Information*Loss*and* Entanglement*in* Quantum*Theory* Jürg%Fröhlich% ETH%Zurich%&%IHES%
|
|
- Ζηνόβιος Στεφανόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Information*Loss*and* Entanglement*in* Quantum*Theory* Jürg%Fröhlich% ETH%Zurich%&%IHES%
2 Some-basic-claims-to-be-justi>ied,-afterwards)- 1. The%quantum'mechanical-state-the% wave%function )%does% not-have%an% ontological%status.%it%does%not-describe% what% is.%it%is%a%mathematical%device%enabling%us%to%make%bets% about%what%may%happen%in%the%future.% 2. In%the%presence%of%information%loss%and%entanglement%with% lost%degrees%of%freedom,%pure-states-typically%evolve%into% mixed-states-without%violation%of%any%basic%principles%of% quantum%theory),%and%it%is%this%fact%that%makes%a%rational% theory%of%measurements/observations%possible!%% 3. Without%fundamental%loss-of-information-and%entanglement%% of%observed%degrees%of%freedom%with%unobservable/ lost - degrees%of%freedom,%retrieval%of%information%about% quantum%systems%by%measurements/observations%would% actually%be%impossible.%%
3 Basic-claims,-ctd.- 4. No%information'%or%unitarity-paradoxes%in%quantum% theory,%even%if%spacertime%is%curved,%e.g.,%in%the% presence%of%black%holes)!%time%evolution%of%states%of% quantum%systems%exhibiting%information%loss%and% entanglement%with%unobservable%degrees%of%freedom% that,%for%example,%may%have%disappeared%in%a%heat% bath,%or%escaped%towards%intinity,%or%have%fallen% through%a%horizon%of%a%black%hole)%is%actually%never% unitary% %it%is% treerlike!% 5. Operator%algebras%including%type%III 1 %factors!)%and% other%sophisticated%mathematical%tools%have%been% invented%to%be%used-in%quantum%theory,%rather%than%to% be%ignored!%% %
4 CreditsandContents: Motivation from recent experiments, in particular the onesoftheharoche1raimondgroup;papersbybauer& Bernard,Maassen&Kümmerer,andothers;jointwork with my former PhD student Baptiste Schubnel;some joint efforts with Ballesteros, Faupin, Fraas, Pickl, Schilling, Schubnel); discussions with Detlev Buchholz andothers. 1. Introduction 2. InformationLoss 3. ProjectivevonNeumann)measurements 4. Conclusions
5 1.%Introduction% %Questions%to%be%Addressed% In our courses, we tend to describe quantumg mechanical systems as pairs of a Hilbert space,, and a propagator, Ut,s), describing timegevolution. Unfortunately,thesedataencodealmostnoinvariant structurebesides spectral properties of Ut,s)) and give the erroneous impression that quantum theory might be deterministic. Thus, among fundamental problemsofquantumtheoryare: Whatdowehavetoaddtotheusualformalism ofquantumtheoryinordertoarriveatamatheg maticalstructurethatthrough interpretation ) canbegivenphysicalmeaning,independentlyof observers?
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%Questions,%ctd.% Where% does% intrinsic- randomness- in% quantum% theory% come% from,% given% the% deterministic% character% of% the% Schrödinger%equation?%In%which%way%does%it%differ%from% classical%randomness?% Do% we% understand% the% effective- dynamics- of% quantum% systems,% e.g.,% ones% in% contact% with% a% heat% bath% Quantum- Brownian- Motion ),! or% systems% under% repeated%measurements"exhibiting quantum-jumps )?% What% do% we% mean% by% an% isolated- system - in% quantum% mechanics,% and% why% is% this% an% important% notion?% How% does%one%prepare%a%system%in%a%prescribed-state?% %%%%%Answers%and%insight%come%from-understanding%roles%of% Information-Loss-&-Entanglement-
7 2.%Information%Loss% Asimple1mindeddeUinitionofquantum1mechanicalsystems: Anisolatedquantumsystem,S,ischaracterizedby followingchoices: i)u=unitarypropagator) ii)alist,,ofbounded,selfadjoint operatorsonrepresentingphysicalquantities/ potentialpropertiesofsthatcanbemeasured/ observedindirect projectivemeasurements ; Smustbeanisolatedsystemchosenlargeenoughfor quantitiesrepresentedby,tobemeasureable).
8 Information%Loss,%ctd.% ChooseTiducialtime,t 0,anddeTineHeisenbergpicture) tobetheoperatorrepresentingthepot.prop.corresp. toattimet;!listofops. Pot.properties,,measureable/observableattimes s tgenerateaw*1alg.,: 1) " 2) #InformationLoss!
9 DeTine Information%Loss,%ctd.% sothat isa*endom;nota*autominformationloss """"""""""""" entanglementwith lost degreesoffreedom! Itiseasytoconstructexamplesofgenerallynon1 autonomous)quantumsystemsexhibitinginformationloss, inthesenseofeq.2): 1) Independent probes,e j,j=1,2,3,,withe j being destroyedattimeτj,τdiscretetimestep) 2) Small systemstemporarilyinteractingwithquantized wavemedium,e.g.,photons,phonons,etc.)
10 %%3)Information-loss-in-theories-like-QED% %see%buchh.rrob.- Allops.in arelocalized in for t > t 0 worldlineofjf
11 3.%An%application:%Projective%von%Neumann)% measurement% Wewillnowdiscusshowphys.quantitiesaremeasuredprojectively.% Somefundamentalquestionstobeaddressed: 1) Whatismeantbya measurement of?aroundwhich timetdoesittakeplace?ameasurementofoughttoresult in havingavalue,i.e.,becomean empirical/objective property ofs at%some%time%t.%proj.-measnts.-vs.-indirect-kraus)-measnts.)- 2)%%Given%a%state%of%S,%does%QM-predict%which%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%will%be%measured%tirst;%what%does%qm-predict%about%the%% %%%%%%%%outcome%of%%measnt.%of%%%%%%?%in%which%way%is%qm-intrinsically% %%%%%%%%indeterministic?%why%does%a%measnt.%of%%%%%%%have%a-random outcome?%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "
12 Projective%measurements,%ctd.% Projective-measurements- We%have%to%clarify%what%may%be%meant%by%a%projectivemeasurement-of%a%potential%property%%%%%%%%%%%%%%%%%%%%and%what%the% role%of%information-loss-&-entanglement-in%measnts.%is:% % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%A4)%%%%%%%%%%%% % %%%%%%%% Measurement/observation -of%%%%%%%%around%time%t% %%%%%%%%%%%is%an% empirical/objective-property -of%s-around%time%t-:- % 3)
13 Projective%measurements,%ctd.- """"State%%%%%%%is%an%incoherent-superposition-of%eigenstates%of%%%%%,%%%%%% ,-4)-- - %%%%%where%%%%%%%%%is%the%state%of%%s--right%before%measnt.%of%%%%%,%i.e.,%% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%""5) % %%%%%Information-Loss is%usually%a%mixed%state%% %%%%%on%%%%%%%%%%even%if%the%initial%state%of%s-has%been%pure,%as%a%% %%%%%state%on%%%%%%%!%
14 Projective%measurements,%ctd.% Suppose,%for%simplicity,%that%%%%%%%%%%is%isomorphic%to%some% B t ),%i.e.,%%%%%%%%%is%of%%%%%%%%%%%%%%%%%%%%%%%%syst.%non'autonomous)%%% %%%%%%%%%%%%%%%%%%%%%%Eq.%4)6) De>inition- % %%%%%%%%%%%%%%%%%%is%measured/observed%around%time%t is%an% empirical/objective-prop. -of%s-around%time%t----iff" %%7) and%some%z-in%the%center%of%%%%%%%%%..%more%generally,%%%%%%%%%%% belongs%%to%the%center-of-the-centralizer-of-the-state , Note%that%R.S.%of%7)%is%cond.expectation%of%%%%%%%%%%%w.r.%to% %%%%%%%%%%%%Eq.%7)%%%%%%%%Eq.%4)!%%$%%TomitaRTakesaki%theory!)% " -
15 Projective%measurements,%ctd.- Axiom-A- If%%%%%%%is%measured%i.e.,%an%empirical/objective%prop.%of%S)% around%time%%t--then%%%%%%%has%a%value%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%around% time%%t %8) %%%%%%%%%%%%%%9) should%be%used%for%improved%predictions%of%future%after% time%t.-eq.8)isborn srule,eq.9) collapse-postulate.)% %%%%%%%%%%%%%%%%% -
16 Projective%measurements% %summary% 1) Given%the%initial-state-of%the%system%S,"time-evolution,% {Ut,s)},%determines%which%pot.%prop.%%%%%%%%%%%%%%%%%%%will%Tirst%be% measured%i.e.,%become%empirical/objective),%and%around% which%time!% 2) Measnt.%of%%%%%%%%%is%independent-of%an%earlier-measnt.%of%%%%%%%%% iff%%%%%%%%%%becomes%empirical/objective%after-time%of%measnt.% of%%%%%%%%%,%no%matter%what%the%outcome%of%measnt.%of%%%%%%%was,%% i.e.,%for-all-states ,-j=-1,- -,-k,-with%%%%%%%%%%%%%%%%as%in%9).% Decoherence,- consistent-histories.- 3) Time%of%measurement:--Time,%%t *-,%of%observation%of%%%%%%%%% %%%%%%%det.%by%minimizing%in%%t%%the%fu.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%where%%%%%%%%% is%the% cond.-exp. -of%%%%%%%%%%%%%onto%%%%%%%%%%%%%- 4) %%%%%%%%%%=%center%of%centralizer%of%%%%%%%%%%%)%contains%all%phys.%% %%%%%%%%quantities%observable%at%time%t.% %%%%%%% -
17 Projective%measurements% %summary% 5)%A%state%is%called% passive -iff%the%center,%%%%%%%%%,%of%the%% %%%%%%%centralizer%of%%%%%%%%%%%is%time'independent.%there%are%plenty%of%% %%%%%%%examples%of%passive%states:% %%%%%%%Equilibrium%KMS)%states%at%positive%temperature%in%% %%%%%%%%%%%QFT;%KMS%states%of%a%QFT%in%the%spaceRtime%of%a%static% %%%%%%%%%%%black%hole.% %%%%%%%Perturbations%of%the%vacuum%state%by%coherent%clouds%of%% %%%%%%%%%%%massless%particles%e.g.,%of%photons% %courtesy%of%d.%%%% %%%%%%%%%%%Buchholz).% Passive%states%have%the%property%that%they%do%not%admit-anyprojective-measurements/observations%of%any%physical%quantities% % besides%measurements%of%time'independent-parameters% characteristic%of%the%state%in%question,%e.g.,%the%temperature%or%a% chemical%potential%of%an%equilibrium%state,%which,%indeed,%are% timerindependent%quantities).%
18 4.%Conclusions% Wehavetolearnmoreaboutwhichstatesandwhichtypesof timeevolutionsofisolatedsystemsallowfornon1trivial measurements/observationsoftime1dependentphysical quantitiessatisfyingaxioma. Needforilluminatingexamplesandmodels! Ex.:Dynamics ofatwoglevelatominaheatbathmonitoredbyphoton detectors,see,e.g.,deroeckgderezinski,bauergbernardg ): P t : occupation prob. of upper level, dw t : Brownian motion;, p: consts.) Statesofquantumsystemsdonothaveany ontological signiticance.the ontology ofqtresidesintimegordered sequencesof events =resultsofprojectiveorindirect observationsaccompaniedbyinfo.lossandentanglement withunobservabledegreesoffreedom).
19 EffectiveDynamics JürgFröhlich ETHZurich&IHES Paris,March2015! Why!should!I!blame!anyone!but!myself!if!I!cannot!understand! what!i!know!nothing!about?! PabloPicasso!
20 CreditsandContents Credits: Abou!Salem,!Albanese,!Bach,!Ballesteros,!Bauerschmidt,!Benettin,!!!! Blanchard,!De!Roeck,!Faupin,!Fraas,!Gang,!Giorgilli,!Griesemer,!Knowles,! Merkli,!Pizzo,!Schenker,!Schlein,!Schnelli,!Schubnel,!Schwarz,!Sigal,! Spencer,!Ueltschi,!Wayne.!! Today,tworecentexamplesfromquantumtheory,with:Schenker;! Ballesteros,!Fraas,!Schubnel!! Contents:! 1. Introduction surveyofexamples 2. ThermalnoisekillsAndersonlocalization 3. DynamicsofaQuantumSystemunderrepeatedmeasurements 4. Indirect+measurements+&+ pointer+observables 5. Analogy+to+classical+statistical+mechanics+ 6. Effective+dynamics+of+pointer+observables 7. Conclusions
21 1.!Introduction!!survey!of!examples!! Returntoequilibrium Masterequations,kineticlimit,etc. examples:equilibrationofspinsoroscillators,thermalionization, easyhalfof0 th!law, ;withb&sig;m seealsojac&pil) Relaxationtoagroundstate scatteringtechniques,cluster expansionsinreal[timevariable[derexample:decayofexcited atomormolecule;preparationofstatesinqm,etc.;withgr,s;schub) ApproachtoaNESSortoaNEtime[periodicstate scattering techniques,resonancetheoryforliouvillians,dynamicswithentropy! production,!onsagerrelationsapplication:e.g.,2 nd! Law!of! Thermodynamics;withM&Ue,A[S) AndersonLocalization multi&scale+analysis,smalldenominators examples:absenceofdiffusionforaquantumparticleinarandom[ or1dqppotential,absenceofheattransportindisorderedarraysof anharmonicoscillators, ;withsp;sp&w;a;b&g)
22 Survey!of!examples,!ctd.! QuantumBrownianMotion,position[spacedecoherence, equipartition derivationofdiffusivemotion from scratch example:atomwithdinitelymanyinternalstatescoupledto aqmheatbathandhoppingonalattice;withder,piz) Staticdisorderand!thermalnoise:Weakdiffusivetransport examples:dyn.ofabec,electrontransportinasparselypopulated conductionbandofadisorderedsemi[conductor:withj.schenker) Quantum[andHamiltonianFriction frictionthroughemissionof Cherenkov!radiation!examples:heavyatommovingthroughaBose gasexhibitingbec;dipolemovingthroughopticallydensemedium; withgangzhou&sof) Dynamicsofquantumsystemssubjectedtorepeatedmeasurements, emergenceoffactsinqm statisticsofmeasurementprotocols, stochasticevolutioneqs.,largedeviations; theoryofknowledge acquisition.
23 Survey!of!examples,!ctd. example:experimentsofharoche[raimondgroup,electron conductioninpresenceofcoulombblockade,etc.;withb,f,sch) Dynamics+in+limiting+regimes+ mean[dieldlimit,kineticlimit Gross[PitaevskiidescriptionofBosegases,Bogliubov[)Hatree[Fock: e.g.,neutronstars;point[particlelimitofnlhartreeeq.,etc.;with Schwarz,Kn.andothers) Postmodern!examples!of!effective!dynamics:! Quantumchaosvs.quantumintegr.behavior;e.v.statistics, Quantumquenches,dynamicalproblemsrelatedtohardhalfof0 th! Law!of!Thermodynamicse.g., ETH ) Many[bodylocalizationseealsoresultsw.A;Sp&W;B&G) Veryfastprocesses,suchasionization,involvinglaser)lightF[P[S) Dynamicsofinvertedpopulationsdynamicsofnegative[ temperatureinitialstates;entanglementdynamics; ) Unfortunately,Idon thavemuchtosayabouttheseexamples,yet who!has? Iwilllimitmyattentiontoquantum!systems!
24 2.!Thermal!noise!kills!Anderson!localization!! with!j.!schenker)! Inthissectionweconsideraquantumparticlehopping onthesimplecubiclattice,d!=2,3,underthe indluenceofarandom!potential!andcoupledtoaheat! bathatsomepositivetemperature.thestateofthe particleisdescribedbyaone[particledensitymatrix,.1) ThedynamicsofisdescribedbyaLiouvilleequation 2) wheret!denotestime,andisthe Liouvillian givenby a Lindblad!generator!oftheform
25 Thermal!noise,!ctd.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!!!!!!!!!!!!!!!!!!3) wherethehamiltonian 4) isastandardrandom!schrödinger!op.!anderson Hamiltonian),witharandom potentialtheareiidrv swith,e.g.,bd.distr.,,of cpt.support),g!!isa gain!term!andl!!isa loss!term. Introducingthevariables, wecanwritetheintegralkernelofasafunctionof,i.e.,as.theng!andl!aregiven
26 Thermal!noise,!ctd.! bytheformulae 5) wherethekernelsatisdiesadetailed[balance conditionatthetemperatureoftheheatbathw.r.t. thekineticenergy,,oftheparticle). Ourmainresultisthefollowingtheorem.
27 Thermal!noise,!ctd. Theorem.ConsiderEq.2)for,with. Ifthecouplingconstantg!>0thenthediffusion!constant!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! wheredenotesanexpectationw.r.totheproduct measureexistsandsatisdies
28 Thermal!noise,!ctd.!! existsandisdinite. Theproof!ofthistheoremmakesuseofthefollowing formalism.letωdenotethespaceofrandomvariables ω[).wededinethehilbertspace Fouriertransformationofvectors,Ψ,inisdedinedby LetdenotetheFouriertransformof.
29 Thermal!noise,!ctd. Thensatisdiestheequation where= Fouriertransformof seeblackboard). ThenthediffusionconstantD/d!isgivenbytheexpression Dediningthevector,wedindthat TheR.S.canbeestimatedusingtheFeshbach[Schurmap. Well,thisisalittlesketchy!Butdetailsarefairlyeasy.)
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΜΖΜΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Quantum Systems: Dynamics and Control 1
Quantum Systems: Dynamics and Control 1 Mazyar Mirrahimi and Pierre Rouchon 3 February 7, 018 1 See the web page: http://cas.ensmp.fr/~rouchon/masterupmc/index.html INRIA Paris, QUANTIC research team 3
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Homomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ Νικόλας Χριστοδούλου Λευκωσία, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Models for Probabilistic Programs with an Adversary
Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Διπλωµατική Εργασία Της Φοιτήτριας του Τµήµατος Ηλεκτρολόγων
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Διαπολιτισμική Εκπαίδευση και Θρησκευτική Ετερότητα: εθνικές και θρησκευτικές
Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. Χρυσάνθη Στυλιανού Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ Β ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ: ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ. Θέµα:
Ε ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ Β ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ: ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ Θέµα: Πολιτιστική Επικοινωνία και Τοπική ηµοσιότητα: Η αξιοποίηση των Μέσων Ενηµέρωσης, ο ρόλος των
ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος
ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο την απόκτηση του διπλώματος «Οργάνωση και Διοίκηση Βιομηχανικών Συστημάτων με εξειδίκευση στα Συστήματα Εφοδιασμού
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Distances in Sierpiński Triangle Graphs
Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:
4 Πρόλογος Η παρούσα διπλωµατική εργασία µε τίτλο «ιερεύνηση χωρικής κατανοµής µετεωρολογικών µεταβλητών. Εφαρµογή στον ελληνικό χώρο», ανατέθηκε από το ιεπιστηµονικό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών
LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014
LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.
ΑΡΗΣΟΣΔΛΔΗΟ ΠΑΝΔΠΗΣΖΜΗΟ ΘΔΑΛΟΝΗΚΖ ΣΜΖΜΑ ΜΑΘΖΜΑΣΗΚΧΝ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΧΝ ΠΟΤΓΧΝ Δπηζηήκε ηνπ Γηαδηθηύνπ «Web Science» ΜΔΣΑΠΣΤΥΗΑΚΖ ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department
Προσωπική Aνάπτυξη Ενότητα 2: Διαπραγμάτευση Juan Carlos Martínez Director of Projects Development Department Unit Scope Σε αυτή την ενότητα θα μελετήσουμε τα βασικά των καταστάσεων διαπραγμάτευσης winwin,
The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality
The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,
FSM Toolkit Exercises
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών Αναπληρωτής Καθηγητής: Αλέξανδρος Ποταμιάνος Ονοματεπώνυμο: Α Μ : ΗΜΕΡΟΜΗΝΙΑ: ΤΗΛ 413 : Συστήματα Επικοινωνίας
PRESENTATION TITLE PRESENTATION SUBTITLE
COURSE TUTORS : Advanced Materials Processing : D. Mataras, C. Galiotis PRESENTATION TITLE PRESENTATION SUBTITLE A. Student Outline 2 What is my material and why is it interesting? Applications How is
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
I haven t fully accepted the idea of growing older
I haven t fully accepted the idea of growing older 1 Peter Authorship Questions Πέτρος ἀπόστολος Ἰησοῦ Χριστοῦ ἐκλεκτοῖς παρεπιδήμοις διασπορᾶς Πόντου, Γαλατίας, Καππαδοκίας, Ἀσίας 1 Peter Authorship
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Can I open a bank account online? Ερώτηση αν μπορείτε να ανοίξετε τραπεζικό λογαριασμό μέσω του ίντερνετ
- Γενικά Can I withdraw money in [country] without paying fees? Πληροφόρηση σχετικά με το αν πρέπει να πληρώσετε ποσοστά προμήθειας όταν κάνετε ανάληψη σε μια συγκεκριμένη χώρα What are the fees if I use
Test Data Management in Practice
Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΦΟΡΟΛΟΓΙΑ Ο.Ε. ΕΙΣΗΓΗΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ: κ. ΟΥΡΑΝΟΥ ΕΡΜΙΟΝΗ ΣΠΟΥΔΑΣΤΡΙΕΣ: ΔΕΜΕΤΖΟΥ ΑΓΛΑΪΑ
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30
ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ
Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Πτυχιακή Εργασία Φοιτητής: ΜIΧΑΗΛ ΖΑΓΟΡΙΑΝΑΚΟΣ ΑΜ: 38133 Επιβλέπων Καθηγητής Καθηγητής Ε.
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ
ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ: ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ: ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΩ ΔΕΙΚΤΩΝ Επιβλέπων: Αθ.Δελαπάσχος
PRESENTATION TITLE PRESENTATION SUBTITLE
COURSE TUTORS : Advanced Materials Processing : D. Mataras, C. Galiotis PRESENTATION TITLE PRESENTATION SUBTITLE A. Student Outline 2 What is my material and why is it interesting? My Application Detailed
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης
Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής
«ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΣΕΞΟΥΑΛΙΚΗ» ΠΑΝΕΥΡΩΠΑΪΚΗ ΕΡΕΥΝΑ ΤΗΣ GAMIAN- EUROPE
«ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΣΕΞΟΥΑΛΙΚΗ» ΠΑΝΕΥΡΩΠΑΪΚΗ ΕΡΕΥΝΑ ΤΗΣ GAMIAN- EUROPE We would like to invite you to participate in GAMIAN- Europe research project. You should only participate if you want to and choosing
European Constitutional Law
ARISTOTLE UNIVERSITY OF THESSALONIKI OPEN ACADEMIC COURSES Unit 1: The EU as an international (or supranational?) organization Lina Papadopoulou Ass. Prof. of Constitutional Law, Jean Monnet Chair for
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Διπλωματική Εργασία του φοιτητή του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Προσωπική Aνάπτυξη. Ενότητα 4: Συνεργασία. Juan Carlos Martínez Director of Projects Development Department
Προσωπική Aνάπτυξη Ενότητα 4: Συνεργασία Juan Carlos Martínez Director of Projects Development Department Σκοπός 1. Πώς να χτίσετε και να διατηρήσετε μια αποτελεσματική ομάδα Σε αυτό πρόγραμμα, εντός
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Living and Nonliving Created by: Maria Okraska
Living and Nonliving Created by: Maria Okraska http://enchantingclassroom.blogspot.com Living Living things grow, change, and reproduce. They need air, water, food, and a place to live in order to survive.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α 2 ειδήσεις από ελληνικές εφημερίδες: 1. Τα Νέα, 13-4-2010, Σε ανθρώπινο λάθος αποδίδουν τη συντριβή του αεροσκάφους, http://www.tanea.gr/default.asp?pid=2&artid=4569526&ct=2 2. Τα Νέα,
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Part III - Pricing A Down-And-Out Call Option
Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΕΝΕΡΓΟ ΦΙΛΤΡΟ ΔΙΑΚΟΠΤΙΚΟΥ ΠΗΝΙΟΥ ( Switched Inductor Variable Filter ) Ευτυχία Ιωσήφ Λεμεσός, Μάιος 2016 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Precision Metal Film Fixed Resistor Axial Leaded
Features EIA standard colour-coding Non-Flame type available Low noise and voltage coefficient Low temperature coefficient range Wide precision range in small package Too low or too high ohmic value can
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Ερώτηση και Αίτηση Κατάθεσης Εγγράφων Προς τον κ. Υπουργό Ανάπτυξης και Ανταγωνιστικότητας
Αθήνα, 24 Ιουλίου 2013 Ερώτηση και Αίτηση Κατάθεσης Εγγράφων Προς τον κ. Υπουργό Ανάπτυξης και Ανταγωνιστικότητας Θέμα: Επίκληση εκ μέρους του Υπουργού Ανάπτυξης και Ανταγωνιστικότητας, κ. Κωστή Χατζηδάκη,
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια