Performance evaluation of two Markovian retrial queueing model with balking and feedback

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Performance evaluation of two Markovian retrial queueing model with balking and feedback"

Transcript

1 Acta Unv. Sapentae, Mathematca, 5, 2 (2013) Performance evaluaton of two Markovan retral queueng model wth balkng and feedback A. A. Bouchentouf Djllal Labes Unversty of Sd Bel Abbes Department of Mathematcs B. P. 89, Sd Bel Abbes emal: bouchentouf amna@yahoo.fr. Belarb Djllal Labes Unversty of Sd Bel Abbes Department of Mathematcs B. P. 89, Sd Bel Abbes emal: faza belarb@yahoo.fr Abstract. In ths paper, we consder the performance evaluaton of two retral queueng system. Customers arrve to the system, f upon arrval, the queue s full, the new arrvng customers ether move nto one of the orbts, from whch they make a new attempts to reach the prmary queue, untl they fnd the server dle or balk and leave the system, these later, and after gettng a servce may comeback to the system requrng another servce. So, we derve for ths system, the jont dstrbuton of the server state and retral queue lengths. Then, we gve some numercal results that clarfy the relatonshp between the retrals, arrvals, balkng rates, and the retral queue length. 1 Introducton In the parlance of queueng theory, such a mechansm n whch ejected (or rejected) customers return at random ntervals untl they receve servce s called a retral queue. Retral queues have an mportant applcaton n a wde varety of felds, they are lkewse prevalent n the evaluaton and desgn of 2010 Mathematcs Subject Classfcaton: 60K25, 68M20, 90B22 Key words and phrases: queueng models, retral queues, balkng, jont dstrbuton functon, confluent hypergeometrc functons 132

2 Performance evaluaton of two Markovan retral queueng model 133 computer networks as they are n telecommuncatons, computer networks, and partcularly wreless networks. A retral queue s smlar to any ordnary queueng system n that there s an arrval process and one or more servers. The fundamental dfferences are frstly, the enttes who enter durng a down or busy perod of the server or servers may reattempt servce at some random tme n the future, and secondly a watng room, whch s known as a prmary queue n the context of retral queues, s not mandatory. In place of the ordnary watng room s a buffer called an orbt to whch enttes proceed after an unsuccessful attempt at servce, and from whch they retry servce accordng to a gven probablstc or determnstc polcy. Owng to the utlty and nterestng mathematcal propertes of retral queueng models, a vast lterature on the subject has emerged over the past several decades. or a general survey of retral queues and a summary of many results, the reader s drected to the works of [6, 8, 7, 5, 12, 15] and references theren. In [4] Cho and Km consdered the M/M/c retral queues wth geometrc loss and feedback when c = 1, 2, they found the jont generatng functon of the number of busy servers and the queue length by solvng Kummer dfferental equaton for c = 1, and by the method of seres soluton for c = 1, 2. Retral queueng model MMAP/M 2 /1 wth two orbts was studed by Avrachenkov, Dudn and Klmenok [3], n ther paper, authors consdered a retral sngleserver queueng model wth two types of customers. In case of the server occupancy at the arrval epoch, the customer moves to the orbt dependng on the type of the customer. One orbt s nfnte whle the second one s a fnte. Jont dstrbuton of the number of customers n the orbts and some performance measures are computed. An M/M/1 queue wth customers balkng was proposed by Haght [9], Sumeet Kumar Sharma [10] studed the M/M/1/N queung system wth retenton of reneged customers, Kumar and Sharma [11] studed a sngle server queueng system wth retenton of reneged customers and balkng. Kumar and Sharma [14] consder a sngle server, fnte capacty Markovan feedback queue wth balkng, balkng and retenton of reneged customers n whch the nter-arrval and servce tmes follow exponental dstrbuton. In our paper, we consder a retral queueng model wth two orbts O 1 and O 2, balkng and feedback. In case of the server occupancy at the arrval epoch, the arrvng customers have to choose between the two orbts dependng on ther thresholds f they decde to stay for an attempt to get served or leave the system (balk), and after gettng a servce, customers may comeback to the system requrng another servce. The man result n ths work conssts n dervng the approxmate analyss of the system.

