The Wilson-Fisher Fixed Point via ERG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "The Wilson-Fisher Fixed Point via ERG"

Transcript

1 The Wilson-Fisher Fixed Point via ERG Hidenori SONODA Physics Department, Kobe University 24 February 2010 at INT-10-45W RG workshop Abstract I construct the RG flows of the Wilson action for the real scalar field theory in D = 3 using the exact renormalization group. The construction results in a systematic and analytical way of computing the critical exponents at the Wilson-Fisher fixed point. Typeset by FoilTEX

2 Introduction 1 1. We consider a real scalar theory in D dimensional Euclid space: S = p 1 K (p/λ) 2 φ(p)φ( p) p 2 d D x ( m φ2 + λ ) 0 4! φ4 where K is a cutoff function with K(p) { = 1 (p 2 1) 0 (p 2 ) 1 K(p) Λ plays the role of a momentum cutoff. 0 1 We study the correlation functions S = [dφ] e S / [dφ]e S. p 2

3 2. Critical behavior The critical value m 2 0,cr(λ 0 ) depends on λ 0. m 2 0 > m 2 0,cr (unbroken phase) φ = 0 m 2 0 < m 2 0,cr (broken phase) φ 0. The critical behavior is characterized by 2 critical exponents 2 y E = 1 ν > 0, η > 0 For m 2 m 2 0,cr the scaling formula holds: φ(r)φ(0) = 1 r D 2+ηF ±(r/ξ) { + if m 2 > m 2 0,cr if m 2 < m 2 0,cr where ξ is the correlation length: ξ m 2 m 2 0,cr(λ) 1 y E = m 2 m 2 0,cr(λ) ν

4 3. We can understand the critical behavior from the RG flows in the space of Wilson actions with a fixed momentum cutoff Λ. 3 critical trajectory λ 1 dim renormalized trajectory 2 m 0 WF fixed point 2 m (λ ) 0,cr 0 2 dim renormalized trajectories 0 Gaussian fixed point m 2 m 2 and λ parametrize the renormalized trajectories out of the GFP.

5 4. The RG flows are given in the infinite dimensional space of Wilson actions The flows out of the gaussian fixed point make a two-dimensional subspace, where the RG flows are given by { d dt m2 = 2m 2 + β m (m 2, λ) d dt λ = λ + β(m2, λ) with the gaussian fixed point at m 2 = λ = The Wilson-Fisher fixed point lies on this subspace, and it is given by (m 2, λ ) satisfying { 2m 2 + β m (m 2, λ ) = 0 λ + β(m 2, λ ) = 0

6 7. The goal is a concrete realization of Wilson s picture for D = 3 using the exact renormalization group. Especially, construction of the renormalized trajectories parametrized by m 2, λ analytical calculation of the critical exponents y E, η (Cf. Parisi s method with the Callan-Symanzik equation) 5 8. The ǫ expansions for the critical exponents with ǫ 4 D [Fisher & Wilson] { ye = 2 ǫ 3 + η = ǫ high precision results from high order calculations [Brézin, Le Gillou, Zinn-Justin] Drawback The expansions do not work for theories that can be defined only for specific dimensions such as chiral theories or supersymmetric theories.

7 9. Outline 6 (a) introduce ERG for the Wilson action (b) construction of 2-dim renormalized trajectories out of the GFP (c) analytical formulas for β m, β in terms of the Wilson action (d) perturbative calculation of the exponents y E, η

8 Brief introduction to ERG 7 1. The initial action S Λ0 = 1 2 p p 2 ( m K(p/Λ 0 ) φ(p)φ( p) d D 2 x 0 2 φ2 + λ ) 0 4! φ4 }{{} =S I,Λ0 We define the Wilson action by S Λ = 1 2 p p 2 K (p/λ) φ(p)φ( p) + S I,Λ where exp [S I,Λ [φ]] Z [dφ ] exp " 1 2 Z p # p 2 K(p/Λ 0 ) K (p/λ) φ (p)φ ( p) + S I,Λ0 [φ + φ ]

