Verification. Lecture 12. Martin Zimmermann
|
|
- Καπανεύς Ἄτλας Βάμβας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Verification Lecture 12 Martin Zimmermann
2 Plan for today LTL FairnessinLTL LTL Model Checking
3 Review: Syntax modal logic over infinite sequences[pnueli 1977] Propositional logic a AP ϕandϕ ψ Temporal operators ϕ ϕuψ atomicproposition negationandconjunction nextstatefulfillsϕ ϕholdsuntilaψ-stateisreached linear temporal logic is a logic for describing LT properties
4 Review: Intuitive semantics atomic prop. a a arbitrary arbitrary arbitrary arbitrary... arbitrary a arbitrary arbitrary arbitrary nextstep a... a b a b a b b arbitrary until aub... a a a a arbitrary eventually a... always a a a a a a...
5 Semantics over words TheLT-propertyinducedbyLTLformulaφoverAPis: Words(φ) = {σ (2 AP ) ω σ φ},where isthesmallestrelationsatisfying: σ true σ a iff a A 0 (i.e.,a 0 a) σ φ 1 φ 2 iff σ φ 1 andσ φ 2 σ φ iff σ / φ σ φ iff σ[1..] =A 1 A 2 A 3... φ σ φ 1 Uφ 2 iff j 0. σ[j..] φ 2 and σ[i..] φ 1, 0 i<j forσ= A 0A 1A 2... wehaveσ[i..]= A i A i+1 A i+2... isthesuffixofσ fromindexion
6 Semantics over paths and states LetTS =(S,Act,,I,AP,L)beatransitionsystemwithoutterminal states,andletφbeanltl-formulaoverap. ForinfinitepathfragmentπofTS: Forstates S: π φ iff trace(π) φ s φ iff ( π Paths(s). π φ) TSsatisfiesφ,denotedTS φ,iftraces(ts) Words(φ)
7 Semantics for transition systems TS φ iff (* transition system semantics*) Traces(TS) Words(φ) iff (* definition of for LT-properties*) TS Words(φ) iff (* Definition of Words(φ)*) π φforallπ Paths(TS) iff (* semanticsof forstates*) s 0 φforalls 0 I.
8 Example s 1 s 2 s 3 {a,b} {a,b} {a}
9 Semantics of negation Forpaths,itholdsπ φifandonlyifπ/ φsince: Words( φ) =(2 AP ) ω Words(φ). But: TS/ φandts φarenotequivalentingeneral Itholds: TS φ impliests/ φ.notalwaysthereverse! Note that: TS/ φ iff Traces(TS)/ Words(φ) iff Traces(TS) Words(φ)/= iff Traces(TS) Words( φ)/=. TSneithersatisfiesφnor φifthereare pathsπ 1 andπ 2 intssuchthatπ 1 φandπ 2 φ
10 Example s 1 s 0 s 2 {a} AtransitionsystemforwhichTS / aandts / a
11 Semanticsof,, and σ φ iff j 0. σ[j..] φ σ φ iff j 0. σ[j..] φ σ φ iff j 0. i j.σ[i...] φ σ φ iff j 0. i j. σ[i...] φ
12 Equivalence LTLformulasϕ,ψareequivalent,denotedϕ ψ,if: Words(ϕ) =Words(ψ)
13 Duality and idempotence laws Duality: ϕ ϕ ϕ ϕ ϕ ϕ Idempotency: ϕ ϕ ϕ ϕ ϕu(ϕuψ) ϕuψ (ϕuψ)uψ ϕuψ
14 Absorption and distributive laws Absorption: ϕ ϕ ϕ ϕ Distribution: (ϕuψ) (ϕ ψ) (ϕ ψ) ( ϕ)u( ψ) ϕ ψ ϕ ψ but...: (ϕuψ) / ( ϕ)u( ψ) (ϕ ψ) / ϕ ψ (ϕ ψ) / ϕ ψ
15 Distributive laws (a b) / a b and (a b) / a b {b} {a} {a} TS / (a b)andts ( a) ( b) TS / ( a) ( b)andts (a b)
16 Expansion laws Expansion: ϕuψ ϕ ϕ ψ (ϕ (ϕuψ)) ϕ ϕ ϕ ϕ
17 Expansion for until P U =Words(φUψ)satisfies: P U = Words(ψ) {A 0 A 1 A 2... Words(φ) A 1 A 2... P U } and is the smallest LT-property P such that: Words(ψ) {A 0 A 1 A 2... Words(φ) A 1 A 2... P} P ( )
18 Proof: Words(φ U ψ) is the smallest LT-prop. satisfying(*) LetPbeanyLT-propertythatsatisfies(*).Weshowthat Words(φUψ) P. LetB 0 B 1 B 2... Words(φUψ). Thenthereexistsak 0such thatb i B i+1 B i+2... Words(φ)forevery0 i<kand B k B k+1 B k+2... Words(ψ). Wederive B k B k+1 B k+2... P becauseb k B k+1 B k+2... Words(ψ)andWords(ψ) P. B k 1 B k B k+1 B k+2... P becauseifa 0 A 1 A 2... Words(φ)andA 1 A 2... PthenA 0 A 1 A 2... P. B k 2 B k 1 B k B k+1 B k+2... P,analogously... B 0 B 1 B 2... P.
