + y 1 + tanθ x x 1 And using. the circumcenters S 1 S S and S are given by S x1 1 + x + cotθ y 1 y y1 + y cotθ x 1 x S x + x + cotθ y y y + y cotθ x x S x + x + cotθ y y y + y cotθ x x S x + x 1 + cotθ y y 1 y + y 1 cotθ x x 1 The mid point of P R M x1 1 + x + x + x tanθ y 1 y + y y y1 + y + y + y + tanθ x 1 x + x x The mid point of Q T M x1 + x + x + x + tanθ y 1 y + y y y1 + y + y + y tanθ x 1 x + x x The mid point of S 1 S M x1 + x + x + x + cotθ y 1 y + y y y1 + y + y + y cotθ x 1 + x + x + x The mid point of S S M x1 + x + x + x cotθ y 1 y + y y y1 + y + y + y + cotθ x 1 + x + x + x Hence M The Midpoint of M 1 M The Mid point of M M x1 + x + x + x y 1 + y + y + y Hence b is proved. Now to prove a Consider λ x 1 + x + x + x β y 1 + y + y + y γ x 1 x + x x and δ y 1 y + y y. Then λ tanθ M 1 δ β + tanθ γ λ + tanθ M δ β tanθ γ

13 A note on special cases of Van Aubel s theorem λ + cotθ M δ β cotθ γ λ cotθ M δ β + cotθ γ Consider a line γx + δy λγ + βδ Clearly the four points M 1 M M and M lies on this line. Hence collinear. The line through these points is γx + δy λγ + βδ. From Theorem.7 Clearly the line is Van Aubel s line L. The four points M 1 M M and M are Remark.. 1. The Van Aubel s point M of the quadrilateral ABCD and the points M 1 M M M M 1 M M and M all lie on the Van Aubel s Line of the quadrilateral ABC D.. If θ and θ of Theorem.7 and Theorem.8 are equal Then the points M 1 M M M respectively coincide with the points M 1 M M and M. Theorem.9. The quadrilaterals PQ RT P QR T S 1 S S S and S 1 S S S are parallelograms where P Q R T P Q R T are the affixes of the isosceles triangles with base angles θ constructed on the sides of the quadrilateral ABCD out and inwards respectively. Proof. To prove the quadrilateral PQ RT P QR TS 1 S S S S 1 S S S are parallelograms it is enough to prove that diagonals bisect each other. By Theorem.7 and Theorem.8 it is clear that The mid point of PR The mid point of Q T x1 + x + x + x + tanθ y 1 y + y y y1 + y + y + y tanθ x1 x + x x The mid point of QT The mid point of P R x1 + x + x + x tanθ y 1 y + y y y1 + y + y + y + tanθ x1 x + x x The mid point of S 1 S The mid point of S S x1 + x + x + x cotθ y 1 y + y y y1 + y + y + y + cotθ x1 + x + x + x The mid point of S S The mid point of S 1 S x1 + x + x + x + cotθ y 1 y + y y y1 + y + y + y cotθ x1 + x + x + x Hence theorem is proved. Theorem.10. Suppose ABCD is a given arbitrary quadrilateral let P 1 P...P k+1 Q 1 Q...Q k+1 R 1 R...R k+1 T 1 T...T k+1 P 1 P...P k+1 Q 1 Q...Q k+1 R 1 R...R k+1 and T 1 T...T be the regular polygons of k + 1 sides constructed on the k+1 sides of ABCD out and inwards respectively where k 1 such that P 1 P k+1 AB P 1 P k+1 Q 1Q k+1 BC Q 1 Q k+1 R 1R k+1 C D R 1 R k+1 T 1T k+1 D A T 1 T k+1 and S 1 S S S S 1 S S S are the centers of the regular polygons constructed on the sides then a The midpoints of P k+1 Q k+1 M 1 S 1 S M R k+1 T k+1 M S S M P k+1 Q k+1 M 1 S 1 S M R k+1 T k+1 M S S M are collinear and lie on the van Aubel s linel given by x 1 x + x x x + y 1 y + y y y x 1 + x x + x + y 1 + y y + y