9 2. A consequence of the gaussian functional integration: exp [S I,Λ [φ]] = Z [dφ ] exp " 1 2 Z p # p 2 K(p/Λ ) K (p/λ) φ (p)φ ( p) + S I,Λ [φ + φ ] 8 3. Equivalently, the Λ dependence is given by the Polchinski equation: Λ Λ S Λ = Z p (p/λ) p 2 " p 2 K (p/λ) φ(p) δs Λ δφ(p) + 1 ( δsλ δs Λ 2 δφ( p) δφ(p) + δ 2 S Λ δφ( p)δφ(p) )# where (p) (p) 2p 2 d dp 2K(p) 0 1 p 2

10 4. S Λ have the same correlation functions as S Λ0 : 9 { 1 φ(p)φ( p) φ(p)φ( p) K(p/Λ) 2 SΛ + 1 1/K(p/Λ) p 2 φ(p 1 ) φ(p n ) N i=1 1 K(p i /Λ) φ(p 1) φ(p N ) SΛ are independent of Λ.

11 Renormalization for D = The solution S Λ of the Polchinski equation is determined uniquely by the initial condition at Λ = Λ Renormalization: for lim Λ0 S Λ to exist, m 2 0 must be given an appropriate Λ 0 dependence. 3. Notation: S Λ = n=1 p 1,,p 2n δ(p 1 + p 2n ) u 2n (Λ; p 1,,p 2n )φ(p 1 ) φ(p 2n )

12 4. Equivalently, S Λ (m 2, λ; µ) for the renormalized theory can be constructed by the following conditions: (a) Conditions at Λ = µ: { u2 (Λ = µ; p, p) = m 2 p 2 + O(p 4 ) u 4 (Λ = µ; p i = 0) = λ (b) Asymtptotic conditions for Λ : u 2 (Λ; p, p) Λ linear in p 2 u 4 (Λ; p 1, p 2, p 3, p 4 ) Λ independent of p i u 2n 6 (Λ; p 1,,p 2n ) Λ 0 5. S Λ is now parametrized by m 2, λ, and a renormalization scale µ. 11

13 6. The µ dependence of S Λ is given by the RG equation: 12 8 >< >: µ S Λ µ = βo λ + β m O m + γn O m m 2S Λ O λ λ S Λ N R» j φ(p) δs Λ p δφ(p) + K(p/Λ)(1 K(p/Λ)) p 2 δs Λ δs Λ δφ(p) δφ( p) + δ2 S Λ δφ(p)δφ( p) β, β m, η are functions of m 2, λ,µ. N counts the number of φ insertions: Nφ(p 1 ) φ(p n ) = n φ(p 1 ) φ(p n ) ff 7. This is equivalent to the RG equation: ( µ ) µ + β λ + β m m 2 φ(p 1 ) φ(p n ) = nγ φ(p 1 ) φ(p n )

14 Universality How does S Λ depend on the arbitrary choice of K(p)? 2. An infinitesimal change δk(p) of the cutoff function changes S Λ by δs Λ = δz Z» Λ δk (p/λ) 2 N p K (p/λ) φ(p) δs Λ δφ(p) + 1 p 2δK (p/λ) 1 ( δsλ δs Λ 2 δφ(p) δφ( p) + δ 2 S Λ δφ(p)δφ( p) where δz Λ is determined so that δs Λ satisfies the normalization condition p 2δu 2(Λ = µ; p, p) = 0 p2 =0 )

15 3. Equivalence: 14 1 K(p) φ(p)φ( p) 2 S(t) + 1 1/K(p) p 2» 1 = (1 δz(t)) (K + δk)(p) φ(p)φ( p) 2 (S+δS)(t) ny 1 K(p i ) φ(p 1) φ(p n ) S(t) i=1 = 1 n 2 δz(t) «n Y i=1 1 (K + δk)(p i ) φ(p 1) φ(p n ) (S+δS)(t) 4. δk is absorbed by the change of m 2, λ, and normalization of φ. { δm 2 = δu 2 (Λ = µ; p = 0) δλ = δu 4 (Λ = µ; p i = 0) 1 1/(K + δk)(p) + p 2

