Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
|
|
- Αρμονία Μιχαηλίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Last Lecture Biostatistics Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis Hypothesis Testig Procedure Rejectio Regio Type I error Type II error Power fuctio Size α test Level α test Likleihood Ratio Test Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Example of Hypothesis Testig Power fuctio Let X 1,, X be chages i blood pressure after a treatmet The rejectio regio Truth { x : H 0 : θ 0 H 1 : θ 0 } x s X / > 3 Decisio Accept H 0 Reject H 0 H 0 Correct Decisio Type I error H 1 Type II error Correct Decisio Defiitio - The power fuctio The power fuctio of a hypothesis test with rejectio regio R is the fuctio of θ defied by βθ X R θ reject H 0 θ If θ Ω c 0 alterative is true, the probability of rejectig H 0 is called the power of test for this particular value of θ Probability of type I error βθ if θ Ω 0 Probability of type II error 1 βθ if θ Ω c 0 A ideal test should have power fuctio satisfyig βθ 0 for all θ Ω 0, βθ 1 for all θ Ω c 0, which is typically ot possible i practice Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1
2 Sizes ad Levels of Tests Size α test A test with power fuctio βθ is a size α test if sup βθ α θ Ω 0 I other words, the maximum probability of makig a type I error is α Level α test A test with power fuctio βθ is a level α test if sup βθ α θ Ω 0 I other words, the maximum probability of makig a type I error is equal or less tha α Ay size α test is also a level α test Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Likelihood Ratio Tests LRT Defiitio Let Lθ x be the likelihood fuctio of θ The likelihood ratio test statistic for testig H 0 : θ Ω 0 vs H 1 : θ Ω c 0 is λx sup θ Ω 0 Lθ x sup θ Ω Lθ x Lˆθ 0 x Lˆθ x where ˆθ is the MLE of θ over θ Ω, ad ˆθ 0 is the MLE of θ over θ Ω 0 restricted MLE The likelihood ratio test is a test that rejects H 0 if ad oly if λx c where 0 c 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Example of LRT Problem iid Cosider X 1,, X N θ, σ 2 where σ 2 is kow H 0 : θ θ 0 H 1 : θ > θ 0 For the LRT test ad its power fuctio Solutio 1 Lθ x exp x i θ 2 ] 2πσ 2 1 2πσ 2 exp x i θ 2 ] We eed to fid MLE of θ over Ω, ad Ω 0, θ 0 ] Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 MLE of θ over Ω, To maximize Lθ x, we eed to maximize exp x i θ ], 2 or equivaletly to miimize x i θ 2 x i θ 2 x 2 i + θ 2 2θx i θ 2 2θ The equatio above miimizes whe θ ˆθ x i + x 2 i x i x Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1
3 MLE of θ over Ω 0, θ 0 ] Likelihood ratio test Lθ x is maximized at θ x i x if x θ 0 However, if x θ 0, x does ot fall ito a valid rage of ˆθ 0, ad θ θ 0, the likelihood fuctio will be a icreasig fuctio Therefore ˆθ 0 θ 0 To summarize, λx Lˆθ 0 x Lˆθ x 1 if X θ 0 exp exp x i θ 0 2 ] x i x 2 ] if X > θ 0 2σ { 2 1 if X θ0 exp ] x θ 0 2 if X > θ 0 ˆθ 0 { X if X θ0 θ 0 if X > θ 0 Therefore, the likelihood test rejects the ull hypothesis if ad oly if exp x θ 0 2 ] c ad x θ 0 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Specifyig c Specifyig c cot d exp x θ 0 2 ] x θ 0 2 log c x θ 0 2 2σ2 log c x θ 0 2σ2 log c c x > θ 0 So, LRT rejects H 0 if ad oly if x θ 0 x θ 0 σ/ Therefore, the rejectio regio is { x : x θ } 0 σ/ c 2σ2 log c 2σ2 log c σ/ c Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1
4 Power fuctio X θ0 βθ reject H 0 X θ + θ θ0 σ/ X θ σ/ θ 0 θ Sice X 1,, X iid N θ, σ 2, X N where Z N 0, 1 σ/ + c θ, σ2 σ/ c c Therefore, X θ σ/ N 0, 1 βθ Z θ 0 θ σ/ + c Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Makig size α LRT To make a size α test, sup βθ α θ Ω 0 sup Pr Z θ 0 θ θ θ 0 σ/ + c α Pr Z c α c z α Note that Pr Z θ 0 θ σ/ + c is maximized whe θ is maximum ie θ θ 0 Therefore, size α LRT test rejects H 0 if ad oly if x θ 0 σ/ z α Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Aother Example of LRT Problem iid X 1,, X fx θ e x θ where x θ ad < θ < Fid a LRT testig the followig oe-sided hypothesis H 0 : θ θ 0 Solutio Lθ x H 1 : θ > θ 0 e xi θ Ix i θ e x i +θ Iθ x 1 Solutio cot d Whe θ Ω c 0, the likelihood is still a icreasig fuctio, but bouded by θ mix 1, θ 0 Therefore, the likelihood is maximized whe θ ˆθ 0 mix 1, θ 0 The likelihood ratio test statistic is λx { e x i +θ 0 e x i +x 1 if θ 0 < x 1 1 if θ 0 x 1 { e θ 0 x 1 if θ 0 < x 1 1 if θ 0 x 1 The likelihood fuctio is a icreasig fuctio of θ, bouded by θ x 1 Therefore, whe θ Ω R, Lθ x is maximized whe θ ˆθ x 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1
5 Solutio cot d LRT based o sufficiet statistics The LRT rejects H 0 if ad oly if e θ 0 x 1 c ad θ 0 < x 1 θ 0 x 1 log c x 1 θ 0 log c So, LRT reject H 0 is x 1 θ 0 log c ad x 1 > θ 0 The power fuctio is βθ X 1 θ 0 log c X 1 > θ 0 Theorem 824 If TX is a sufficiet statistic for θ, λ t is the LRT statistic based o T, ad λx is the LRT statistic based o x the λ Tx] λx for every x i the sample space To fid size α test, we eed to fid c satisfyig the coditio sup βθ α θ θ 0 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Proof Proof cot d By Factorizatio Theorem, the joit pdf of x ca be writte as fx θ gtx θhx ad we ca choose gt θ to be the pdf or pmf of Tx The, the LRT statistic based o TX is defied as λ t sup θ Ω 0 Lθ Tx t sup θ Ω Lθ Tx t sup θ Ω 0 gt θ sup θ Ω gt θ LRT statistic based o X is λx sup θ Ω 0 Lθ x sup θ Ω Lθ x sup θ Ω 0 fx θ sup θ Ω fx θ sup θ Ω 0 gtx θhx sup θ Ω gtx θhx sup θ Ω 0 gtx θ sup θ Ω gtx θ λ Tx The simplified expressio of λx should deped o x oly through Tx, where Tx is a sufficiet statistic for θ Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1
6 Example Problem iid Cosider X 1,, X N θ, σ 2 where σ 2 is kow H 0 : θ θ 0 H 1 : θ θ 0 Fid a size α LRT Solutio - Usig sufficiet statistics TX X is a sufficiet statistic for θ T N θ, σ2 λt sup θ Ω 0 Lθ t sup θ Ω Lθ t 1 2πσ 2 / exp t θ 0 2 / sup θ Ω 1 2πσ 2 / exp ] t θ2 / Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 ] Solutio cot d The umerator is fixed, ad MLE i the deomiator is ˆθ t Therefore the LRT statistic is λt exp t θ 0 2 ] LRT rejects H 0 if ad oly if λt exp t θ 0 2 ] c t θ 0 σ/ 2 log c c Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Solutio cot d Note that A size α test satisfies T X N T θ 0 σ/ sup Pr θ Ω 0 θ, σ2 N 0, 1 T θ σ/ c α T θ 0 Pr σ/ c α Pr Z c α PrZ c + PrZ c α Z T θ σ/ z α/2 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 LRT with uisace parameters Problem iid X 1,, X N θ, σ 2 where both θ ad σ 2 ukow Betwee H 0 : θ θ 0 ad H 1 : θ > θ 0 1 Specify Ω ad Ω 0 2 Fid size α LRT Solutio - Ω ad Ω 0 Ω {θ, σ 2 : θ R, σ 2 > 0} Ω 0 {θ, σ 2 : θ θ 0, σ 2 > 0} Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1
7 Solutio - Size α LRT Solutio - Maximizig Numerator λx sup {θ,σ 2 :θ θ 0,σ 2 >0} Lθ, σ 2 x sup {θ,σ 2 :θ R,σ 2 >0} Lθ, σ 2 x For the deomiator, the MLE of θ ad σ 2 are { ˆθ X σ 2 Xi X 2 1 s2 X Step 1, fix σ 2, likelihood is maximized whe x i θ 2 is miimized over θ θ 0 { x if x θ0 ˆθ 0 θ 0 if x > θ 0 For umerator, we eed to maximize Lθ, σ 2 x over the regio θ θ 0 ad σ 2 > 0 1 Lθ, σ 2 x exp x i θ 2 ] 2πσ 2 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Solutio - Maximizig Numerator cot d Step 2 : Now, we eed to maximize likelihood or log-likelihood with respect to σ 2 ad we substitute ˆθ 0 for θ lˆθ, σ 2 x log 2π + log σ 2 xi ˆθ log l σ 2 + xi ˆθ 0 2 2σ ˆσ 0 2 x i ˆθ 0 2 Combiig the results together λx { 1 if x θ0 ˆσ 2 ˆσ 2 0 /2 if x > θ 0 Solutio - Costructig LRT LRT test rejects H 0 if ad oly if x > θ 0 ad ˆσ 2 /2 c ˆσ 2 0 xi x 2 / xi θ 0 2 / /2 c xi x 2 xi θ 0 2 c xi X 2 xi X 2 + x θ 0 2 c x θ c 0 2 xi x 2 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1
8 Solutio - Costructig LRT cot d Ubiased Test x θ 0 s X / c x θ 0 2 xi x 2 c x θ 0 s X / c LRT test reject if The ext step is specify c to get size α test omitted Defiitio If a test always satisfies Prreject H 0 whe H 0 is false Prreject H 0 whe H 0 is true The the test is said to be ubiased Alterative Defiitio Recall that βθ reject H 0 A test is ubiased if βθ βθ for every θ Ω c 0 ad θ Ω 0 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Example X 1,, X iid N θ, σ 2 where σ 2 is kow, testig H 0 : θ θ 0 vs H 1 : θ > θ 0 LRT test rejects H 0 if x θ 0 σ/ > c X θ0 βθ σ/ > c X θ + θ θ0 σ/ X θ > c σ/ + θ θ 0 σ/ > c X θ σ/ > c + θ 0 θ σ/ Example cot d Therefore, for Z N 0, 1 βθ Z > c + θ 0 θ σ/ Because the power fuctio is icreasig fuctio of θ, βθ βθ always holds whe θ θ 0 < θ Therefore the LRTs are ubiased Note that X i N θ, σ 2, X N θ, σ 2 /, ad X θ σ/ N 0, 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1 Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1
9 Summary Today Examples of LRT LRT based o sufficiet statistics LRT with uisace parameters Ubiased Test Next Lecture Uiformly Most Powerful Test Hyu Mi Kag Biostatistics Lecture 19 March 26th, / 1
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Theorem 8 Let φ be the most powerful size α test of H
Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Lecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Solutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING
Most Powerful Tests 557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING To construct and assess the quality of a statistical test, we consider the power function β(θ). Consider a
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING
557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING A statistical hypothesis test is a decision rule that takes as an input observed sample data and returns an action relating to two mutually exclusive
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
Advanced Statistics. Chen, L.-A. Distribution of order statistics: Review : Let X 1,..., X k be random variables with joint p.d.f f(x 1,...
Avace Statistics Che, L.-A. Distributio of orer statistics: Review : Let X,..., X k be raom variables with joit p..f f(x,..., x k a Y h (X,..., X k, Y h (X,..., X k,..., Y k h k (X,..., X k be - trasformatio
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Exercise 2: The form of the generalized likelihood ratio
Stats 2 Winter 28 Homework 9: Solutions Due Friday, March 6 Exercise 2: The form of the generalized likelihood ratio We want to test H : θ Θ against H : θ Θ, and compare the two following rules of rejection:
STAT200C: Hypothesis Testing
STAT200C: Hypothesis Testing Zhaoxia Yu Spring 2017 Some Definitions A hypothesis is a statement about a population parameter. The two complementary hypotheses in a hypothesis testing are the null hypothesis
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Three Classical Tests; Wald, LM(Score), and LR tests
Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction
Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,
Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science
Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Lecture 7: Overdispersion in Poisson regression
Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
More Notes on Testing. Large Sample Properties of the Likelihood Ratio Statistic. Let X i be iid with density f(x, θ). We are interested in testing
Ulrich Müller Economics 2110 Fall 2008 More Notes on Testing Large Sample Properties of the Likelihood Ratio Statistic Let X i be iid with density f(x, θ). We are interested in testing H 0 : θ = θ 0 against
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.
Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Parameter Estimation Fitting Probability Distributions Bayesian Approach
Parameter Estimatio Fittig Probability Distributios Bayesia Approach MIT 18.443 Dr. Kempthore Sprig 2015 1 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap Outlie Bayesia Approach
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx
Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Final: May 17 (W) 6:30 pm In WH 100E Notice the time changes! Introduction to Statistics (Math 502)
Fial: May 7 (W) 6:30 pm I WH 00E Notice the time chages! Itroductio to Statistics (Math 50) WH 00E MWF 8:30am-9:30am Office: WH 3 Office hours: M, T 3-4pm Textbook: Statistical Iferece (d ed.) by George
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης
2 η Διάλεξη Ακολουθίες 29 Νοεµβρίου 206 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Fiey R.L. / Weir M.D. / Giordao F.R. Πανεπιστημιακές Εκδόσεις Κρήτης 2 Όρια Ακολουθιών
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Example of the Baum-Welch Algorithm
Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους
Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for