14 b The quadrilaterals P k+1 Dasari Naga Vijay Krishna / Int. J. Adv. Appl. Math. and Mech Q k+1 R k+1 T k+1 P k+1 Q k+1 R k+1 T k+1 S 1 S S S and S 1 S S S are parallelograms. Proof. It is clear that in the regular polygons P 1 P...P k+1 Q 1 Q...Q k+1 R 1 R...R k+1 T 1 T...T k+1 P 1 P...P k+1 Q 1 Q...Q k+1 R 1 R...R k+1 and T 1 T...T the triangles AP K +1 BBQ K +1 C C R K +1 DDT K +1 A are isosceles triangles k+1 with base angle θ constructed outwards on the sides ABBC C DD A of quadrilateral ABC D here as the triangles AP K +1 BBQ K +1 C C R K +1 DDT K +1 A are also isosceles triangles with base angle θ constructed inwards on the sides ABBC C DD A of quadrilateral ABC D. Hence By Theorem.7 and.8 a is true. In the similar manner we can prove b using Theorem.9. Remark.. Clearly by Theorem.10 it is true that we can also plot Van Aubel s Point M for an arbitrary quadrilateral ABC D by constructing the regular polygons of n number of sides on the sides of quadrilateral lie inwards or outwards and by applying the procedure discussed in.1. Theorem.11. Let ABCD is a quadrilateral Suppose the triangles ABP C DR are isosceles with angle at their top vertices and BCQ D AT are isosceles with angle π at their top vertices all of them have same orientation constructed on the sides of the quadrilateral which lie outwards and if S 1 S S S the circumcenters of the triangles ABP BCQ C DR and D AT then a PR is perpendicular to QT. b The ratio of these two segements PR and QT doesn t depend from the quadrilateral. c Quadrilateral S 1 S S S is parallelogram. d The three points Van Aubel s Point M S1 S S S of quadrilateral S 1 S S S and the mid points of PRM PR and QT M QT are collinear and lie on the line Van Aubel s Line given by x 1 x + x x x + y 1 y + y y y x 1 + x x + x + y 1 + y y + y And in particular the midpoint of PRMP R and QT M QT is the Van Aubel s point of S 1 S S S.see Fig. 8 Proof. Given at the top vertices P R makes an angle Îś so the two isosceles triangles ABP C DR having the base angle as 90 o /. Using.1 we have x1 + x + cot y1 y y1 + y cot x1 x P R x + x + cot y y y + y cot x x And given at the top vertices QT makes an angle π so the two isosceles triangles BCQ D AT having the base angle as /. Hence using. we have x + x + tan y y y + y tan x x Q T x + x 1 + tan y y 1 y + y 1 tan x x 1 Now y1 + y y y cot x1 x x + x slope of PR x 1 + x x x + cot K v let y1 y y + y L v y + y y y 1 tan x x x + x 1 slope of QT x + x x x 1 + tan M v let y y y + y 1 N v x1 + x x x + cot y1 y y + y y1 + y y y cot L v x1 x x + x K v

15 A note on special cases of Van Aubel s theorem Fig. 8. Here it is clear that slope of PRslope of QT 1 M v K v + L v N v 0 That is PR QT Hence a is proved Now for b Consider K v y 1 + y y y cot / x1 x x + x L v x 1 + x x x + cot / y 1 y y + y Mv y + y y y 1 tan / x x x + x 1 N v x + x x x 1 tan / y y y + y 1 It is clear that K v cot / N v and L v cot / M v From it is clear that M v N v L v K v Lv + K v M v + N v K v L v cot/ N v M v Now PR QT Lv + K v M v + N v K v N v L v cot/ M v That is the ratio of two segments PR and QT doesn t depend on the quadrilateral. Hence b is proved. Now for c we proceed as follows: Since the base angles of isosceles triangles ABP C DR are 90 o / So using. we have x1 + x + cot y 1 y y1 + y cotx1 x S 1 and x + x + cot y y S y + y cotx x