3 134 A. A. Bouchentouf,. Belarb 2 Mathematcal model gure 1: Retral queueng model wth balkng and feedback We consder a retral queueng model wth two orbts O 1 and O 2, new customers arrve from outsde to the servce node accordng to a posson process wth rate λ. If the queue s not full upon prmary call arrvals, then the customers wat n the queue, thus wll be served accordng to the IO order, where servce tmes B(t) are assumed to be ndependent and exponentally dstrbuted wth mean 1/µ. However, f upon arrval, the customers fnd the queue full, then they decde to stay for an attempt to get served wth probablty β = 1 β or leave the system wth probablty β, 0 β 1. The arrvng customers who decde to stay for an attempt, they have to choose one of the orbts O 1, O 2 ; dependng on ther thresholds; f the number of customers n orbt O 1 s qute larger than that of orbt O 2, the customer wll move nto the orbt O 2 wth probablty ββ 2 ; 0 β 2 1, otherwse he/she removes nto orbt O 1 wth probablty ββ 1 ; 0 β 1 1. Notce that f the threshold of customers n orbt O 1 s qute larger than that of orbt O 2, the customers n orbt O 1 wll make the attempts frstly and vce versa. Afterward, customers go n the retral queues and make attempts

4 Performance evaluaton of two Markovan retral queueng model 135 to reach the prmary queue, where the attempt tmes are assumed also to be ndependent and exponentally dstrbuted wth mean 1/α, = 1, 2. nally, after the customer s served completely, he/she may decde ether to jon the retral groups O 1 or O 2 agan for another servce wth probablty ξδ 1 ; (δ 1 s the probablty that the customer chooses orbt O 1 ), wth 0 δ 1 1, or ξδ 2 ; (δ 2 s the probablty that the customer chooses orbt O 2 ), wth 0 δ 2 1, or leaves the system forever wth probablty ξ, 0 ξ 1. Ths sort of system abstracts and characterzes dfferent practcal stuatons n the telecommuncaton networks. or example, the mechansm based automatc repeat request protocol n data transmsson systems may be modeled by a retral queue system wth feedback, snce lost packets are negatvely acknowledged by the recevers, then the senders send them once agan. In ths paper we provde approxmate expressons for our queueng performance measures; we nvestgate the jont dstrbuton of the server state and queue length under the system steady state assumpton. The condton of system stablty s assumed to be hold, urther analyss around the stablty of retral queues can be found n [2], where E. Altman and A. A. Borovkov provded the general condtons under whch ρ (system s load) < 1 s a suffcent condton for the stablty of retral queung systems. 3 Man result Theorem 1 or our retral queueng model wth two orbts, balkng and feedback n the steady state: 1. The average of the queue length along the dle perod of the server s expressed by ( ( β ββ (λ + α ) + E(N, S = 0) = m ξδ ) µ ββ β(λ + α ) + µ(1 δ ξ) α β + µ(1 δ ξ) λ ββ { β β (λ + 2α ) + ξδ µ, β(2α + λ) + µ(1 δ ξ) ( α β 3 ) + ββ α βα α β λ β 2 β 2 ( ββ (λ + α ) + ξδ )( µ ββ (λ + 2α ) + ξδ ) µ β(λ + α ) + µ(1 δ ξ) β(λ + 2α ) + µ(1 δ ξ) { β β(λ + α ) + ββ ξδ µ, ββ (α + λ) + µδ ξ ). ββ α ββ α α β.

5 136 A. A. Bouchentouf,. Belarb 2. The average of the queue length along the busy perod of the server s expressed by ( ( β ββ (λ + α ) + E(N, S = 1) = m ξδ ) µ ββ β(λ + α ) + µ(1 δ ξ) { β β (λ + 2α ) + ξδ µ, β(2α + λ) + µ(1 δ ξ) ). ββ α βα α β 3. The average of the queue length s gven by 2 ( ( β ββ (λ + α ) + E(N, S = 0) + E(N, S = 1) = m ξδ ) µ ββ =1 β(λ + α ) + µ(1 δ ξ) α β + µ(1 δ ξ) + 1 λ ββ { β β (λ + 2α ) + ξδ µ, β(2α + λ) + µ(1 δ ξ) ββ α βα α β ( α β 3 )( ββ (λ + α ) + + ξδ ) µ λ β 2 β 2 β(λ + α ) + µ(1 δ ξ) ( ββ (λ + 2α ) + ξδ ) µ β(λ + 2α ) + µ(1 δ ξ) { β β (λ + 3α ) + ξδ µ, β(3α + λ) + µ(1 δ ξ) ββ α βα α β { β β(λ + α ) + ββ ξδ µ, ββ (α + λ) + µδ ξ ). ββ α ββ α α β Proof. To prove the theorem, we should frstly ntroduce the system statstcal equlbrum equatons for the system, so let us denote N 1 (t), N 2 (t) the number of repeated calls n the the retral queue O 1 respectvely O 2 at tme t, and S(t) represents the server state, where t takes two values 1 or 0 at tme t when the server s busy or dle respectvely. Thus, a process {S(t), N 1 (t), N 2 (t)} whch descrbes the number of customers n the system s the smplest and smultaneously the most mportant process assocated wth the retral queueng system descrbed n g.1. To smplfy our analyss, we suppose that the servce tme functon B(t) s exponentally dstrbuted. Thus, {S(t), N 1 (t), N 2 (t)} forms a markov process, where we can consder the markov chan of ths process representng ths system s embedded at jump customers arrval tmes rather than a chan embedded at servce completon epochs. Hence, the process {(S(t), N 1 (t), N 2 (t)) : t

6 Performance evaluaton of two Markovan retral queueng model 137 0} forms a Markov chan wth a state space {0, 1} {0, 1,..., N 1 } {0, 1,..., N 2 }, where {S, N 1, N 2 } lm t {S(t), N 1 (t), N 2 (t)} n the steady state. As a result, n the steady state the jont probabltes of server state S and the retral queue lengths N 1, N 2, P 0n1 n 2 = P{S = 0, N 1 = n 1, N 2 = n 2 }, and P 1n1 n 2 = P{S = 1, N 1 = n 1, N 2 = n 2 }, can be characterzed through the correspondng partal generatng functons for z 1 1, z 2 1 by P 0 (z 1 ) = n 1 =0 P 0n 1 n 2 z n 1 1, P 0(z 2 ) = n 2 =0 P 0n 1 n 2 z n 2 2 and P 1(z 1 ) = n 1 =0 P 1n 1 n 2 z n 1 1, P 1 (z 2 ) = n 2 =0 P 1n 1 n 2 z n 2 2. Consequently, we can descrbe the set of statstcal equlbrum equatons for these probabltes (P 0n1 n 2, P 1n1 n 2 ) as follows: (λ + n 1 α 1 )P 0n1 n 2 = ξµp 1n1 n 2 + ξδ 1 µp 1n1 1n 2 (1) (λββ 1 + µ + n 1 βα 1 )P 1n1 n 2 = ββ 1 λp 1n1 1n 2 + (n 1 + 1)βα 1 P 1n1 +1n 2 + (n 1 + 1)α 1 P 0n1 +1n 2 + λp 0n1 n 2 (2) (λ + n 2 α 2 )P 0n1 n 2 = ξµp 1n1 n 2 + ξδ 2 µp 1n1 n 2 1 (3) (λ ββ 2 + µ + n 2 βα 2 )P 1n1 n 2 = ββ 2 λp 1n1 n (n 2 + 1)βα 2 P 1n1 n (n 2 + 1)α 2 P 0n1 n λp 0n1 n 2. (4) Now to contnue n dervng the jont dstrbuton, we multply the equatons (1), (2), (3) and (4) by =n z n, = 1, 2 whch yelds to the followng equatons : λp 0 (z ) + α z P 0 (z ) = ξµp 1 (z ) + ξδ µz P 1 (z ) (5) [ λ ββ (1 z ) + µ) ] P 1 (z ) + α β(z 1)P 1 (z ) = α P 0 (z ) + λp 0 (z ). (6) By takng the sum of equaton (5) and (6), then dvde the sum by (z 1) we obtan α P 0 (z ) + α βp 1 (z ) = ( ββ λ + ξδ µ)p 1 (z ). (7) By substtutng equaton (7) nto (6), we can express P 0 (z ) n terms of P 1 (z ), P 1 (z ) as follows: P 0 (z ) = ( α β λ )z P 1 (z ) + ( µ λ (1 δ ξ) ββ z ) P1 (z ). (8) By dfferentatng equaton (8), we get P 0 (z ) = α β λ z P 1 (z ) + ( µ(1 δ ξ)+α β λ ββ z ) P 1 (z ) ββ P 1 (z ). (9) By substtutng equatons (8) and (9) nto (5), we obtan a dfferental equaton of P 1 (z )

7 138 A. A. Bouchentouf,. Belarb ( µ(1 δ ξ) + (λ + z P 1 (z α )β ) + λ ββ ) α β α β z P 1 (z ) λ ( ββ (λ + α ) + (1 ξδ )µ ) α 2 β P 1 (z ) = 0. (10) Consequently, we transform the equaton (10) nto Kummer s dfferental equaton, snce t has already a soluton. Let Y(x ) = P 1 (z (x )) and z = βα ββ λ x, = 1, 2 whch transforms (10) nto x Y (x ) + (λ+α )β+µ(1 δ ξ) βα x Y (x ) The equaton (11) can be rewrtten as follows such that a = β β(α +λ)+µδ ξ α β β β β(α +λ)+µδ ξ Y α β β (x ) = 0. (11) x Y (x ) + (d x )Y (x) a Y(x ) = 0 (12) and d = (λ+α )β+µ(1 δ ξ) βα. Referrng to [1], [13], the equaton (12) has a regular sngular pont at x = 0, and an rregular sngularty at x =. urthermore, the soluton of equaton (12) s found analytcally n a unte crcle, U = {x : x 1} whch represents n turn the soluton of kummer s functon Y(x ) and expressed by Y(x ) = m (a ; d ; x ), m 0 so, equaton (10) s solved for P 1 (z ) as follows P 1 (z ) = m { ββ (λ + α ) + ξδ µ ββ α ; (λ + α )β + µ(1 δ ξ) ; ββ λ α β α β z }, z 1. (13) Referrng to [13], the frst dervatve of Kummer s functon (a ; d ; x ) s defned as follows: d dx = a d (a + 1; d + 1; x ), hence P 1 (z ) s expressed as follows: { ( β ββ P 1 (z (λ + α ) + ) = m ξδ ) { µ ββ (λ + 2α ) + ξδ µ ; ββ β(λ + α ) + µ(1 δ ξ) ββ α (λ + 2α )β + µ(1 δ ξ) ; ββ }} (14) λ α β α β z, z 1.

8 Performance evaluaton of two Markovan retral queueng model 139 Then we replace nto equaton (8) for P 0 (z ), P 1 (z ) and P 1 (z ) by ther equvalence n equatons (13) and (14), and hence P 0 (z ) s expressed as follows: [ α β 2 ( ββ (λ + α ) + P 0 (z ) = m ξδ ) µ λ ββ β(λ + α ) + µ(1 δ ξ) { β β (λ + 2α ) + ξδ µ, β(2α + λ) + µ(1 δ ξ) ββ α βα α β (15) µ(1 δ1 ξ) + λ ββ { β β(λ + α ) + ξδ µ, ββ (α + λ) + µδ ξ ] ββ α βα α β Then at the boundary condton, where z = 1, = 1, 2 we can ge the value of m through P 0 (1) + P 1 (1) = 1 [ α β 2 ( ββ (λ + α ) + m = ξδ ) µ λ ββ β(λ + α ) + µ(1 δ ξ) { β β (λ + 2α ) + ξδ µ, β(2α + λ) + µ(1 δ ξ) ββ α βα α β (16) µ(1 δ1 ξ) + λ ββ + 1 { β β(λ + α ) + ξδ µ, ββ (α + λ) + µδ ξ ] 1 ββ α βα α β So, the generatng functons of the jont dstrbuton of server state S and queue length N are gven by ( ββ (λ + α ) + ξδ µ ) β(λ + α ) + µ(1 δ ξ) [ P 0 (z ) = E(z N α β 2, S = 0) = m λ ββ { β β (λ + 2α ) + ξδ µ P 1 (z ) = E(z N, β(2α + λ) + µ(1 δ ξ) ββ α βα α β µ(1 δ1 ξ) + λ ββ { β β(λ + α ) + ξδ µ, ββ (α + λ) + µδ ξ ] ββ α βα α β z { ββ (λ + α ) + : S = 1) = m ξδ µ ; ββ α β(λ + α ) + (1 δ ξ)µ ; ββ } λ βα α β z, z 1.

9 140 A. A. Bouchentouf,. Belarb Consequently, the average of the queue length along the dle perod of the server s equvalent to P 0 (1), whch s expressed by ( ( β ββ (λ + α ) + E(N, S = 0) = m ξδ ) µ α β + µ(1 δ ξ) ββ β(λ + α ) + µ(1 δ ξ) λ ββ { β β (λ + 2α ) + ξδ µ, β(2α + λ) + µ(1 δ ξ) ( α β 3 ) + ββ α βα α β λ β 2 β 2 ( ββ (λ + α ) + ξδ ) ( µ ββ (λ + 2α ) + ξδ ) µ β(λ + α ) + µ(1 δ ξ) β(λ + 2α ) + µ(1 δ ξ) { β β (λ + 3α ) + ξδ µ, β(3α + λ) + µ(1 δ ξ) ββ α βα α β { β β(λ + α ) + ββ ξδ µ, ββ (α + λ) + µδ ξ ) ββ α ββ α α β And the average of the queue length along the busy perod of the server s equvalent to P 1 (1), whch s expressed by { ( E(z N β ββ (λ + α ) + : S = 1) = m ξδ ) µ ββ β(λ + α ) + µ(1 δ ξ) { ββ (λ + 2α ) + ξδ µ ; (λ + 2α )β + µ(1 δ ξ) ; ββ }} (17) λ ββ α α β α β Thus the average of the queue length n the retral queung system s the sum of P 0 (1) and P 1 (1), whch s gven by 2 ( ( β ββ (λ + α ) + E(N, S = 0) + E(N, S = 1) = m ξδ ) µ ββ =1 β(λ + α ) + µ(1 δ ξ) α β + µ(1 δ ξ) + 1 λ ββ { β β (λ + 2α ) + ξδ µ, β(2α + λ) + µ(1 δ ξ) ββ α βα α β ( α β 3 )( ββ (λ + α ) + + ξδ ) ( µ ββ (λ + 2α ) + ξδ ) µ λ β 2 β 2 β(λ + α ) + µ(1 δ ξ) β(λ + 2α ) + µ(1 δ ξ) { β β (λ + 3α ) + ξδ µ, β(3α + λ) + µ(1 δ ξ) ββ α βα α β { ββ β β(λ + α ) + ξδ µ, ββ (α + λ) + µδ ξ ) ββ α ββ α α β

10 Performance evaluaton of two Markovan retral queueng model Numercal results The average watng tme W n the steady state s often consdered to be the most mportant of performance measures n retral queung systems. However, W s an average over all prmary calls, ncludng those calls whch receve mmedate servce and really do not wat at all. A better grasp of understandng the watng tme process can be obtaned by studyng frst the relatonshp between the retral queue length E(N) = E(N 1 ) + E(N 2 ) and other nputs,outputs and feedback parameters. We have conducted some prelmnary analyss through some smulatons done on the queue lengths, n order to show the mpact of the dfferent parameters and ts relatonshp wth the retral queue length E(N). The prmary objectve behnd ths was to understand what does happen at some telecommuncaton systems where redals or connecton retrals arse naturally. These analyss nvolved three scenaros fgure 2-fgure 4 n order to clarfy the relatons n dfferent stuatons among the nput, output, balk and feedback parameters. These scenaros are realzed through smulatons va Matlab program. To begn, we chose a sgnfcant values for the parameters so as to meet the requrements of the phase-mergng algorthm. or the frst fgure, for each value of ξ ( ξ = 0; 0.2; 0.4; 0.6; 0.8; 1) selected, we vary µ from 0 to 1 n ncrements of 0.1, where we evaluate E(N) at dfferent values of servce completon probablty whle β 1 = β 2 = α 1 = α 2 = δ 1 = δ 2 = 0.5, β = 0.7, λ = 0.7. The numercal results are summarzed n the followng table: µ Average Retral Queue Length ξ = 1 ξ = 0.8 ξ = 0.6 ξ = 0.4 ξ = 0.2 ξ = 0 0 E(N,C = 0) + E(N,C = 1) E(N,C = 0) + E(N,C = 1) ,5577 2,4302 2,3026 2,1749 2, E(N,C = 0) + E(N,C = 1) ,7798 2,5434 2,3077 2,0726 1, E(N,C = 0) + E(N,C = 1) ,9723 2,6409 2,3119 1,9857 1, E(N,C = 0) + E(N,C = 1) ,1417 2,7258 2,3154 1,9111 1, E(N,C = 0) + E(N,C = 1) ,2926 2,8005 2,3183 1,8467 1, E(N,C = 0) + E(N,C = 1) ,4280 2,8670 2,3208 1,7905 1, E(N,C = 0) + E(N,C = 1) ,5506 2,9264 2,3229 1,7413 1, E(N,C = 0) + E(N,C = 1) ,6623 2,9800 2,3247 1,6977 1, E(N,C = 0) + E(N,C = 1) ,7645 3,0284 2,3262 1,6591 1, E(N,C = 0) + E(N,C = 1) ,8586 3,0726 2,3276 1,6245 0,9639 The frst fgure shows that along the ncrease of µ the retral queue lengths ncrease when the values of ξ become larger; for nstance when ξ = 1; 0.8; 0.6 and decrease when ξ become smaller; for nstance when ξ = 0; 0.2; 0.4. Obvously, ths refers to the possblty of acceptng repeated and prmary calls

11 142 A. A. Bouchentouf,. Belarb becomes large. Ths fgure shows us also that when ξ becomes greater than 0.6 or the feedback probablty becomes less than 0.6, then E(N) s not affected remarkably or t decreases very slowly. gure 2: Average retral queue length E(N) & servce server rate µ or the second fgure, for each value of β such that or β = 0, 5 we choose a sgnfcant parameters α 1 = α 2 = 0.7, δ 1 = 0.1, δ 2 = 0.9 and β 1 = β 2 = 0.5. or β = 0.7, we choose a sgnfcant parameters α 1 = α 2 = 0.7, δ 1 = 0.1, δ 2 = 0.9, and β 1 = 0.6, β 2 = 0.4, we vary ξ from 0 to 1 n ncrements of 0.1, where we evaluate E(N) at dfferent values of balkng probablty β, whle µ = 0.8 and λ = 0.7. The numercal results are summarzed n the followng table: ξ Average Retral Queue Length β = 0.3 β = E(N, C = 0) + E(N, C = 1) 4,8845 2, E(N, C = 0) + E(N, C = 1) 4,4893 2, E(N, C = 0) + E(N, C = 1) 4,1030 2, E(N, C = 0) + E(N, C = 1) 3,7245 2, E(N, C = 0) + E(N, C = 1) 3,3533 2, E(N, C = 0) + E(N, C = 1) 2,9887 1, E(N, C = 0) + E(N, C = 1) 2,6304 1, E(N, C = 0) + E(N, C = 1) 2,2782 1, E(N, C = 0) + E(N, C = 1) 1,9322 1, E(N, C = 0) + E(N, C = 1) 1,5926 1, E(N, C = 0) + E(N, C = 1) 1,2598 0,9294

12 Performance evaluaton of two Markovan retral queueng model 143 gure 3: Average retral queue length E(N) & probablty of servce completon ξ The second fgure shows that E(N) for our model wth balkng and feedback s not affected by feedback probablty ξ when the probablty β of non-balkng or returnng to retral group after customer attempt s falure becomes less than 0.5. However, E(N) ncreases rapdly as ξ and β become hgh. or the thrd fgure, or each value of α (α 1 = α 2 = 0.1 and α 1 = α 2 = 0.8) selected, we vary β from 0.1 to 0.9 n ncrements of 0.1, such that for a good requrement we choose for β = 0.1 β 1 = 0.7 β 2 = 0.3 for β = 0.2 β 1 = 0.9 β 2 = 0.1 for β = 0.3 β 1 = 0.95 β 2 = 0.05 for β = 0.4 β 1 = 0.97 β 2 = 0.03 for β = 0.5 β 1 = 0.98 β 2 = 0.02 for β = 0.6 β 1 = 0.99 β 2 = 0.01 for β = 0.7 β 1 = β 2 = for β = 0.8 β 1 = β 2 = for β = 0.9 β 1 = β 2 = Then, we evaluate E(N) at dfferent values of retral probablty α, whle δ 1 = δ 2 = 0.5, ξ = 0.5, µ = 0.8 and λ = 0.7. The numercal results are summarzed n the followng table:

13 144 A. A. Bouchentouf,. Belarb β Average Retral Queue Length α 1 = α 2 = 0.1 α 1 = α 2 = E(N, C = 0) + E(N, C = 1) , E(N, C = 0) + E(N, C = 1) 7,8458 6, E(N, C = 0) + E(N, C = 1) 8,9262 6, E(N, C = 0) + E(N, C = 1) 9,7914 7, E(N, C = 0) + E(N, C = 1) 10,2588 7, E(N, C = 0) + E(N, C = 1) 14, , E(N, C = 0) + E(N, C = 1) 14, , E(N, C = 0) + E(N, C = 1) 15, , E(N, C = 0) + E(N, C = 1) 16, ,9861 gure 4: Average retral queue length E(N) & non-balkng rate β gure 4 shows that along the desgn of retral queung system, we have to assgn equvalent values for the non-balkng probablty β and the retral probablty α n order to keep the retral queue length as short as possble. Ths can be concluded from the fgure snce when α takes values greater or equal to 0.5, and β gets values less than 0.5 E(N) becomes small. As a concluson, we conclude that gures 2 through 4 ndcate that the phase-mergng algorthm s reasonably effectve n approxmatng E(N), for all values of µ, ξ, β, and α.

14 Performance evaluaton of two Markovan retral queueng model 145 References [1] G. Arfken, Confluent hypergeometrc functons n mathematcal methods for physcsts, 3rd ed. Academc Press, Orlando, (1985), [2] E. Altman, A. A. Borokovoc, On the stablty of retral queues, Queueng Syst., 26 (1997), [3] K. Avrachenkov, A. Dudn, V. Klmenok, Queueng Model MMAP/M 2/1 wth Two Orbts, Lecture Notes n Comput. Sc., 6235 (2010), [4] B. D. Cho, Y. C. Km, The M/M/c Retral queue wth geometrc loss and feedback, Comput. Math. Appl., 36 (6) (1998), [5] N. Ebrahm, System relablty based on system wear, Stoch. Models, 22 (1) (2006), [6] G. I. aln, A survey of retral queues, Queueng Syst., 7 (2) (1990), [7] G. I. aln, J. R. Artalejo, An nfnte source retral queue, European J. Oper. Res., 108 (2) (1998), 409. [8] N. Gharb, M. Ioualalen, GSPN analyss of retral systems wth server breakdowns and repars, Appl. Math. Comput., 174 (2) (2006), [9]. A. Haght, Queueng wth balkng, Bometrka, 44 (1957), [10] R. Kumar, S. K. Sharma, M/M/1/N Queung system wth retenton of reneged customers, Pakstan J. Statst. Oper. Res., 8 (2012), [11] R. Kumar, S. K. Sharma, An M/M/1/N Queung model wth retenton of reneged customers and Balkng, Amer. J. Oper. Res., 2 (1) (2012), 1 5. [12] L. Lbman, A. Orda, Optmal retral and tmeout strateges for accessng network resources, IEEE/ACM Trans. on Networkng, 10 (4) (2002), [13] A. Papouls, Probablty random varables and stochastc processes, 2nd ed., McGraw-Hll, (1983).

15 146 A. A. Bouchentouf,. Belarb [14] S. K. Sharma, A Markovan feedback queue wth retenton of reneged customers and balkng, Adv. Model. Optm., 14 (3) (2012), [15] J. Walrand, Communcaton networks: a frst course, The Aksen Assocates Seres n Electrcal and Computer Engneerng, Rchard D. Irwn, Inc., and Aksen Assocates, Inc., Homewood, IL and Boston, MA. (1991). Receved: 15 November 2013

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ). Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

ΕΝΑ ΣΥΣΤΗΜΑ ΟΥΡΑΣ ΕΠΑΝΑΛΑΜΒΑΝΟΜΕΝΩΝ ΑΦΙΞΕΩΝ ΜΕ ΤΡΕΙΣ ΦΑΣΕΙΣ ΕΞΥΠΗΡΕΤΗΣΗΣ ΚΑΙ ΔΙΑΚΟΠΕΣ

ΕΝΑ ΣΥΣΤΗΜΑ ΟΥΡΑΣ ΕΠΑΝΑΛΑΜΒΑΝΟΜΕΝΩΝ ΑΦΙΞΕΩΝ ΜΕ ΤΡΕΙΣ ΦΑΣΕΙΣ ΕΞΥΠΗΡΕΤΗΣΗΣ ΚΑΙ ΔΙΑΚΟΠΕΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής (8, σελ 49-56 ΕΝΑ ΣΥΣΤΗΜΑ ΟΥΡΑΣ ΕΠΑΝΑΛΑΜΒΑΝΟΜΕΝΩΝ ΑΦΙΞΕΩΝ ΜΕ ΤΡΕΙΣ ΦΑΣΕΙΣ ΕΞΥΠΗΡΕΤΗΣΗΣ ΚΑΙ ΔΙΑΚΟΠΕΣ Ιωάννης Χ. Δημητρίου και

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Phasor Diagram of an RC Circuit V R

Phasor Diagram of an RC Circuit V R ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές 8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

State-dependent M/G/1 Type Queueing Analysis for Congestion Control in Data Networks Eitan Altman, Kostya Avrachenkov 1, Chadi Barakat 2 INRIA 2004, r

State-dependent M/G/1 Type Queueing Analysis for Congestion Control in Data Networks Eitan Altman, Kostya Avrachenkov 1, Chadi Barakat 2 INRIA 2004, r State-dependent M/G/ Type Queueng Analyss for Congeston Control n Data Networks Etan Altman, Kostya Avrachenkov, Chad Barakat 2 INRIA 24, route des Lucoles { B.P. 93, 692 Sopha Antpols, France fetan.altman,k.avrachenkov,chad.barakatg@sopha.nra.fr

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Derivation for Input of Factor Graph Representation

Derivation for Input of Factor Graph Representation Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Non polynomial spline solutions for special linear tenth-order boundary value problems

Non polynomial spline solutions for special linear tenth-order boundary value problems ISSN 746-7233 England UK World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 Non polynomal splne solutons for specal lnear tenth-order boundary value problems J. Rashdna R. Jallan 2 K. Farajeyan

Διαβάστε περισσότερα

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment 1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution Journal of Statstcal Theory and Applcatons, Vol. 4, No. 3 September 5, 4-56 Concomtants of Dual Generalzed Order Statstcs from Bvarate Burr III Dstrbuton Haseeb Athar, Nayabuddn and Zuber Akhter Department

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Some generalization of Cauchy s and Wilson s functional equations on abelian groups Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

(C) 2010 Pearson Education, Inc. All rights reserved.

(C) 2010 Pearson Education, Inc. All rights reserved. Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.

Διαβάστε περισσότερα

2002 Journal of Software /2002/13(08) Vol.13, No.8. , )

2002 Journal of Software /2002/13(08) Vol.13, No.8. , ) 000-985/00/3(08)55-06 00 Journal of Software Vol3, No8, (,00084) E-mal: yong98@malstsnghuaeducn http://netlabcstsnghuaeducn :,,, (proportonal farness schedulng, PFS), QoS, : ; ;QoS; : TP393 : A,,,,, (

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

35 90% 30 35 85% 2000 2008 + 2 2008 22-37 1997 26 1953- 2000 556 888 0.63 2001 0.58 2002 0.60 0.55 2004 0.51 2005 0.47 0.45 0.43 2009 0.

35 90% 30 35 85% 2000 2008 + 2 2008 22-37 1997 26 1953- 2000 556 888 0.63 2001 0.58 2002 0.60 0.55 2004 0.51 2005 0.47 0.45 0.43 2009 0. 184 C913.7 A 1672-616221 2-21- 7 Vol.7 No.2 Apr., 21 1 26 1997 26 25 38 35 9% 8% 3 35 85% 2% 3 8% 21 1 2 28 + 2 1% + + 2 556 888.63 21 572 986.58 22 657 1 97 23 674 1 229.55 24 711 1 48.51 25 771 1 649.47

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

A Method for Determining Service Level of Road Network Based on Improved Capacity Model 30 4 2013 4 Journal of Hghway and Transportaton Research and Development Vol. 30 No. 4 Apr. 2013 do10. 3969 /j. ssn. 1002-0268. 2013. 04. 018 1 1 2 1. 4000742. 201804 2 U491. 1 + 3 A 1002-0268 201304-0101

Διαβάστε περισσότερα