16 Construction of Wilson s RG flows 15 It takes 3 steps to construct Wilson s RG flows. Step 1: Combine Polchinski s equation and the RG equation: Λ Λ µ Z» «(p/λ) = K (p/λ) γ p µ + β λ + β m m 2 «φ(p) δs Λ δφ(p) S Λ + 1 p 2 ( (p/λ) 2γK (p/λ) (1 K (p/λ))) 1 2 ( δsλ δs Λ δφ(p) δφ( p) + δ 2 S Λ δφ(p)δφ( p) )

17 Step 2: rescaling by dimensional analysis m 2 has dimension 2, λ has 1, and φ(p) has D+2 2 : Λ Λ + µ «µ + 2m2 m 2 + λ λ S Λ = Z p p µ φ(p) + D + 2 p µ 2 This amounts to rescaling that restores the original Λ. Combining Step 1 & 2, (λ + β) λ + (2m 2 + β m ) m 2 S Λ Z» j φ(p) D + 2 = p µ + γ + (p/λ) «p p µ 2 K (p/λ) ( (p/λ) 2γK(1 K) 1 δsλ δs Λ + p 2 2 δφ(p) δφ( p) + ff δsλ φ(p) δφ(p) 16 «δsλ φ(p) δφ(p) δ 2 S Λ δφ(p)δφ( p) )

18 Step 3: Set Λ = µ (fixed) and write S Λ = S(m 2, λ). Finally, we obtain (λ + β) λ + (2m 2 + β m ) m 2 S(m 2, λ) (1) Z» j φ(p) D + 2 = p ν + γ + (p/µ) «ff δs φ(p) p p ν 2 K(p/µ) δφ(p) + 1 p ( (p/µ) 2γK(1 K))) 1 ( ) δs δs 2 2 δφ(p) δφ( p) + δ 2 S δφ(p)δφ( p) From now on we can set µ = 1. 17

19 The RG flow is given by 18 and we obtain the scaling formula { d dt m2 = 2m 2 + β m (m 2, λ) d dt λ = λ + β(m2, λ) φ(p1 e t ) φ(p n e t ) m 2 e 2 t (1+ t β m ), λe t (1+ t β) = e t {D+n( D+2 2 +γ )} φ(p1 ) φ(p n ) m 2,λ

20 Determination of β, β m in terms of S Expansion S(m 2, λ)[φ] = n=1 p 1,,p 2n δ(p 1 + +p 2n ) u 2n (m 2, λ;p 1,,p 2n ) φ(p 1 ) φ(p 2n ) where u 2, u 4 are normalized by { u2 (m 2, λ; p, p) = m 2 p 2 + u 4 (m 2, λ; p i = 0) = λ (2) 2. Substituting the normalization conditions (2) into (1), we obtain

21 20 β m = q q 2 ( (q) ηk(q)(1 K(q))) u 4(m 2, λ;q, q, 0,0) 2γ = p 2 q q 2 ( (q) ηk(q)(1 K(q)))u 4(m 2, λ; q, q, p, p) β 4λγ = q 2 ( (q) ηk(q)(1 K(q))) u 6(m 2, λ;q, q, 0,0, 0,0) q These determine β m, β, γ in terms of S(m 2, λ). p 2 =0

22 Perturbative calculations In practice, a mass independent scheme is more convenient: u m 2 2 (m 2, λ; p = 0) u p 2 2 (m 2, λ; p, p) u 4 (m 2, λ; p i = 0) m 2 =0 m 2 =p 2 =0 m 2 =0 = 1 = 1 = λ This gives { βm = C(λ) + β m (λ)m 2 β = β(λ)

23 2. RG flow equations 22 { d dt m2 = (2 + β m (λ))m 2 + C(λ) d dt λ = λ + β(λ) 3. Wilson-Fisher fixed point (m 2, λ ) { (2 + βm (λ ))m 2 + C(λ ) = 0 λ + β(λ ) = 0 4. Critical exponents: { ye = 2 + β m (λ ) η = 2γ(λ )

24 5. Lowest non-trivial loop expansions β m = λ 2 β q (q) ( = 3λ 2 q 2γ = λ2 2 p 2 q,r ) 1 q 2 m2 q 2 (q)(1 K(q)) q 4 (q) 1 K(r) q 2 r 2 1 K(q+r+p) (q+r+p) 2 p 2 = Fixed point gives λ = 3 R q 1 (1 K) q 4, m 2 = y E = 2 + β m (λ ) = λ q η = 1 2 λ 2 p 2 q,r (q) 1 K(r) q 2 r 2 λ 2 R q 2 λ R q q 4 q 2 q 4 1 K(q+r+p) (q+r+p) 2 p 2 =0

25 7. Wegner-Houghton limit K(p) = θ(1 p 2 ) 24 η = { ye = = ln = = η comes out too small.

26 Application to the WZ model in D = The bare action S Λ0 = 1 1 ( p 2 φ(p)φ( p) + χ( p) σ i pχ(p) + F(p)F( p) ) 2 p K(p/Λ 0 ) ( g d 3 ( x φ 2 if + χχφ ) ) gv2 2 2 if where χ χ T σ y. 2. Classical analysis: scalar potential (φ 2 v 2 ) 2 (a) v 2 > 0 Z 2 broken, SUSY exact (b) v 2 < 0 Z 2 unbroken, SUSY broken Z 2 : φ(x,y, z) φ(x, y, z), χ(x, y, z) σ y χ(x, y, z)

27 3. Critical exponents: 26 (a) Scale dimension of g (v 2 v 2 ): q 23 q (1 K) 2 q 4 + q (1 K) 2 q q (1 K) q 4 (1 K) q 4 WH = = (b) Anomalous dimension η = 1 23 q (1 K) q q 4 (1 K) q 4 2 q (1 K) q 4 WH = 1 7 =

28 Conclusions Wilson s RG flows can be constructed concretely using ERG. 2. Fixed points and critical exponents can be calculated by loop expansions. 3. ERG is applicable to dimension specific theories such as chiral and supersymmetric theories. 4. The nature of expansions is unclear due to the absence of an obvious expansion parameter. 5. Optimization should help for better numerical accuracy.

29 Appendix: Redefinition of β m, β, γ 28 8 < : β m = C 1 λ + C 2 λ m 2 (B 1 λ + B 2 λ 2 + ) β = A 1 λ 2 + A 2 λ 3 + γ = D 2 λ 2 + D 3 λ 3 + By redefining 8 >< >: m 2 c 1 λ + c 2 λ m 2 (1 + b 1 λ + b 2 λ 2 + ) λ λ + a 1 λ 2 + a 2 λ 3 + φ (1 + d 1 λ + d 2 λ 2 + )φ we can make λ 2 d dt m2 = 2m (2π) 2 d dt λ = λ γ = 0

ERG for a Yukawa Theory in 3 Dimensions

ERG for a Yukawa Theory in 3 Dimensions ERG for a Yukawa Theory in 3 Dimensions Hidenori SONODA Physics Department, Kobe University, Japan 14 September 2010 at ERG2010 Abstract We consider a theory of N Majorana fermions and a real scalar in

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Non-Gaussianity from Lifshitz Scalar

Non-Gaussianity from Lifshitz Scalar COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama Lifshitz scalars with z=3 obtain super-horizon,

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

MA 342N Assignment 1 Due 24 February 2016

MA 342N Assignment 1 Due 24 February 2016 M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Physics 523, Quantum Field Theory II Homework 9 Due Wednesday, 17 th March 2004

Physics 523, Quantum Field Theory II Homework 9 Due Wednesday, 17 th March 2004 Physics 5 Quantum Field Theory II Homework 9 Due Wednesday 7 th March 004 Jacob Lewis Bourjaily β-functions in Pseudo-Scalar Yukawa Theory Let us consider the massless pseudo-scalar Yukawa theory governed

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα