( ) x x. ( k) ( ) ( 1) n n n ( 1) ( 2)( 1) حل سري: حول است. مثال- x اگر. يعني اگر xها از = 1. + x+ x = 1. x = y= C C2 و... و
|
|
- Γεώργιος Ακρίδας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 معادلات ديفرانسيل y C ( ) R mi i كه حل سري يعني جواب دقيق ميخواهيم نه به صورت صريح بلكه به صورت سري. اگر فرض كنيم خطي باشد, اين صورت شعاع همگرايي سري فوق, مينيمم اندازه است جواب معادله ديفرانسيل i نقاط تكين ضرايب است. ( + )( + + ) ( )( + + ) i y + y + y ± i + + ± i ± mi i R + + y + y + y مثال- + y C اگر يعني اگر ها از جواب باشد, شعاع همگرايي چق است زياد شود به + كه برسد مخرج ضريب y صفر ميشود و معادله ديفرانسيل ميشود و از بين ميرود ( ) ( ) + + y y + y R شعاع همگرايي است. C ( + تمرين شعاع همگرايي ) براي معادله ديفرانسيل كدام است ( ( ( ( حل سري: حول (اگر نبود به وسيله تغيير متغير, معادله ديفرانسيل را عوض ميكنيم و انتقال ميدهيم) y C ; y C ; y ( ) C ضريب را معادله متحد قرار ميدهيم. y C y + C+ y + + C+ y C y C y + C+ y C y C y C ( k) y () k! y C و و با داشتن ) C y( و () y C و... و! Ck ميتوان C را تعيين كرد.
2 )..., y, y( را داريم كه با ضرايب C مرتبط است. چون حول همگرايي بود y C + + C + + C + C! ( ) y + χ+ y مثال- رابطه بين ضرايب معادله چيست + + +!! ( ) (! ) y y + y مثال- يك جواب چگونه است C C + C C C C C C ( + ) C C C C, C, C ( ) C C C C C C C C C + C+!!! y y + ( + ) y ( ) معادله لژان + y C اگر زير ميآيد: جوابي از معادله باشد و شعاع همگرايي سري و فاصله همگرايي > باشد. همچنين رابطه بين Cها به صورت + ( + )( + ) C+ ( C + ) ( + ) C ( )( ++ ) C+ C ( + )( + ) + + C C C + + C ( )( + 5) ( + )( + ) C+ C C C C 5... مهم: رابطه بين ضرايب معادله لژان C y C y با داشتن و ميتوان Cها را حساب كرد. 0 C C C y P 6 C6 C8 C 0... y + a y ay + ay b y y,y, y چيست + 0y مثال: جواب معادله () P: چند جملهاي لژان معادله كوشي اويلر ) i aها اعداد ثابتي هستند) اين معادله يكي از معادلات معروف آزمونهاي كارشناسي ارشد است كه با تعويض متغير (يا ) l معادله به فرم معادله با
3 ({ } { } ) ضرايب ثابت تبديل ميشود. با اين تعويض متغير معادله همگن به فرم زير ميشود. D D D...(D ) + a D D... D a D + a y ( ( )) ( ) y y a y ay b( ) ( D( D ) ad a) y b( ) {,,,..., } {, l,..., ( l ) } حالت خاص: (مرتبه ) y y y y a y a y b ( ) ;, y y, y y y y y + a y + a y b ( D ) P اگر و اگر آنگاه مجموعه جوابهاي پايه عبارتند ا مجموعه جوابهاي پايه عبارتند از: cos( l ),..., cosβ,..., cos ( l ) cos( l ) β β β siβ,..., si si ( l ),..., β β ( l ) si ( βl ) P C,C P C,C d ( )!d m P Pm d m + a + ( ) P D +β حالت كلي اگر N ميتوان از رابطه مقابل () P را حساب كرد. m ( P( ( Pm( يعني چند جملههاي لژان بر هم عمودند و نرم تابع لژاندار همچنين d m + بسط سري جواب نقاط تكين نقطه را تكين (منفرد) معادله ديفرانسيل خطي است. گويند هرگاه حداكثر قطب داشته باشند. y a y a y + a y b a قطب و... و i حداكثر a i حداكثر قطب,...و a داكثر قطب ح غير اين صورت تكين ما منظم نيست. تابع زوج: تابع فرد: y + + si y + β+ l( + ) y si a! حذف جمله مثال- به ازاي چه مقادير و β قطب نيست. تكين منظم است صورت ساده مي شود ( β+ lim( + ) β+ + ) a β قطب مرتبه
4 + + + اگر نقطه تكين منظم معادله ديفرانسيل y y a y a باشد, اين صورت جوابي به a y b ) ( y خواهد داشت. C صورت فوبينيوس ) ( توجه: وقتي تكين منظم است شعاع همگرايي سري قبلي ميشود بنابراين آن سري به عنوان جواب معادله ديفرانسيل مناسب C چرا نيست. براي تعيين از عبارت مشتقهاي متوالي تا گرفته و ضريب C را مخالف صفر قرار ميدهيم. ( ) + ( ) ( ) y C C + C C C y C + C C +... C + C C فرض C + C C +... C C از: ادعا كردهايم صفر با قطب مرتبه دارد كه از مجموعه سري فاكتور گرفته شده است و ميشود. معادله مشخصه عبارت مي شود a a + a i a i lim ai a y + + siy + y توجه داشته باشيد كه ' aها نماد مشتق نيستند و يك مقدار محدود ميشود چگونه است حول مثال- معادله شاخصي معادله ديفرانسيل روبه رو حول چگونه است ( + ) Si ( + ) si a a lim ( ) a a lim ( ) C ( ) ( l ) C ( ) : ريشه از مرتبهP ( ) ) بسته به اينكه معادله مشخصه داراي چه نوع جوابي باشد جواب معادله ديفرانسيل متفاوت است. () و l() C ()... و اگر يك خط جا نشدند اين عبارت هاي دار را خط بعد بنويسيد ( +β ) ) ( ) ( ) cosβl( ) C ( ) ( ) siβl( ) C ( ), ( ) ( l( )) cosβl( ) C ( ) ( l( )) siβl( ) C همچنين اگر تفاضل جواب هاي معادله مشخصه عدد صحيح باشد جواب ها غير مستقل شده و يكي را ) l( ضرب مي كنيم.