16 Dasari Naga Vijay Krishna / Int. J. Adv. Appl. Math. and Mech In the similar manner since the base angles of isosceles triangles BCQ D AT are /. So using. we have x + x cot y y y + y + cotx x S and x + x 1 cot y y 1 S y + y 1 + cotx x 1 Now It is clear that The mid point of S 1 S The midpoint of S S x1 + x + x + x + cot y 1 y + y y y1 + y + y + y cotx1 x + x x Hence the quadrilateral S 1 S S S is parallelogram which completes the proof of c. Now for d Since the quadrilateral S 1 S S S is parallelogram Van Aubel s point M S1 S S S of quadrilateral S 1 S S S is the midpoint of the diagonals. Hence Van Aubel s point M S1 S S S of quadrilateral S1 S S S x1 + x + x + x + cot y 1 y + y y y1 + y + y + y cotx1 x + x x M S1 S S S and Mid point of PR x1 + x + x + x + cot y1 y + y y y1 + y + y + y cot x1 x + x x M PR Mid point of QT y1 M QT x 1 + x + x + x tan θ y + y y y1 + y + y + y + tan θ x 1 x + x x Consider λ x 1 + x + x + x β y 1 + y + y + y γ x 1 x + x x and δ y 1 y + y y then λ + cotδ M S1 S S S β cotγ λ + cot δ M PR β cot γ λ tan δ M QT β + tan γ The midpoint of M M PR and M QT λ + cot tan δ β cot tan γ 8 8 cot tan cot λ + cotδ β cotγ M S1 S S S Hence the midpoint of PR M PR and QT M QT is the Van Aubel s point S1 S S S. Now consider a line that is γx + δy λγ + βδ. Clearly the three points lies on this line. Hence the three points M S1 S S S M PR M QT are collinear. The line through these points is γx + δy λγ + βδ. From Theorem.7 Clearly the line is van aubel s line L. Theorem.1. Let ABCD is a quadrilateral suppose the triangles ABP C DR are isosceles with angle Îś at their top vertices and BCQ D AT are isosceles with angle π at their top vertices all of them have same orientation constructed on the sides of the quadrilateral which lie inwards and if S 1 S S S the circumcenters of the triangles ABP BCQ C DR and D AT Then

17 6 A note on special cases of Van Aubel s theorem a P R is perpendicular to Q T b The ratio of these two segements P R and Q T doesn t depend from the quadrilateral. c Quadrilateral S 1 S S S is parallelogram d The three points the Van Aubel s point M S 1 S S S and Q T M Q T are collinear and lie on the line Van Aubel s Line given by of quadrilateral S 1 S S S and mid points of P R M P R x 1 x + x x x + y 1 y + y y y x 1 + x x + x + y 1 + y y + y And in particular the midpoint of P R M P R and Q T M Q T is the Van Aubel s point of S 1 S S S Proof. Given at the top vertices P R makes an angle Îś so the two isosceles triangles ABP C DR having the base angle as 90 o /. Using.1 we have P R x1 + x cot y1 y x + x cot y y y1 + y + cot y + y + cot x1 x x x And given at the top vertices Q T makes an angle π so the two isosceles triangles BCQ D AT having the base angle as /. Hence using. we have Q T x + x tan y y x + x 1 tan y y 1 y + y + tan y + y 1 + tan x x x x 1 Now y1 Slope of P R + y y y + cot x1 x x + x x 1 + x x x cot y1 y y + y y Slope of Q T + y y y 1 + tan x x x + x 1 x + x x x 1 tan y y y + y 1 x1 + x x x cot y1 y y + y y1 + y y y + cot x1 x x + x L v K v K v L v let M v l et N v It is clear that slope of P R slope of Q T 1 M v K v + L v N v 0 5 That is P R Q T Hence a is proved. Now for b Consider K v y 1 + y y y + cot/x1 x x + x L v x 1 + x x x cot/ y 1 y y + y M v y + y y y 1 + tan/x x x + x 1 N v x + x x x 1 + tan/ y y y + y 1 It is clear that K v cot/ N v K v cot/ N v and L v cot/ M v From 5 it is clear that M v L v N v K Lv + K v v M K v v + N v N L v cot/ v M v

18 Dasari Naga Vijay Krishna / Int. J. Adv. Appl. Math. and Mech Now P R Q T L + K M + N K N L cot/ M That is the ratio of two segments P R and Q T doesn t depend from the quadrilateral. Hence b is proved. Now for c we proceed as follows: Since the base angles of isosceles triangles ABP C DR are 90 o / So using. we have S x1 1 + x cot y 1 y y1 + y + cotx1 x and S x + x cot y y y + y + cotx x In the similar manner since the base angles of isosceles triangles BCQ D AT are /. So using. we have S x + x + cot y y y + y cotx x and S x + x 1 + cot y y 1 y + y 1 cotx x 1 Now It is clear that The mid point of S 1 S The midpoint of S S x1 + x + x + x cot y 1 y + y y y1 + y + y + y + cotx1 x + x x Hence the quadrilateral S 1 S S S is parallelogram which completes the proof of c. Now for d Since the quadrilateral S 1 S S S is parallelogram Van Aubel s point S 1 S S S is the midpoint of the diagonals. Hence Van Aubel s point M x1 + x + x + x cot y 1 y + y y S 1 S S S M S 1 S S S M S 1 S S S of quadrilateral S 1 S S S y1 + y + y + y + cotx1 x + x x And midpoint of P R x1 M + x + x + x cot y1 y + y y y1 + y + y + y + cot x1 x + x x P R Mid point of Q T x1 M + x + x + x + tan y1 y + y y y1 + y + y + y tan x1 x + x x Q T Consider λ x 1 + x + x + x β y 1 + y + y + y γ x 1 x + x x δ y 1 y + y y then λ cotδ M S β + cotγ 1 S S S λ cot M δ P R β + cot γ λ + tan M δ Q T β tan γ of quadrilateral The midpoint of M P R and M Q T λ cot tan δ β + cot tan γ 8 8 λ cotδ β + cotγ M S cot tan cot 1 S S S Hence the midpoint of P R M P R and Q T M Q T is the Van Aubel s point of S 1 S S S Now consider a line that is γx + δy λγ + βδ. Clearly the three points lies on this line. Hence the three points M S 1 S M S S P R M Q T are collinear. The line through these points is γx + δy λγ + βδ. From Theorem.7 Clearly the line is van aubel s line L.

19 8 A note on special cases of Van Aubel s theorem Remark.. 1. The Van Aubel s point M S1 S S S of quadrilateral S1 S S S the Van Aubel s point M S of 1 S S S quadrilateral S 1 S S S and the four points M PR M QT M P R M Q T are collinear lie on the Van Aubel s Line.. Using.. it is clear that Van Aubel s line contains 15 points They are Van Aubel s point M of the quadrilateral ABCD the points M 1 M M M M 1 M M M the Van Abel s point of quadrilateral S 1S S S the Van Abel s point of quadrilateral S 1 S S S M PR M QT M P R M Q T. Theorem.1. The following statements are true. a The Van Aubel s point M of quadrilateral ABCD is the midpoint of Van Aubel s points of the quadrilaterals S 1 S S S and S 1 S S S M PR M P R and M QT M Q T see Fig. 9 b M PR M Q T M S1 S S S M S 1 S S S M QT M P R Fig. 9. Proof. We have λ + cotδ M S1 S S S β cotγ λ + cot δ M PR β cot γ λ tan δ M QT β + tan γ λ cotδ M S β + cotγ 1 S S S λ cot M δ P R β + cot γ

20 Dasari Naga Vijay Krishna / Int. J. Adv. Appl. Math. and Mech λ + tan M δ Q T β tan γ Now it is clear that the Van Aubel s point M of quadrilateral ABCD is the midpoint of the Van Aubel s points of the quadrilaterals S 1 S S S and S 1 S S S M PR M P R M QT M. Q T Hence a is proved. Now for b Consider M PR M cot tan Q T δ + γ cot δ + γ Hence M S1 S S S M S cot 1 S S S δ + γ M QT M cot tan P R δ + γ cot δ + γ M PR M Q T M S1 S S S M S 1 S S S M QT M P R.. Dao s Generalization [1] Theorem.1. Let ABCD be a quadrilateral let four points A 1 B 1 C 1 D 1 on the plane either interior or exterior to the quadrilateral such that A 1 AB D AD 1 B 1 BC AB A 1 β BC B 1 C 1 C D γ C DC 1 D 1 D A δ and + γ β + δ π in the same a A 1 B 1 C 1 D 1 is an orthodiagonal quadrilateral. b The ratio of these two segments A 1 C 1 and B 1 D 1 doesn t depend from the quadrilateral. Fig. 10. Proof. Without loss of generality let us consider the coordinates of vertices of the quadrilateral ABC D as A x1 y 1 B x y C x y and D x y and also given A1 AB D AD 1 B 1 BC AB A 1 β BC B 1 C 1 C D γ 90 0 C DC 1 D 1 D A δ 90 0 β. So using.1 we have the coordinates of A 1 B 1 C 1 D 1 as follows x1 cotβ + x cot ± y 1 y y1 cotβ + y cot x 1 x A 1 cot + cotβ cot + cotβ x cotγ + x cotβ ± y y y cotγ + y cotβ x x B 1 cotβ + cotγ cotβ + cotγ x + x cotcotβ ± cot y y y + y cotcotβ cotx x since γ cotcotβ 1 + cotcotβ

21 50 A note on special cases of Van Aubel s theorem x cotδ + x cotγ ± y y y cotδ + y cotγ x x C 1 cotγ + cotδ cotγ + cotδ x cot + x cotβ ± cotcotβ y y y cot + y cotβ cotcotβx x since γ 90 0 δ 90 0 β cot + cotβ cot + cotβ x cot + x 1 cotδ ± y y 1 y cot + y 1 cotδ x x 1 D 1 cotδ + cot cotδ + cot x cotcotβ + x 1 ± cotβ y y 1 y cotcotβ + y 1 cotβx x 1 since δ 90 0 β 1 + cotcotβ 1 + cotcotβ Now Slope of A 1 C 1 coty y + cotβy y 1 [ cotcotβx x x 1 x ] cotx x + cotβx x 1 ± [ cotcotβy y y 1 y ] K d L d Slope of B 1 D 1 y 1 y + y y cotcotβ [ cotβx x 1 cotx x ] x 1 x + x x cotcotβ ± [ cotβy y 1 coty y ] M d N d cotx x + cotβx x 1 ± [ cotcotβy y y 1 y ] coty y + cotβy y 1 [ cotcotβx x x 1 x ] L d K d So it is clear that Slope of A 1 C 1 Slope of B 1 D 1 1 M d K d + L d N d 0 6 Hence A 1 C 1 B 1 D 1 that is quadrilateral A 1 C 1 B 1 D 1 is orthodiagonal quadrilateral. So a is proved. Now for b Consider K d coty y + cotβy y 1 [ cotcotβx x x 1 x ] L d cotx x + cotβx x 1 ± [ cotcotβy y y 1 y ] M d y 1 y + y y cotcotβ [ cotβx x 1 cotx x ] N d x 1 x + x x cotcotβ ± [ cotβy y 1 coty y ] It is clear that K d N d and L d M d. From 6 it is clear that M d N d L d K d Ld + K d M d + N d K d N d L d M d 1 Now A 1 C 1 B 1 D cotcotβ + 1 Ld + K d 1 cot + cotβ M cotcotβ + 1 d + N d cot + cotβ Kd N d cotcotβ + 1 cot + cotβ Ld M d cotcotβ + 1 cot + cotβ That is the ratio of two segments PR and QT doesn t depend from the quadrilateral. Hence b is proved... Generalization of Kiepert Hyperbola Suppose the diagonals of quadrilaterals ABC D are equal suppose the triangles ABP C DR are isosceles with angle ψ at their top vertices and the triangles BCQ D AT are isosceles with angle π ψ at their top vertices all of them have the same orientation. Then intersection of PR and QT moves along an equilateral hyperbola passing through the midpoints of diagonals and asymptotes midlines of the quadrilateral. For further generalizations refer []. Acknowledgements The author is would like to thank an anonymous referee for his/her kind comments and suggestions which lead to a better presentation of this paper.

22 Dasari Naga Vijay Krishna / Int. J. Adv. Appl. Math. and Mech References [1] Dao Thanh Oai Generalizations of some famous classical Euclidean geometry theorems International Journal of Computer Discovered Mathematics IJCDM [] Dao Thanh Oai Equilateral Triangles and Kiepert Perspectors in Complex Numbers Forum Geometricorum [] Dasari Naga Vijay Krishna A New Consequence of Van Aubels Theorem Preprints doi: 10.09/preprints v1. [] Michael de Villiers Generalizing Van Aubel Using Duality Mathematics Magazine [5] Michael de Villiers Dual generalizations of Van Aubel s theorem The Mathematical Gazette November [6] Yutaka Nishiyama The Beautiful Geometric Theorem Of Van Aubel International Journal of Pure and Applied Mathematics [7] [8] [9] [10] Submit your manuscript to IJAAMM and benefit from: Rigorous peer review Immediate publication on acceptance Open access: Articles freely available online High visibility within the field Retaining the copyright to your article Submit your next manuscript at editor.ijaamm@gmail.com

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

On an area property of the sum cota + cotb + cotγ in a triangle

On an area property of the sum cota + cotb + cotγ in a triangle On an area property of the sum cota + cotb + cot in a triangle 1. Introduction Rummaging through an obscure trigonometry book published in Athens, Greece (and in the Greek language), and long out of print,

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

de Rham Theorem May 10, 2016

de Rham Theorem May 10, 2016 de Rham Theorem May 10, 2016 Stokes formula and the integration morphism: Let M = σ Σ σ be a smooth triangulated manifold. Fact: Stokes formula σ ω = σ dω holds, e.g. for simplices. It can be used to define

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Geometric Transformations

Geometric Transformations hapter 6 Geometric Transformations Goal: In the first three chapters, sets of axioms provided the basis for the study of geometries. In this chapter, the concept of transformation provides a different

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle Applied Mathematical Sciences Vol. 11 2017 no. 8 361-374 HIKARI Ltd www.m-hikari.com https://doi.org/.12988/ams.2017.7113 A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα