BarChart y 1, y 2, makes a bar chart with bar lengths y 1, y 2,.
|
|
- Σπύρος Φωτόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 In[]:= In[]:= In[3]:= In[4]:= In[5]:= Out[5]= r : Random ri : Random Integer rdice : Random Integer,, 6 disp : Export "t.ps",, "EPS" & list Table rdice, 0 5,, 4, 6,, 3,, 3, 4,, 6, 4, 6,,, 6, 6,, 3, In[6]:= In[7]:= Statistics`DataManipulation` General::obspkg : Statistics`DataManipulation` is now obsolete. The legacy version being loaded may conflict with current Mathematica functionality. See the Compatibility Guide for updating information. In[8]:= In[9]:= Out[9]= fr : Frequencies & fr list 5,, 3,, 3, 3, 3, 4,, 5, 5, 6 In[0]:=? BarChart BarChart y, y, makes a bar chart with bar lengths y, y,. BarChart, w i y i,,, w j y j,, makes a bar chart with bar features defined by the symbolic wrappers w k. BarChart data, data, makes a bar chart from multiple datasets data i. In[]:= Graphics`Graphics` General::obspkg : Graphics`Graphics` is now obsolete. The legacy version being loaded may conflict with current Mathematica functionality. See the Compatibility Guide for updating information. Histogram::shdw : Symbol Histogram appears in multiple contexts Graphics`Graphics`, System` ; definitions in context Graphics`Graphics` may shadow or be shadowed by other definitions. BarChart::shdw : Symbol BarChart appears in multiple contexts Graphics`Graphics`, System` ; definitions in context Graphics`Graphics` may shadow or be shadowed by other definitions. BarSpacing::shdw : Symbol BarSpacing appears in multiple contexts Graphics`Graphics`, System` ; definitions in context Graphics`Graphics` may shadow or be shadowed by other definitions. PieChart::shdw : Symbol PieChart appears in multiple contexts Graphics`Graphics`, System` ; definitions in context Graphics`Graphics` may shadow or be shadowed by other definitions.
2 new688_probab.nb In[]:= BarChart fr list histogram Out[]= 0 In[3]:= Out[3]= In[4]:= In[5]:= Out[5]= In[6]:= Mean list standard 67 0 mymean list_ : Plus list Length list mymean list 67 0 StandardDeviation list N Out[6]= In[7]:= Out[7]= In[8]:= Variance list Sqrt N Out[8]= In[9]:= In[0]:= Out[0]= In[]:= Out[]= In[]:= In[3]:= Out[3]= Sample Space Timing list Table rdice, ; 0.047, Null Union list sample space all distinct possibilities,, 3, 4, 5, 6,,...6 "simple events", any combinations "events" list, 4, 6, 8 ; list Table i, i, 5,, 3, 4, 5
3 new688_probab.nb 3 In[4]:= Out[4]= In[5]:= Out[5]= In[6]:= Out[6]= In[7]:= Out[7]= In[8]:= Out[8]= In[9]:= Out[9]= In[30]:= Out[30]= In[3]:= Out[3]= list list,, 3, 4, 5, 6, 8 or Union list, list,, 3, 4, 5, 6, 8 Join list, list, 4, 6, 8,,, 3, 4, 5 Intersection list, list, 4 or list list, 4 allist Table i, i, 0,, 3, 4, 5, 6, 7, 8, 9, 0 Complement allist, list, 3, 5, 7, 9, 0 Complement allist, list, list 7, 9, 0 In[3]:= PROBABILTY sec. 4.3 in KR. In[33]:= In[34]:= In[35]:= consider rolling of dice; "simple events" are,3,.., roll : rdice rdice roll a single "experiment Out[35]= 9 In[36]:= In[37]:= Out[37]= In[38]:= Out[38]= now try MANY experiments Timing list Table roll, ;.96, Null Timing flist fr list 0.5, 8 078,, 55 4, 3, , 4, 468, 5, 38 36, 6, 66 56, 7, , 8, 80, 9, , 0, ,, 7 8,
4 4 new688_probab.nb In[39]:= BarChart flist Out[39]= In[40]:= ll Length list N Out[40]=. 0 6 In[4]:= Out[4]= In[4]:= fflist Table flist i, ll, flist i, N, i, ,., , 3., , 4., 0.468, 5., , 6., , 7., , 8., 0.8, 9., , 0., ,., 0.078,. BarChart fflist, BarStyle Blue Out[4]= In[43]:= In[44]:= Out[44]= In[45]:= Out[45]= note "lucky seven" fflist N ,., , 3., , 4., 0.468, 5., , 6., , 7., , 8., 0.8, 9., , 0., ,., 0.078,. exact Table i 36., i, i, 6 exact probabilites ,, , 3, , 4, 0., 5, , 6, , 7
5 new688_probab.nb 5 In[46]:= Out[46]= In[47]:= Table fflist i, exact i,, i, , , , 0.003, , Note: error is small, although we had a million tries statistical experiments converge slowly to exact probabilities In[48]:= In[49]:= In[50]:= Out[50]= In[5]:= Out[5]= In[5]:= Permutations Permutations a, b, c a, b, c, a, c, b, b, a, c, b, c, a, c, a, b, c, b, a Binomial n, m Binomial n, m n m n m FullSimplify Out[5]= 0 In[53]:= In[54]:= Factorial n Gamma n FullSimplify Out[54]= 0 In[55]:= Series n, n, Infinity, Stirling formula Out[55]= Log n n O n Π n 6 Π n O 3 n In[56]:= stir n_ n n n Π n Out[56]= n n n n Π In[57]:= stir 00. Out[57]= In[58]:= 00 N Out[58]= In[59]:= In[60]:= In[6]:= cummulativeprobability function cumprob n_ : Sum fflist i,, i, n N 36 cumprob Out[6]=.008
6 6 new688_probab.nb In[6]:= Plot cumprob n, n,,, PlotStyle Blue, AxesLabel "n", "F" Out[6]= In[63]:= In[64]:= In[65]:= mean list_ : Sum list i, list i,, i, Length list mean fflist N again, "lucky 7" Out[65]= In[66]:= In[67]:= var list_ : Block Μ mean list, Sum list i, Μ ^ list i,, i, Length list var fflist N Out[67]= In[68]:= fcoin, 0,, Out[68]=, 0,, In[69]:= Out[69]= In[70]:= Out[70]= mean fcoin var fcoin 4 In[7]:= In[7]:= In[73]:= approximation by a Gauss distribution gauss list_ : Block Μ mean list, Σ Sqrt var list, Σ Sqrt Pi Exp x Μ Σ ^
7 new688_probab.nb 7 In[74]:= Out[74]= gauss fflist N x In[75]:= In[76]:= In[77]:= In[78]:= In[79]:= mybarplot list_ : Graphics Red, Table Line list i,, 0, list i,, list i,, i, Length list Show mybarplot fflist, AspectRatio Out[79]= In[80]:= Show Plot gauss fflist, x, 0,, mybarplot fflist Out[80]= 0.05 In[8]:= binlist n_, p_ : Table Binomial n, m p ^m p ^ n m, m, m, 0, n
8 8 new688_probab.nb In[8]:= binlist 3, Out[8]= 8, 0, 3 8,, 3 8,, 8, 3 In[83]:= In[84]:= longbin binlist 0, ; mean longbin Out[84]= 0 In[85]:= Show Plot gauss longbin, x, 0, 0, mybarplot longbin 0.5 Out[85]= In[86]:= In[87]:= biasbin binlist 0,.3 ; Show Plot gauss biasbin, x, 0, 0, mybarplot biasbin, PlotRange 0, Out[87]= In[88]:= biasbin binlist 3,.6 ;
9 new688_probab.nb 9 In[89]:= Show Plot gauss biasbin, x,, 5, mybarplot biasbin, PlotRange 0, Out[89]= In[90]:= In[9]:= Out[9]= In[9]:= Out[9]= In[93]:= Out[93]= In[94]:= Out[94]= In[95]:= Central limittheorem: we already verified that the discrete "binary distribution" 0, for a random variable X which is NON Gaussian will lead to a Gaussian for a random variable Z, which is a sum of of n elements Z X... X for a large n. We will now try a different, continuous uniformdistribution but with the same mean and average as the "binary one" f x_ L L Integrate f x, x, a, a i.e. a L for the same average and normalization a L Integrate f x x, x, L, L mean Integrate f x x ^, x, L, L L Solve 4, L this gives the spread with varianve of 4 Out[95]= L 3, L 3 In[96]:= a Sqrt 3 N; b Sqrt 3 N Out[96]= In[97]:= rr : Random Real, a, b
10 0 new688_probab.nb In[98]:= Table rr, 0 Out[98]= , , , , , , , , 0.396, In[99]:= Clear sumn ; sumn n_ : Sum rr, n In[00]:= In[0]:= In[0]:= In[03]:= Out[03]= In[04]:= Do aa i 0, i, 00 ; run : Block s Floor sumn 00, aa s aa s Timing Do run, ;.8, Null listaa Table aa i, i, 00 Out[04]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,, 5, 4, 4, 39, 67, 95, 38, 00, 39, 340, 480, 53, 593, 679, 749, 796, 807, 795, 70, 59, 5, 4, 393, 55, 86, 30, 97, 5, 3, 8, 3, 5, 0,, 0, 0, 0,, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 In[05]:= In[06]:= In[07]:= Out[07]= In[08]:= normal x_ : Sqrt 00 4 Sqrt Pi Exp x 50 Sqrt 00 4 ^ normal x x 5 Π Integrate normal x, x, Infinity, Infinity Out[08]= In[09]:= In[0]:= plolist : ListPlot listaa 0 000, PlotStyle Blue, PointSize.05 plonorm : Plot normal x, x, 0, 00, PlotStyle Red
11 new688_probab.nb In[]:= Show plolist, plonorm, PlotRange 0, 80, 0,., AxesOrigin 0, Out[]= In[]:= In[3]:= more on normal distribution In[4]:= cumul z_ Sqrt Pi Integrate Exp u^, u, Infinity, z Out[4]= In[5]:= Erf z cumul Infinity Out[5]= In[6]:= Plot Sqrt Pi Exp z ^, cumul z, z, 3, 3, PlotStyle Red, Blue Out[6]= In[7]:= Out[7]= FindRoot cumul z, z, Chop z 0
12 new688_probab.nb In[8]:= Out[8]= FindRoot cumul z 0.9, z, z.855 In[9]:= In[0]:= In[]:= Gauss from binomial cgaus m_, n_ : stir n stir m stir n m ^ n cgaus n x, n Out[]= Π n x n n x n x n n n n x n n n x n n x n x n x n x In[]:= Sqrt n. x y Sqrt n Out[]= Π n n n y n n y n n y n n 3 n n n y n n y n n y n n n y n n n y n n n y In[3]:= FullSimplify, Assumptions n 0 && y 0 Out[3]= n n n n y n n n Π Π y n n y n y In[4]:= Limit, n Infinity Out[4]= In[5]:= y Π this is the gauss distribution In[6]:= Gammaand chi^ distributions In[7]:= Out[7]= In[8]:= fgam x_, t_ lamexp lam x lam x ^ t Gamma t lam x lam lam x t Gamma t Integrate fgam x, t, x, 0, Infinity, Assumptions t 0 && lam 0 Out[8]= In[9]:= Out[9]= Integrate x fgam x, t, x, 0, Infinity, Assumptions t 0 && lam 0 average t lam
13 new688_probab.nb 3 In[30]:= Out[30]= In[3]:= Integrate x ^ fgam x, t, x, 0, Infinity, Assumptions t 0 && lam 0 variance t lam chi x_, n_ fgam x, n. lam Out[3]= In[3]:= n x x n Gamma n Plot chi x, 5, chi x, 0, x, 0, 0, PlotStyle Red, Blue, PlotRange 0, Out[3]=
Εργαστήριο 4. Άóêçóç 1. Άóêçóç 2. Χημικοί. Plot Sec x, x, 2 π, 2π. p1 Plot Abs 1 Abs x, x, 3, 3. 1 In[3]:= f x_ : 2 π. p2 Plot f x, x, 3,
Εργαστήριο 4 Χημικοί Άóêçóç. In[]:= Plot Sec x, x, π, π 6 4 Out[]= -6-4 - 4 6 - -4-6 Άóêçóç. In[]:= p Plot Abs Abs x, x, 3, 3.0.5 Out[]= -3 - - 3 In[3]:= f x_ : π x p Plot f x, x, 3, 3 0.4 0.3 Out[4]=
Histogram list, 11 RANDOM NUMBERS & HISTOGRAMS. r : RandomReal. ri : RandomInteger. rd : RandomInteger 1, 6
In[1]:= In[2]:= RANDOM NUMBERS & HISTOGRAMS r : RandomReal In[3]:= In[4]:= In[5]:= ri : RandomInteger In[6]:= rd : RandomInteger 1, 6 In[7]:= list Table rd rd, 100 2 dice Out[7]= 7, 11, 7, 10, 7, 8, 3,
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science
Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Gaussian related distributions
Gaussian related distributions Santiago Aja-Fernández June 19, 009 1 Gaussian related distributions 1. Gaussian: ormal PDF: MGF: Main moments:. Rayleigh: PDF: MGF: Raw moments: Main moments: px = 1 σ π
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Fundamentals of Probability: A First Course. Anirban DasGupta
Fundamentals of Probability: A First Course Anirban DasGupta Contents 1 Introducing Probability 5 1.1 ExperimentsandSampleSpaces... 6 1.2 Set Theory Notation and Axioms of Probability........... 7 1.3
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers
2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Chap. 13. Exercise A few exercises from Chap. 13. n = 89; c = 2; OC B [p_] = CDF[BinomialDistribution[n, p], c];
Cha. 13 A few exercises from Cha. 13 Exercise 13.2 n = 89; c = 2; OC B [_] = CDF[BinomialDistribution[n, ], c]; TableForm[Table[{, OC B []}, {, 0.01, 0.05, 0.01}], TableHeadings {None, {"", "OC B ()"}}]
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»
ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ
Λογισμικά για Στατιστική Ανάλυση. Minitab, R (ελεύθερο λογισμικό), Sas, S-Plus, Stata, StatGraphics, Mathematica (εξειδικευμένο λογισμικό για
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 1ο Τι είναι το SPSS; Statistical Package for the Social Sciences Λογισμικό για διαχείριση και στατιστική ανάλυση δεδομένων σε γραφικό περιβάλλον http://en.wikipedia.org/wiki/spss
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα. Copyright: Δαφέρμος Βασίλης, Eκδόσεις Zήτη, Μάϊος 2005, Θεσσαλονίκη
Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 960-431-960-4 Copyright: Δαφέρμος Βασίλης, Eκδόσεις Zήτη, Μάϊος 2005, Θεσσαλονίκη SPSS SPSS Inc., http://www.spss.com/ Tο παρόν έργο πνευματικής
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
About these lecture notes. Simply Typed λ-calculus. Types
About these lecture notes Simply Typed λ-calculus Akim Demaille akim@lrde.epita.fr EPITA École Pour l Informatique et les Techniques Avancées Many of these slides are largely inspired from Andrew D. Ker
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
CSAE WPS/2009-06 Figure 1: Cut Flower Exports from Kenya, 1995-2007 Table 1: Firms in Areas with and w/out Conflict Panel A - Export Records Variable Observations Mean in No-Conflict
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Precision Metal Film Fixed Resistor Axial Leaded
Features EIA standard colour-coding Non-Flame type available Low noise and voltage coefficient Low temperature coefficient range Wide precision range in small package Too low or too high ohmic value can
1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1
Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25
Example of the Baum-Welch Algorithm
Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality
The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,