19 Weak until Theweak-until(or:unless)operator: φwψ def = (φuψ) φ asopposedtountil,φwψdoesnotrequireaψ-statetobe reached Until U andweakuntil W aredual: (φuψ) (φ ψ)w( φ ψ) (φwψ) (φ ψ)u( φ ψ) Until and weak until are equally expressive: ψ ψwfalseandφuψ (φwψ) ψ Untilandweakuntilsatisfythesameexpansionlaw butuntilisthesmallest,andweakuntilthelargestsolution!
20 Expansion for weak until P W =Words(φWψ)satisfies: P W = Words(ψ) {A 0 A 1 A 2... Words(φ) A 1 A 2... P W } and is the greatest LT-property P such that: Words(ψ) {A 0 A 1 A 2... Words(φ) A 1 A 2... P} P ( )
21 Proof: Words(φ W ψ) is the greatest LT-prop. satisfying(**) LetPbeanyLT-propertythatsatisfies(**).Weshowthat P Words(φWψ). LetB 0 B 1 B 2.../ Words(φWψ). Thenthereexistsak 0such thatb i B i+1 B i+2... φ ψforevery0 i<kand B k B k+1 B k+2... φ ψ. Wederive B k B k+1 B k+2... / P becauseb k B k+1 B k+2... / Words(ψ)and B k B k+1 B k+2... / Words(φ)and B k 1 B k B k+1 B k+2... / P becauseb k B k+1 B k+2... / PandB k 1 B k B k+1 B k+2... / Words(ψ) B k 2 B k 1 B k B k+1 B k+2... / P,analogously... B 0 B 1 B 2... / P.
22 (Weak-until) positive normal form Canonical form for LTL-formulas negationsonlyoccuradjacenttoatomicpropositions disjunctiveandconjunctivenormalformisaspecialcaseofpnf foreachltl-operator,adualoperatorisneeded e.g., (φuψ) ((φ ψ)u( φ ψ)) (φ ψ) thatis: (φuψ) (φ ψ)w( φ ψ) Fora AP,thesetofLTLformulasinPNFisgivenby: φ = true false a a φ 1 φ 2 φ 1 φ 2 φ φ 1 Uφ 2 φ 1 Wφ 2 and arealsopermitted: φ φwfalseand φ =trueuφ
23 (Weak until) PNF is always possible For each LTL-formula there exists an equivalent LTL-formula in PNF Transformations: true false false true φ φ (φ ψ) φ ψ (φ ψ) φ ψ φ φ (φuψ) (φ ψ)w( φ ψ) (φwψ) (ϕ ψ)u( ϕ ψ) φ φ φ φ but an exponential growth in size is possible
24 Example ConsidertheLTL-formula ((aub) c) ThisformulaisnotinPNF,butcanbetransformedintoPNFas follows: ((aub) c) ((aub) c) ( (aub) c) ((a b)w( a b) c) can the exponential growth in size be avoided?
25 The release operator Thereleaseoperator:φRψ def = ( φu ψ) ψalwaysholds,arequirementthatisreleasedassoonasφ holds Until U andrelease R aredual: φuψ φrψ ( φr ψ) ( φu ψ) Until and release are equally expressive: ψ falserψandφuψ ( φr ψ) Release satisfies the expansion law: φrψ ψ (φ (φrψ))
26 Semantics of release σ φrψ iff (*definitionof R *) j 0. (σ[j..] ψ i <j.σ[i..] φ) iff (* semantics of negation*) j 0.(σ[j..]/ ψ i <j.σ[i..]/ φ) iff (*dualityof and *) iff iff iff j 0. (σ[j..]/ ψ i <j.σ[i..]/ φ) j 0.( (σ[j..]/ ψ) i <j.σ[i..]/ φ) j 0.(σ[j..] ψ i <j.σ[i..] φ) (*demorgan slaw*) (* semantics of negation*) j 0.σ[j..] ψ or i 0.(σ[i..] φ k i. σ[k..] ψ)
27 Positive normal form(revisited) Fora AP,LTLformulasinPNFaregivenby: φ = true false a a φ 1 φ 2 φ 1 φ 2 φ φ 1 Uφ 2 φ 1 R φ 2
28 PNFinlinearsize For any LTL-formula φ there exists an equivalent LTL-formula ψ in PNF with ψ = O( φ ) Transformations: true false false true φ φ (φ ψ) φ ψ (φ ψ) φ ψ φ φ (φuψ) φr ψ (φrψ) φu ψ φ φ φ φ
LTL to Buchi. Overview. Buchi Model Checking LTL Translating LTL into Buchi. Ralf Huuck. Buchi Automata. Example
Overview LTL to Buchi Buchi Model Checking LTL Translating LTL into Buchi Ralf Huuck Buchi Automata Example Automaton which accepts infinite traces δ A Buchi automaton is 5-tuple Σ, Q, Q 0,δ, F Σ is a
Διαβάστε περισσότεραOrdinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Διαβάστε περισσότεραLecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Διαβάστε περισσότεραEvery set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Διαβάστε περισσότεραSequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
Διαβάστε περισσότεραBounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραFinitary proof systems for Kozen s µ
Finitary proof systems for Kozen s µ Bahareh Afshari Graham Leigh TU Wien University of Gothenburg homc & cdps 16, Singapore 1 / 17 Modal µ-calculus Syntax: p p φ ψ φ ψ φ φ x µx φ νx φ Semantics: For Kripke
Διαβάστε περισσότερα2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Διαβάστε περισσότεραLecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραLecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Διαβάστε περισσότεραA Lambda Model Characterizing Computational Behaviours of Terms
A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities
Διαβάστε περισσότεραThe challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραProofs on expressing nested GR(1) properties in GR(1)
Proofs on expressing nested GR(1 properties in GR(1 Ioannis Filippidis ifilippi@caltech.edu Control and Dynamical Systems California Institute of Technology December 22, 2017 Abstract This is a proof that
Διαβάστε περισσότεραIterated trilinear fourier integrals with arbitrary symbols
Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραDistances in Sierpiński Triangle Graphs
Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation
Διαβάστε περισσότερα5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
Διαβάστε περισσότεραNowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότεραFractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Διαβάστε περισσότεραDiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Διαβάστε περισσότεραω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Διαβάστε περισσότεραSOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραA Conception of Inductive Logic: Example
A Conception of Inductive Logic: Example Patrick Maher Department of Philosophy, University of Illinois at Urbana-Champaign This paper presents a simple example of inductive logic done according to the
Διαβάστε περισσότεραOverview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Διαβάστε περισσότεραLecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Διαβάστε περισσότεραΓραμμική Χρονική Λογική (Linear Temporal Logic)
Γραμμική Χρονική Λογική (Linear Temporal Logic) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Γραμμική Χρονική Λογική - σύνταξη και ερμηνεία Διατύπωση ιδιοτήτων Δομές Kripke Μοντελοέλεγχος ΕΠΛ 664 Ανάλυση
Διαβάστε περισσότεραΑλγόριθμοι και πολυπλοκότητα NP-Completeness (2)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότερα= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y
Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4
Διαβάστε περισσότεραk A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Διαβάστε περισσότεραMean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
Διαβάστε περισσότεραAbout these lecture notes. Simply Typed λ-calculus. Types
About these lecture notes Simply Typed λ-calculus Akim Demaille akim@lrde.epita.fr EPITA École Pour l Informatique et les Techniques Avancées Many of these slides are largely inspired from Andrew D. Ker
Διαβάστε περισσότεραTrigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Διαβάστε περισσότεραΑπόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Διαβάστε περισσότεραAbstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Διαβάστε περισσότεραCS-XXX: Graduate Programming Languages. Lecture 27 Higher-Order Polymorphism. Matthew Fluet 2012
CS-XXX: Graduate Programming Languages Lecture 27 Higher-Order Polymorphism Matthew Fluet 2012 Looking back, looking forward Have defined System F. Metatheory (what properties does it have) What (else)
Διαβάστε περισσότεραUniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Διαβάστε περισσότεραAffine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
Διαβάστε περισσότεραChapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραCongruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Διαβάστε περισσότεραMINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
Διαβάστε περισσότεραDerivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότερα5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραThe λ-calculus. Lecturer: John Wickerson. Phil Wadler
The λ-calculus Lecturer: John Wickerson Phil Wadler A tiny bit of Java expr ::= expr + expr expr < expr x n block ::= cmd { cmd... cmd } cmd ::= expr; if(cmd) block else block; if(cmd) block; try{cmd}
Διαβάστε περισσότεραNumerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραHomomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Διαβάστε περισσότεραFormal Semantics. 1 Type Logic
Formal Semantics Principle of Compositionality The meaning of a sentence is determined by the meanings of its parts and the way they are put together. 1 Type Logic Types (a measure on expressions) The
Διαβάστε περισσότεραTheorem 8 Let φ be the most powerful size α test of H
Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test
Διαβάστε περισσότεραA Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Διαβάστε περισσότεραforms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Διαβάστε περισσότεραΚεφάλαιο 12. Αναπαράσταση του Χρόνου. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 12 Αναπαράσταση του Χρόνου Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Χρόνος και Κλασική Λογική Στην κλασική λογική δεν µπορεί να γίνει
Διαβάστε περισσότεραThe ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Διαβάστε περισσότεραTMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραFrom the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
Διαβάστε περισσότεραCommutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Διαβάστε περισσότεραλρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;
λρ-calculus Yuichi Komori komori@math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences, Chiba University Arato Cho aratoc@g.math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences,
Διαβάστε περισσότεραLecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Διαβάστε περισσότεραArithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
Διαβάστε περισσότερα1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
Διαβάστε περισσότεραΜηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Διαβάστε περισσότεραΠ Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Διαβάστε περισσότεραΣχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thales Workshop, 1-3 July 2015 Integrating Behavioural Algebraic Specifications and Design by Contract Nikolaos Triantafyllou
Διαβάστε περισσότεραMath 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Διαβάστε περισσότεραReview: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation
Review: Molecules Start with the full amiltonian Ze e = + + ZZe A A B i A i me A ma ia, 4πε 0riA i< j4πε 0rij A< B4πε 0rAB Use the Born-Oppenheimer approximation elec Ze e = + + A A B i i me ia, 4πε 0riA
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραMATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραSpace-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Διαβάστε περισσότεραTridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Διαβάστε περισσότεραPractice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Διαβάστε περισσότεραModels for Probabilistic Programs with an Adversary
Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive
Διαβάστε περισσότεραΌλνκα πνπδάζηξηαο: Γξεγνξία αββίδνπ Α.Δ.Μ:7859. Δπηβιέπνλ Καζεγεηήο: Παζραιίδεο Αζαλάζηνο ΑΝΩΣΑΣΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΑΒΑΛΑ
ΑΝΩΣΑΣΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΑΒΑΛΑ ΥΟΛΖ ΓΗΟΗΚΖΖ ΚΑΗ ΟΗΚΟΝΟΜΗΑ ΣΜΖΜΑ ΛΟΓΗΣΗΚΖ Εςπωπαϊϊκή Εταιιπείία,, ο θεσμόρ καιι η ανάπτςξη τηρ. Όλνκα πνπδάζηξηαο: Γξεγνξία αββίδνπ Α.Δ.Μ:7859 Δπηβιέπνλ Καζεγεηήο:
Διαβάστε περισσότεραModule 5. February 14, h 0min
Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,
Διαβάστε περισσότερα12. Radon-Nikodym Theorem
Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say
Διαβάστε περισσότεραLast Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότεραHW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Διαβάστε περισσότεραSTAT200C: Hypothesis Testing
STAT200C: Hypothesis Testing Zhaoxia Yu Spring 2017 Some Definitions A hypothesis is a statement about a population parameter. The two complementary hypotheses in a hypothesis testing are the null hypothesis
Διαβάστε περισσότεραLecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραΘεωρία Πληροφορίας και Κωδίκων
Θεωρία Πληροφορίας και Κωδίκων Δρ. Νικόλαος Κολοκοτρώνης Λέκτορας Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης και Τεχνολογίας Υπολογιστών Τέρμα Οδού Καραϊσκάκη, 22100 Τρίπολη E mail: nkolok@uop.gr Web: http://www.uop.gr/~nkolok/
Διαβάστε περισσότεραCompleteness Theorem for System AS1
11 The Completeness Theorem for System AS1 1. Introduction...2 2. Previous Definitions...2 3. Deductive Consistency...2 4. Maximal Consistent Sets...5 5. Lindenbaum s Lemma...6 6. Every Maximal Consistent
Διαβάστε περισσότερα