5 k y C k k k+ y ( ) y C ( ) + m y C ( ) y y C m پس اين صورت y C ( ), y l C ( ) + C y ( + )y + ( + )y را حل كنيد. مثال: معادله ( ) + ± y C ( )( + ) ( + ) a() lim a() lim ( ) ( ) y lim C + C y y + با شرط ()y صورتي كه جوابي از معادله باشد, چيست مثال- جواب ديگر معادله + y yl+ C ( yl+ C ( yl+ C ( yl+ C ( a a ( ) + a a گزينه مرتبه دوم.,β چه مقدارهايي y d, y c, ( + )y + y +β( )y اگر جواب هاي معادله دارند باشد, a() ( + ) ( ) + +β + +β β ( ) a β ( + ) 5 :, β, از جواب ها () a y + y () c + c + c است. g() چيست مثال) جواب معادله روبرو cg() + ) a( ( )( )( ) + + كوشي اويلر + ( )( a) ( ) ( ) c+ c + c + l c g l y c + c + c آنگاه 5 y c + c آنگاه g() و اگر + c + cg() اگر cg() + معادله بسل معادله ديفرانسيل g() l و... { ( λ ),y( λ) } { يا ( λ ), ( λ) } y, y + جواب هايي به صورت + λ y 5
6 ( ) + ± y باشد اين صورت داريم: C ( ) + C, + C m m m Cm, y l Cm + Dm m m دقت شود تابع بسل نوع دوم تكين است. ( ( y دارد. λ را تابع بسل مرتبه گويند. اگر سري فوبينيوس جواب معادله به صورت y و تعريف مي كنيم:, گوييم: يا اگر را تابع بسل نوع اول و تكين از جه دارد. و را تابع بسل نوع دوم مي گويند قطب مرتبه دارد. y فرق تكين و قطب: جه قطب حتما بايد صحيح باشد مثلا تكين است. تكين است نه قطب توجه به علت وجود l + ) + + ) m d ; m π ) cos ( θsiθ) dθ π y + y + λ y V + V l V l 5 V V V λ u + u ها ( λ ) نمودار فقط y به صورت مقابل است: از يك شروع مي شود و بقيه از صفر شروع مي شوند. به عبارتي رابطه بازگشتي بين ها مساله خاص بي نهايت جواب دارد. جواب هاي اين معادله عبارتند از: λ) ( به روش و يعني توابع بسل با وزن متعامد هستند. V معادله را حل مي كنيم: + a V 6
7 u +λ u u {si λ, cosλ} y si λ, cosλ si λ cosλ ( λ ), ( λ ) است. و فرق اين است كه تكين ( λ) ( λ) مثال- مطلوبست و معادله قبل. + cos si cos si ( cossi) ( ) si cos si cos ( sicos) نكته ها براي > صفر مشترك ندارند. + نكته ريشه مضاعف ندارد هم آن چون اگر باشد ريشه را دارد, ريشه مشترك مي يابند كه غلط است. () + () () () + + () () y + y چيست مثال- جواب معادله + از جمع آثار استفاده مي كنيم يكبار ورودي و يك بار ورودي را مي گيريم. طبق رابطه بازگشتي بين توابع بسل داريم: + + v (), شد. جواب ورودي حال اگر بدهيم خروجي چه مي شود معادله همگن به فرم روبه رو مي شود كه حل مي كنيم: y y + y, + ly l yh y c + c u u u y ytot cyh + () + + () + + () 7
( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s.
معادلات ديفرانسيل + f() d تبديل لاپلاس تابع f() را در نظر بگيريد. همچنين فرض كنيد ( R() > عدد مختلط با قسمت حقيقي مثبت) در اين صورت صورت وجود لاپلاس f() نامند و با قضايا ) ضرب در (انتقال درحوزه S) F()
O 2 C + C + O 2-110/52KJ -393/51KJ -283/0KJ CO 2 ( ) ( ) ( )
به كمك قانون هس: هنري هس شيميدان و فيزيكدان سوي يسي - روسي تبار در سال ۱۸۴۰ از راه تجربه دريافت كه گرماي وابسته به يك واكنش شيمياي مستقل از راهي است كه براي انجام ا ن انتخاب مي شود (در دماي ثابت و همچنين
مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0
مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله
10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ
فصل چرخش بعد از مطالعه اي اين فصل بايد بتوانيد : - مكان زاويه اي سرعت وشتاب زاويه اي را توضيح دهيد. - چرخش با شتاب زاويه اي ثابت را مورد بررسي قرار دهيد. 3- رابطه ميان متغيرهاي خطي و زاويه اي را بشناسيد.
:نتوين شور شور هدمع لکشم
عددی آناليز جلسه چھارم حل معادلات غير خطي عمده روش نيوتن: مشکل f ( x را در f ( x و برای محاسبه ھر عضو دنباله باید ھر مرحله محاسبه کرد. در روشھای جایگزین تقریبی f ( x x + = x f جایگزین میکنم کنيم. ( x مشتق
در اين آزمايش ابتدا راهاندازي موتور القايي روتور سيمپيچي شده سه فاز با مقاومتهاي روتور مختلف صورت گرفته و س سپ مشخصه گشتاور سرعت آن رسم ميشود.
ك ي آزمايش 7 : راهاندازي و مشخصه خروجي موتور القايي روتور سيمپيچيشده آزمايش 7: راهاندازي و مشخصه خروجي موتور القايي با روتور سيمپيچي شده 1-7 هدف آزمايش در اين آزمايش ابتدا راهاندازي موتور القايي روتور
a a VQ It ميانگين τ max =τ y= τ= = =. y A bh مثال) مقدار τ max b( 2b) 3 (b 0/ 06b)( 1/ 8b) 12 12
مقاومت مصالح بارگذاري عرضي: بارگذاري عرضي در تيرها باعث ايجاد تنش برشي ميشود كه مقدار آن از رابطه زير قابل محاسبه است: كه در اين رابطه: - : x h q( x) τ mx τ ( τ ) = Q I برش در مقطع مورد نظر در طول تير
محاسبه ی برآیند بردارها به روش تحلیلی
محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور
آزمایش 2: تعيين مشخصات دیود پيوندي PN
آزمایش 2: تعيين مشخصات دیود پيوندي PN هدف در اين آزمايش مشخصات ديود پيوندي PN را بدست آورده و مورد بررسي قرار مي دهيم. وسايل و اجزاي مورد نياز ديودهاي 1N4002 1N4001 1N4148 و يا 1N4004 مقاومتهاي.100KΩ,10KΩ,1KΩ,560Ω,100Ω,10Ω
برخوردها دو دسته اند : 1) كشسان 2) ناكشسان
آزمايش شماره 8 برخورد (بقاي تكانه) وقتي دو يا چند جسم بدون حضور نيروهاي خارجي طوري به هم نزديك شوند كه بين آنها نوعي برهم كنش رخ دهد مي گوييم برخوردي صورت گرفته است. اغلب در برخوردها خواستار اين هستيم
رياضي 1 و 2 تابع مثال: مثال: 2= ميباشد. R f. f:x Y Y=
رياضي و رياضي و تابع تعريف تابع: متغير y را تابعي از متغير در حوزه تعريف D گويند اگر به ازاي هر از اين حوزه يا دامنه مقدار معيني براي متغير y متناظر باشد. يا براي هر ) y و ( و ) y و ( داشته باشيم ) (y
رياضي 1 و 2. ( + ) xz ( F) خواص F F. u( x,y,z) u = f = + + F = g g. Fx,y,z x y
رياضي و رياضي و F,F,F F= F ˆ ˆ ˆ i+ Fj+ Fk)F ديورژانس توابع برداري ديورژانس ميدان برداري كه توابع اسكالر و حقيقي هستند) به صورت زير تعريف ميشود: F F F div ( F) = + + F= f در اين صورت ديورژانس گراديان,F)
1سرد تایضایر :ميناوخ يم سرد نيا رد همانسرد تلااؤس یحيرشت همان خساپ
1 ریاضیات درس در اين درس ميخوانيم: درسنامه سؤاالت پاسخنامه تشریحی استخدامی آزمون ریاضیات پرورش و آموزش بانک آزمونهای از اعم کشور استخدامی آزمونهای تمام در ریاضیات پرسشهای مجموعهها میشود. ارائه نهادها و
معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد:
شکل کلی معادلات همگن خطی مرتبه دوم با ضرایب ثابت = ٠ cy ay + by + و معادله درجه دوم = ٠ c + br + ar را معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: c ١ e r١x
ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ
1 مبحث بيست و چهارم: اتصال مثلث باز (- اتصال اسكات آرايش هاي خاص ترانسفورماتورهاي سه فاز دانشگاه كاشان / دانشكده مهندسي/ گروه مهندسي برق / درس ماشين هاي الكتريكي / 3 اتصال مثلث باز يا اتصال شكل فرض كنيد
را بدست آوريد. دوران
تجه: همانطر كه در كلاس بارها تا كيد شد تمرينه يا بيشتر جنبه آمزشي داشت براي يادگيري بيشتر مطالب درسي بده است مشابه اين سه تمرين كه در اينجا حل آنها آمده است در امتحان داده نخاهد شد. m b الف ماتريس تبديل
قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :
۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه
مربوطند. با قراردادن مقدار i در معادله (1) داريم. dq q
مدارهاي تا بحال به مدارهايي پرداختيم كه در ا نها اجزاي مدار مقاومت بودند و در ا نها جريان با زمان تغيير نميكرد. در اينجا خازن را به عنوان يك عنصر مداري معرفي ميكنيم خازن ما را به مفهوم جريانهاي متغير با
روش محاسبه ی توان منابع جریان و منابع ولتاژ
روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این
e r 4πε o m.j /C 2 =
فن( محاسبات بوهر نيروي جاذبه الکتروستاتيکي بين هسته و الکترون در اتم هيدروژن از رابطه زير قابل محاسبه F K است: که در ا ن بار الکترون فاصله الکترون از هسته (يا شعاع مدار مجاز) و K ثابتي است که 4πε مقدار
V o. V i. 1 f Z c. ( ) sin ورودي را. i im i = 1. LCω. s s s
گزارش کار ا زمايشگاه اندازهگيري و مدار ا زمايش شمارهي ۵ مدار C سري خروجي خازن ۱۳ ا بانماه ۱۳۸۶ ي م به نام خدا تي وري ا زمايش به هر مداري که در ا ن ترکيب ي از مقاومت خازن و القاگر به کار رفتهشده باشد مدار
جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i.
محاسبات کوانتمی (671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: محمد جواد داوري جلسه 3 می شود. ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک
هدف:.100 مقاومت: خازن: ترانزيستور: پتانسيومتر:
آزمايش شماره (10) تقويت كننده اميتر مشترك هدف: هدف از اين آزمايش مونتاژ مدار طراحي شده و اندازهگيري مشخصات اين تقويت كننده جهت مقايسه نتايج اندازهگيري با مقادير مطلوب و در ادامه طراحي يك تقويت كننده اميترمشترك
1 ﺶﻳﺎﻣزآ ﻢﻫا نﻮﻧﺎﻗ ﻲﺳرﺮﺑ
آزمايش 1 بررسي قانون اهم بررسي تجربي قانون اهم و مطالعه پارامترهاي مو ثر در مقاومت الكتريكي يك سيم فلزي تي وري آزمايش هر و دارند جسم فيزيكي داراي مقاومت الكتريكي است. اجسام فلزي پلاستيك تكه يك بدن انسان
حل J 298 كنيد JK mol جواب: مييابد.
تغيير ا نتروپي در دنياي دور و بر سيستم: هر سيستم داراي يك دنياي دور و بر يا محيط اطراف خود است. براي سادگي دنياي دور و بر يك سيستم را محيط ميناميم. محيط يك سيستم همانند يك منبع بسيار عظيم گرما در نظر گرفته
پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8
پايداری Stility اطمينان از پايداری سيستم های کنترل در زمان طراحی ا ن بسيار حاي ز اهمييت می باشد. سيستمی پايدار محسوب می شود که: بعد از تغيير ضربه در ورودی خروجی به مقدار اوليه ا ن بازگردد. هر مقدار تغيير
مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams
مقاومت مصالح فصل 9: خيز تيرها 9. Deflection of eams دکتر مح مدرضا نيرومند دااگشنه ايپم نور اصفهان eer Johnston DeWolf ( ) رابطه بين گشتاور خمشی و انحنا: تير طره ای تحت بار متمرکز در انتهای آزاد: P انحنا
(,, ) = mq np داريم: 2 2 »گام : دوم« »گام : چهارم«
3 8 بردارها خارجي ضرب مفروضاند. (,, ) 3 و (,, 3 ) بردار دو تعريف: و ميدهيم نمايش نماد با را آن كه است برداري در خارجي ضرب ( 3 3, 3 3, ) m n mq np p q از: است عبارت ماتريس دترمينان در اينكه به توجه با اما
تحلیل مدار به روش جریان حلقه
تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در
+ Δ o. A g B g A B g H. o 3 ( ) ( ) ( ) ; 436. A B g A g B g HA است. H H برابر
ا نتالپي تشكيل پيوند وا نتالپي تفكيك پيوند: ا نتالپي تشكيل يك پيوندي مانند A B برابر با تغيير ا نتالپي استانداردي است كه در جريان تشكيل ا ن B g حاصل ميشود. ( ), پيوند از گونه هاي (g )A ( ) + ( ) ( ) ;
ﻴﻓ ﯽﺗﺎﻘﻴﻘﺤﺗ و ﯽهﺎﮕﺸﻳﺎﻣزﺁ تاﺰﻴﻬﺠﺗ ﻩﺪﻨﻨﮐ
دستوركارآزمايش ميز نيرو هدف آزمايش: تعيين برآيند نيروها و بررسي تعادل نيروها در حالت هاي مختلف وسايل آزمايش: ميز مدرج وستون مربوطه, 4 عدد كفه وزنه آلومينيومي بزرگ و قلاب با نخ 35 سانتي, 4 عدد قرقره و پايه
هدف: LED ديودهاي: 4001 LED مقاومت: 1, اسيلوسكوپ:
آزمايش شماره (1) آشنايي با انواع ديود ها و منحني ولت -آمپر LED هدف: هدف از اين آزمايش آشنايي با پايه هاي ديودهاي معمولي مستقيم و معكوس مي باشد. و زنر همراه با رسم منحني مشخصه ولت- آمپر در دو گرايش وسايل
آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ
آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ هدف در اين آزمايش با نحوه كار و بخشهاي مختلف اسيلوسكوپ آشنا مي شويم. ابزار مورد نياز منبع تغذيه اسيلوسكوپ Function Generator شرح آزمايش 1-1 اندازه گيري DC با اسيلوسكوپ
مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره
مقاطع مخروطي فصل در اين فصل ميخوانيم:. تعريف مقاطع مخروطي. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره ث. طول مماس و طول وتر مينيمم ج. دورترين و نزديكترين
تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢
دانش اه صنعت شریف دانش ده ی علوم ریاض تمرینات درس ریاض عموم سری دهم. ١ سیم نازک داریم که روی دایره ی a + y x و در ربع اول نقطه ی,a را به نقطه ی a, وصل م کند. اگر چ ال سیم در نقطه ی y,x برابر kxy باشد جرم
یﺭﺎﺘﻓﺭ یﺭﺎﺘﻓﺭ یﺎﻫ یﺎﻫ ﻑﺪﻫ ﻑﺪﻫ
دهم فصل اندازه گذارى ساعات آموزش نظری عملی جمع ٤ ٣ ١ فصل دهم كند. های رفتاری هدف پس از پايان اين فصل از هنرجو انتظار می رود: 1 لزوم اندازه گذاری را تعريف كند. 2 علايم اندازه گذاری را طبق استاندارد شناسايی
1- مقدمه است.
آموزش بدون نظارت شبكه عصبي RBF به وسيله الگوريتم ژنتيك محمدصادق محمدي دانشكده فني دانشگاه گيلان Email: m.s.mohammadi@gmail.com چكيده - در اين مقاله روشي كار آمد براي آموزش شبكه هاي عصبي RBF به كمك الگوريتم
Distributed Snapshot DISTRIBUTED SNAPSHOT سپس. P i. Advanced Operating Systems Sharif University of Technology. - Distributed Snapshot ادامه
Distributed Snapshot يك روش براي حل GPE اين بود كه پردازهي مبصر P 0 از ديگر پردازهها درخواست كند تا حالت محلي خود را اعلام كنند و سپس آنها را باهم ادغام كند. اين روش را Snapshot گوييم. ولي حالت سراسري
هر عملگرجبر رابطه ای روی يک يا دو رابطه به عنوان ورودی عمل کرده و يک رابطه جديد را به عنوان نتيجه توليد می کنند.
8-1 جبررابطه ای يک زبان پرس و جو است که عمليات روی پايگاه داده را توسط نمادهايی به صورت فرمولی بيان می کند. election Projection Cartesian Product et Union et Difference Cartesian Product et Intersection
در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا ن رسم ميشود.
ا زمايش 4: راهاندازي و مشخصه خروجي موتور القايي با رتور سيمپيچي شده 1-4 هدف ا زمايش در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا
جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار
محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: هیربد کمالی نیا جلسه 9 1 مدل جعبه-سیاه یا جستاري مدل هایی که در جلسه ي پیش براي استفاده از توابع در الگوریتم هاي کوانتمی بیان
مقدمه دسته بندي دوم روش هاي عددي دامنه محدود اهداف: هاي چندجمله اي رهيافت هاي محاسباتي: سعي و خطا دامنه نامحدود
اهداف: محاسبه ريشه دستگاه دسته عدم وابسته معادالت ريشه هاي چندجمله اي معادالت غيرخطي بندي وابستگي به روش به مشتق مشتق تابع مقدمه غير خطي هاي عددي تابع دسته بندي دوم روش هاي عددي دامنه محدود دامنه نامحدود
آزمايش (٤) موضوع آزمايش: تداخل به وسيلهي دو شكاف يانگ و دو منشور فرنل
آزمايش (٤) موضوع آزمايش: تداخل به وسيلهي دو شكاف يانگ و دو منشور فرنل وسايل مورد نياز: طيف سنج دو شكاف يانگ لامپ سديم و منبع تغذيه ليزر هليوم نئون دو منشور فرنل دو عدد عدسي خط كش چوبي كوليس ريل اپتيكي
هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم
هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min
1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { }
هرگاه دسته اي از اشیاء حروف و اعداد و... که کاملا"مشخص هستند با هم در نظر گرفته شوند یک مجموعه را به وجود می آورند. عناصر تشکیل دهنده ي یک مجموعه باید دو شرط اساسی را داشته باشند. نام گذاري مجموعه : الف
P = P ex F = A. F = P ex A
محاسبه كار انبساطي: در ترموديناميك اغلب با كار ناشي از انبساط يا تراكم سيستم روبرو هستيم. براي پي بردن به اين نوع كار به شكل زير خوب توجه كنيد. در اين شكل استوانهاي را كه به يك پيستون بدون اصطكاك مجهز
كار شماره توانايي عنوان آموزش
پنجم بخش منطقي گيتهاي و ديجيتال : كلي هدف ديجيتال در پايه مدارهاي عملي و نظري تحليل واحد كار شماره توانايي توانايي عنوان آموزش زمان نظري عملي جمع 22 2 آنها كاربرد و ديجيتال سيستمهاي بررسي توانايي 2 U8
R = V / i ( Ω.m كربن **
مقاومت مقاومت ويژه و رسانندگي اگر سرهاي هر يك از دو ميله مسي و چوبي را كه از نظر هندسي مشابهند به اختلاف پتانسيل يكساني وصل كنيم جريانهاي حاصل در ا نها بسيار متفاوت خواهد بود. مشخصهاي از رسانا كه در اينجا
جلسه ی ۵: حل روابط بازگشتی
دانشکده ی علوم ریاضی ساختمان داده ها ۶ مهر ۲ جلسه ی ۵: حل روابط بازگشتی مدر س: دکتر شهرام خزاي ی نگارنده: ا رمیتا ثابتی اشرف و علی رضا علی ا بادیان ۱ مقدمه پیدا کردن کران مجانبی توابع معمولا با پیچیدگی
مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل
مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل شما باید بعد از مطالعه ی این جزوه با مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل کامال آشنا شوید. VA R VB به نظر شما افت ولتاژ مقاومت R چیست جواب: به مقدار عددی V A
گروه رياضي دانشگاه صنعتي نوشيرواني بابل بابل ايران گروه رياضي دانشگاه صنعتي شاهرود شاهرود ايران
و ۱ دسترسي در سايت http://jnrm.srbiau.ac.ir سال دوم شماره ششم تابستان ۱۳۹۵ شماره شاپا: ۱۶۸۲-۰۱۹۶ پژوهشهاي نوین در ریاضی دانشگاه آزاد اسلامی واحد علوم و تحقیقات دستهبندي درختها با عدد رومي بزرگ حسين عبدالهزاده
دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم
آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر
سبد(سرمايهگذار) مربوطه گزارش ميكند در حاليكه موظف است بازدهي سبدگردان را جهت اطلاع عموم در
بسمه تعالي در شركت هاي سبدگردان بر اساس پيوست دستورالعمل تاسيس و فعاليت شركت هاي سبدگردان مصوب هيي ت مديره سازمان بورس بانجام مي رسد. در ادامه به اراي ه اين پيوست مي پردازيم: چگونگي محاسبه ي بازدهي سبد
98-F-TRN-596. ترانسفورماتور بروش مونيتورينگ on-line بارگيري. Archive of SID چكيده 1) مقدمه يابد[
و 98-F-TRN-596 محاسبه جهشهاي حرارتي و عمر از دست رفته ترانسفورماتور بروش مونيتورينگ n-line بارگيري آرش آقايي فر- حسين عزيزي موسسه تحقيقات ترانسفورماتور ايران واژه هاي كليدي: بارگيري ترانسفورماتور قدرت
سعيدسيدطبايي. C=2pF T=5aS F=4THz R=2MΩ L=5nH l 2\µm S 4Hm 2 بنويسيد كنييد
تمرينات درس اندازه گيري دانشگاه شاهد سعيدسيدطبايي تمرين سري 1 و 2 سوال 1: اندازه گيري را تعريف كرده مشخصات شاخص و دستگاه اندازه گيري را بنويسيد منظور از كاليبراسيون و تنظيم چيست. تفاوت دستگاههاي اندازه
يﺎﻫ ﻢﺘﻳرﻮﮕﻟا و ﺎﻫ ﺖﺧرد فاﺮﮔ ﻲﻤﺘﻳرﻮﮕﻟا ﻪﻳﺮﻈﻧ :سرد ﻲﺘﺸﻬﺑ ﺪﻴﻬﺷ هﺎﮕﺸﻧاد ﺮﺗﻮﻴﭙﻣﺎﻛ مﻮﻠﻋ هوﺮﮔ ﻪﻴﻟوا ﺞﻳﺎﺘﻧ و ﺎﻫﻒ ﻳﺮﻌﺗ
BFS DFS : درخت یک گراف همبند بدون دور است. جنگل یک گراف بدون دور است. پس هر مولفه همبندی جنگل درخت است. هر راس درجه 1 در درخت را یک برگ مینامیم. یک درخت فراگیر از گراف G یک زیردرخت فراگیر از ان است که
باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g
تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی
ﺮﺑﺎﻫ -ﻥﺭﻮﺑ ﻪﺧﺮﭼ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﺎﺑ ﻱﺭﻮﻠﺑ ﻪﻜﺒﺷ ﻱﮊﺮﻧﺍ ﻦﻴﻴﻌﺗ ﻪﺒـﺳﺎﺤﻣ ﺵﻭﺭ ﺩﺭﺍﺪﻧ ﺩﻮﺟﻭ ﻪ ﻱﺍ ﻜﺒﺷ ﻱﮊﺮﻧﺍ ﻱﺮﻴﮔ ﻩﺯﺍﺪﻧﺍ ﻱﺍﺮﺑ ﻲﻤﻴﻘﺘﺴﻣ ﻲﺑﺮﺠﺗ ﺵﻭﺭ ﹰﻻﻮﻤﻌﻣ ﻥﻮﭼ ﻱﺎ ﻩﺩ
تعيين انرژي بلوري با استفاده از چرخه بورن - هابر چون معمولا روش تجربي مستقيمي براي اندازهگيري انرژي اي وجود ندارد روش محاسبه اين انرژي براي تركيبات يوني اهميت بسياري مييابد. اما مقداري انرژي اي با استفاده
t a a a = = f f e a a
ا زمايشگاه ماشينه يا ۱ الکتريکي ا زمايش شمارهي ۴-۱ گزارش کار راهاندازي و تنظيم سرعت موتورهايي DC (شنت) استاد درياباد نگارش: اشکان نيوشا ۱۶ ا ذر ۱۳۸۷ ي م به نام خدا تي وري ا زمايش شنت است. در اين ا زمايش
است). ازتركيب دو رابطه (1) و (2) داريم: I = a = M R. 2 a. 2 mg
دستوركارآزمايش ماشين آتوود قانون اول نيوتن (قانون لختي يا اصل ماند): جسمي كه تحت تا ثيرنيروي خارجي واقع نباشد حالت سكون يا حركت راست خط يكنواخت خود را حفظ مي كند. قانون دوم نيوتن (اصل اساسي ديناميك): هرگاه
هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله
آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده
جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز
تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی
فعالیت = ) ( )10 6 ( 8 = )-4( 3 * )-5( 3 = ) ( ) ( )-36( = m n m+ m n. m m m. m n mn
درس»ریشه ام و توان گویا«تاکنون با مفهوم توان های صحیح اعداد و چگونگی کاربرد آنها در ریشه گیری دوم و سوم اعداد آشنا شده اید. فعالیت زیر به شما کمک می کند تا ضمن مرور آنچه تاکنون در خصوص اعداد توان دار و
آزمايش ارتعاشات آزاد و اجباري سيستم جرم و فنر و ميراگر
` آزمايشگاه ديناميك ماشين و ارتعاشات آزمايش ارتعاشات آزاد و اجباري سيستم جرم و فنر و ميراگر dynlab@jamilnia.ir www.jamilnia.ir/dynlab ١ تئوري آزمايش سيستمهاي ارتعاشي ميتوانند بر اثر تحريكات دروني يا بيروني
سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات
سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات دانلود نمونه سوالات امتحانات رياضي نمونه سوالات و پاسخنامه كنكور دانلود نرم افزارهاي رياضيات و... کانال سایت ریاضی سرا در تلگرام: https://telegram.me/riazisara
خطا انواع. (Overflow/underflow) (Negligible addition)
محاسبات عدديپي پيشرفته فصل اوليه مفاهيم خطا انواع با افزايش دقت از جمع تعداد محدود ارقام حاصل ميشود. (Truncation برش: error) خطاي (Precision) اين خطا كم مي شود. در نمايش يا ذخيره نمودن مقادير عددي با تعداد
ôi ½nIQ KÃ{ = m = B ya AB 11, )4 10, )3
نقاط عطف نقاط و تقعر جهت اكسترممها و تابع تغييرات بررسي ميرسيم. عمومي رياضي كتاب 4 فصل مطالب به فصل اين در آن شما كه ميشود تلقي فصل اين جزء هم مجانب درسي كتاب در البته هستند. قسمت اين موضوع تابع نمودار
آزمايشگاه ديناميك ماشين و ارتعاشات آزمايش چرخ طيار.
` آزمايشگاه ديناميك ماشين و ارتعاشات dynlab@jamilnia.ir www.jamilnia.ir/dynlab ١ تئوري آزمايش چرخ طيار يا چرخ ل نگ (flywheel) صفحه مدوري است كه به دليل جرم و ممان اينرسي زياد خود قابليت بالايي در ذخيرهسازي
اراي ه روشي نوين براي حذف مولفه DC ميراشونده در رلههاي ديجيتال
o. F-3-AAA- اراي ه روشي نوين براي حذف مولفه DC ميراشونده در رلههاي ديجيتال جابر پولادي دانشكده فني و مهندسي دانشگاه ا زاد اسلامي واحد علوم و تحقيقات تهران تهران ايران مجتبي خدرزاده مهدي حيدرياقدم دانشكده
مقدمه -1-4 تحليلولتاژگرهمدارهاييبامنابعجريان 4-4- تحليلجريانمشبامنابعولتاژنابسته
مقدمه -1-4 تحليلولتاژگرهمدارهاييبامنابعجريان -2-4 بامنابعجريانوولتاژ تحليلولتاژگرهمدارهايي 3-4- تحليلولتاژگرهبامنابعوابسته 4-4- تحليلجريانمشبامنابعولتاژنابسته 5-4- ژاتلو و 6-4 -تحليلجريانمشبامنابعجريان
ˆÃd. ¼TvÃQ (1) (2) داشت: ( )
تغيير ا نتالپي : ΔH بيشتر واكنشها در شيمي در فشار ثابت انجام ميگيرند. سوختن كبريت در هواي ا زاد و همچنين واكنش خنثي شدن سود با سولفوريك اسيد در يك بشر نمونه اي از واكنشهايي هستند كه در فشار ثابت انجام
- تنش: ( ) kgf / cm. Pa 10. Δ L=δ. ε= = L σ= Eε. kg/cm MPa) 21 / 10. l Fdx. A δ= ε ν= = z ε y =ε z = νεx
مقامت مصالح N = m α Δ Δ - تنش كرنش: - يادآري تعاريف: - تنش: Δ.cos α =τ تنش برشي Δ Δ.sin α =σ تنش عمدي (نرمال) Δ - احدها: احدهاي تنش همان احدهاي فشار ميباشند.,K,M,... / N kgf / cm 9 8 = m - كرنش: عبارتست
ﻞﺼﻓ ﻯﺮﻴﮔ ﻩﺯﺍﺪﻧﺍ ﻡﻮﺳ ﻲﻘﻓﺍ ﻱ ﻪﻠﺻﺎﻓ ﻢﻴﻘﺘﺴﻣﺮﻴﻏ ﺵﻭﺭ ﻪﺑ ﺶﺨﺑ ﻝﻭﺍ - ﺴﻣ ﻲﺣﺎ
اندازه گيرى فاصله ي افقي فصل سوم به روش غيرمستقيم بخش اول - مس احي 39 هدف هاى رفتارى : پس از ا موزش و مطالعهى اين فصل از فراگيرنده انتظار مىرود بتواند: 1- اندازهگيرى فاصلهى افقى به روش غيرمستقيم را تعريف
جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال
نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه
5 TTGGGG 3 ميگردد ) شكل ).
تكميل انتهاهاي مولكولهاي خطي DNA با توجه به اينكه RNA هاي پرايمر بايد از انتهاي مولكولهاي DNA برداشته شوند سي وال اين است در اين صورت انتهاي DNA هاي خطي چگونه تكميل ميگردد. در هنگام همانندسازي نه تنها
فصل چهارم آشنايي با اتوكد 2012 فصل چهارم
55 فصل چهارم آشنايي با اتوكد 2012 56 هدفهاي رفتاري پس از پايان اين فصل هنرجو بايد در AutoCAD بتواند : 1- قسمت هاي مختلف محيط كار AutoCAD را بشناسد. 2- با كاربرد روبانهاي مختلف آشنايي كلي داشته باشد. 3-
جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان
هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر
هلول و هتسوپ لدب م ١ لکش
دوفازي با كيفيت صورت مخلوط به اواپراتور به 1- در اواپراتور كولر يك اتومبيل مبرد R 134a با دبي 0.08kg/s جريان دارد. ورودي مبرد مي شود و محيط بيرون در دماي 25 o C وارد از روي اواپراتور از بخار اشباع است.
آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك
آزمایش : پاسخ فرکانسی تقویتکننده امیتر مشترك -- مقدمه هدف از این آزمایش بدست آوردن فرکانس قطع بالاي تقویتکننده امیتر مشترك بررسی عوامل تاثیرگذار و محدودکننده این پارامتر است. شکل - : مفهوم پهناي باند تقویت
جلسه ی ۴: تحلیل مجانبی الگوریتم ها
دانشکده ی علوم ریاضی ساختمان داده ها ۲ مهر ۱۳۹۲ جلسه ی ۴: تحلیل مجانبی الگوریتم ها مدر س: دکتر شهرام خزاي ی نگارنده: شراره عز ت نژاد ا رمیتا ثابتی اشرف ۱ مقدمه الگوریتم ابزاری است که از ا ن برای حل مسا
دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال
دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته
چكيده. Keywords: Nash Equilibrium, Game Theory, Cournot Model, Supply Function Model, Social Welfare. 1. مقدمه
اثرات تراكم انتقال بر نقطه تعادل بازار برق در مدل هاي كورنات و Supply Function منصوره پيدايش * اشكان رحيمي كيان* سيد محمدحسين زندهدل * مصطفي صحراي ي اردكاني* *دانشكده مهندسي برق و كامپيوتر- دانشگاه تهران
تصاویر استریوگرافی.
هب انم خدا تصاویر استریوگرافی تصویر استریوگرافی یک روش ترسیمی است که به وسیله آن ارتباط زاویه ای بین جهات و صفحات بلوری یک کریستال را در یک فضای دو بعدی )صفحه کاغذ( تعیین میکنند. کاربردها بررسی ناهمسانگردی
تحلیل الگوریتم پیدا کردن ماکزیمم
تحلیل الگوریتم پیدا کردن ماکزیمم امید اعتصامی پژوهشگاه دانشهاي بنیادي پژوهشکده ریاضیات 1 انگیزه در تحلیل الگوریتم ها تحلیل احتمالاتی الگوریتم ها روشی براي تخمین پیچیدگی محاسباتی یک الگوریتم یا مساله ي
تخمین با معیار مربع خطا: حالت صفر: X: مکان هواپیما بدون مشاهده X را تخمین بزنیم. بهترین تخمین مقداری است که متوسط مربع خطا مینیمم باشد:
تخمین با معیار مربع خطا: هدف: با مشاهده X Y را حدس بزنیم. :y X: مکان هواپیما مثال: مشاهده نقطه ( مجموعه نقاط کنارهم ) روی رادار - فرض کنیم می دانیم توزیع احتمال X به چه صورت است. حالت صفر: بدون مشاهده
3 و 2 و 1. مقدمه. Simultaneous كه EKF در عمل ناسازگار عمل كند.
بررسي سازگاري تخمين در الگوريتم EKF-SLAM و پيشنهاد يك روش جديد با هدف رسيدن به سازگاري بيشتر فيلتر و كاستن هرينه محاسباتي امير حسين تمجيدي حميد رضا تقيراد نينا مرحمتي 3 و و گروه رباتيك ارس دپارتمان كنترل
تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.
مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از
گﺮﺑﺪﻳر ﺖﺑﺎﺛ يﺮﻴﮔهزاﺪ :ﺶﻳﺎﻣزآ فﺪﻫ :ﻪﻣﺪﻘﻣ
اندازهگيري ثابت ريدبرگ هدف آزمايش: مطالعه طيف اتم هيدروژن و بدست آوردن ثابت ريدبرگ مقدمه: اتم هيدروژن سادهترين سيستم كوانتومي است و شامل يك پروتون و يك الكترون ميباشد. تي وري الكتروديناميك كوانتومي قادر
آزمایش 8: تقویت کننده عملیاتی 2
آزمایش 8: تقویت کننده عملیاتی 2 1-8 -مقدمه 1 تقویت کننده عملیاتی (OpAmp) داراي دو یا چند طبقه تقویت کننده تفاضلی است که خروجی- هاي هر طبقه به وروديهاي طبقه دیگر متصل شده است. در انتهاي این تقویت کننده
نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا
به نام خدا پردازش سیگنالهای دیجیتال نیمسال اول ۹۵-۹۶ هفته یازدهم ۹۵/۰8/2۹ مدرس: دکتر پرورش نویسنده: محمدرضا تیموری محمد نصری خالصۀ موضوع درس یا سیستم های مینیمم فاز تجزیه ی تابع سیستم به یک سیستم مینیمم
فصل اول ماتریس و کاربردها
فصل اول ماتریس و کاربردها اول فصل ماتریسها روی اعمال و ماتریس اول: درس ماتریس حقیقی عدد هر است. ماتریس یک ستون و سطر تعدادی شامل حقیقی عددهای از مستطیلی آرایش هر مینامیم. ماتریس آن درایة را ماتریس هر در
فصل سوم ژنراتورهاي جريان مستقيم
فصل سوم ژنراتورهاي جريان مستقيم هدفهاي رفتاري پس از پايان اين فصل از فراگير انتظار ميرود که: ژنراتورهاي جريان مستقيم را تعريف كند و آنها را طبقهبندي نمايد. مشخصات اصلي ژنراتورهاي جريان مستقيم را تعريف
( Δ > o) است. ΔH 2. Δ <o ( ) 6 6
تغييرات انرژي ضمن انحلال: اكثر مواد در موادي مشابه خود حل ميشوند و اين پديده را با برهمكنشهاي ميكروسكوپي بررسي كرديم. براي بررسي ماكروسكوپي اين پديده بايد تغييرات انرژي (ا نتالپي) و تغييرات بينظمي (ا نتروپي)
فصل چهارم: جبر رابطه اي
فصل چهارم: جبر ه اي عملوند ها اعداد هستند. که با آن بخوبي آشنا هستيم جبر هاي در جبر رياضي حاصل يک عدد ديگر مي و عدد انجام مي شود دو عملگري )مثل +( روي مثال جبري است که که بحث اين فصل از کتاب است جبر ه
Vr ser se = = = Z. r Rr
ا زمايشگاه ماشينه يا ۱ الکتريکي ا زمايش شمارهي ۳-۴ گزارش کار اتصال کوتاه و بارداري موتور ا سنکرون استاد درياباد نگارش: اشکان نيوشا ۱۱ ا بان ۱۳۸۷ ي م به نام خدا تي وري ا زمايش هدف ما در اين ا زمايش به دست
جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز
نظریه اطلاعات کوانتمی ترم پاییز 39-39 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: محم دحسن آرام جلسه 6 تا اینجا با دو دیدگاه مختلف و دو عامل اصلی براي تعریف و استفاده از ماتریس چگالی جهت معرفی حالت
تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب
تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر
و دماي هواي ورودي T 20= o C باشد. طبق اطلاعات كاتالوگ 2.5kW است. در صورتي كه هوادهي دستگاه
1- بخاري گازسوز كارگاهي مدل انرژي از تعدادي مجرا تشكيل شده كه گازهاي احتراق در آن جريان دارد و در اثر عبور هوا از روي سطح خارجي اين پره ها توسط يك پروانه محوري fan) (axial گرما به هوا منتقل مي شود. توان
تحليل جريان سيال غيرنيوتني در لوله مخروطي همگرا با استفاده از مدل بينگهام
١ پيمان شوبي دانشجوي كارشناسي ارشد ٢ حسين مهبادي دانشيار ٣ آرمن آداميان استاديار تحليل جريان سيال غيرنيوتني در لوله مخروطي همگرا با استفاده از مدل بينگهام در اين مقاله جريان لايه هاي سيال بينگهام در يك
مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد
گاما شماره ی ٢٣ تابستان ١٣٨٩ مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد امیر آقامحمدی چ یده مسي لهی نردبان که کنار دیوار لیز م خورد بدون و با در نظر گرفتن اصط اک بررس شده است. م خواهیم حرکت نردبان