519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
|
|
- Ευρώπη Παπακωνσταντίνου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 .. ( ) 2008
2 519.22(07.07) 78 : ( ) /.. ;. : -, c. ( ) STATISTICA.,. STATISTICA., (07.07),.., , 2008.,
3
4 ,, -. " ", :,,,... STATISTICA.,,,. 5. Windows. STATISTICA 6.0 [1]., :.,. ( STATISTICA). ( ).. 4
5 1. :,,. 1. : n x, x,, x n. 1 2 x i.,. x i. n k i 1 i,,. ( ) :., x X x x P X x F ( x) x. (1.1) n ( ), :,.,..,,,.,. : 1. ( n 50 ). X 5
6 2. m ( ) 5 m ,,. 4..,. m n, " ": m 1 log n. (1.2) 2 ( ),. ( )., " " ( ) " ":,.. : ; (1.3) ( ) ; (1.4) ; (1.5) ; (1.6) ; (1.7).,. " ".... ( : ),, 6
7 ., (1.8),,,, :. (1.9), (1.10),., : a).,., (1.9), (1.11). (1.11), :. (1.12),. (1.13) b).,.,, (1.14) 7
8 ( )., (1.11):, (1.15) ( ). :. (1.15) :. (1.16),, (1.15), : (1.17) c) (1.11):, :, (1.19) -.,.,,,,,,,..:. (1.20) (1.19), (1.20), :. (1.21) 2. Statistica 6.0 8
9 , ( ) StatSoft\STATISTICA 6\Examples, ( ). 9
10 Statistica File New. Create New Document Number of variable 1; Number of cases 125; As a stand-alone window. ( ), 125. Save as Lab_1.sta.,.. Variable Specs., Long name Functions : =VNormal(Rnd(1);5;3) ;, : =Rnd(100) [0; 100]; = VExpon(Rnd(1);5). Sort Cases.,.,,.,,..,,,.. Statistics Basic Statistics/Tables Descriptive Statistics Normal probability plot; Variable Normal (.. 1.1). Graphs Histograms 2D Histograms. Variables Normal, Graph type Regular, Fit type Normal, Categories 50 ( ). Fit type,,. (.. 1.2). 10
11 3 - N(5, 3) ,,. No of obs m = 50-1,2793-0,2525 0,7743 1,8011 2,8280 3,8548 4,8816 5,9084 6,9352 7,9621 8, , ,0425 Normal No of obs m = 25-1,2793-0,2525 0,7743 1,8011 2,8280 3,8548 4,8816 5,9084 6,9352 7,9621 8, , ,0425 Normal No of obs ,2793 0,0042 1,2877 m = 10 2,5713 3,8548 5,1383 6,4218 7,7054 8, , ,5559 No of obs ,2793 m = 4 5,1383 1,9295 8, ,5559 Normal Normal ( ) 11
12 (. 1.2). ( ) Basic Statistics/Tables Descriptive Statistics. Normal Advanced.,, Select all stats,., : Interval 95%. 95 %,. (. 1.3). Descriptive Statistics (Lab_1.sta) Valid N Mean Confidence Confidence Geometric Harmonic Variable -95,000% +95,000% Mean Mean Median Mode Frequency of Mode Normal 125 4, , , , , Multiple ,, Statistica, : ; (1.13). : Statistica Probability Calculator Distributions. Z (Normal), Two-tailed, p: Compute. X:. Create Graph, Send to Report. ; (1.21). Chi? -. df:, p:, Compute. 12
13 p: Compute., p:, Invers (1-Cumulative p), Compute., (Windows ), (1.12) (1.21) Statistica 6.0.,. Statistica. 2. : ; ; ( ) ( ) ;, : ; l u; ( ). 1.1 n n 1 N(5,3) R[-5, -1] R[1, 5] E[0.333] E[5] N(-2,10) N(2,10) R[40, 100] R[4, 10] E[0.111] E[0.2] N(15,25) N(15,2) R[35, 60] R[5, 20] E[10] E[1] N(11,11) N(12,1) R[0, 1] R[4, 15] E[3.33] E[0.1] N(-5,1) N(-5,3) R[-5, 5]
14 4. 1.? 2.? 3., " "? 4.? 5.? 6.? 7.? 2. ( ), ( ). 1., : A,, A,,, A.. ( ) K,. ( ) H 0. : ( ),, H 1.. -,,.. -,,.. 14
15 . 1, 15
16 H n 2 1 : ( ) n1` Y, X N( m x, 2 x ); Y N( m 0 y,. H : y, m x m m x m y, x y : 2 2, 2 x S 2 y, : 2 y ). X. (2.1) ( ) ( ) k n n 2 : 1 2 t. (2.2),,,,.,.,.,,,,,,,...,.,.. :.. 16
17 ,. :,.,,.,, :, (2.3)...,. ( ). ( ), (.), 2 2 ( H H : S : S1 S2 1 ) S 2 - ( ),.,,,,.,,, (, )..,. 17
18 , ( ), : ;, ; ; n, ;, ;,,.... (2.4) -,,,..,.,.,,..., -,... (2.5) h : : (2.6) -. 18
19 n k,. - k ( ), :,,... ( ),,, 2 ( x, S )., m k 3. 2 ( )., F n (x) : (2.7) D max x F ( x) F( x).,, : n (2.8),. : (2.7) (2.9),,, 19
20 , ( ).,,.. :?,. [2]:. (2.10) - :. (2.11),,..,. 2. Statistica 6.0, 5,. 25. Basic Statistics/Tables Descriptive Statistics. ( ) ( ), Box & whisker plot for all variables Mean Mean±SD Mean±1,96*SD Var_1 Var_2 Var_3 Var_
21 Var 1, Var 2 Var 3. ( ), Var 1, Var 2 Var 5. t-test for independent samples ( ) Basic Statistics/Tables. Variables (groups),., Summary Summary: T-test. Quick,, Options, p-level for highlighting:.., (. 2.2). Group 1 vs. Group 2 Var 1 vs Var 2 Var 1 vs Var 3 Var 1 vs Var 5 T-test for Independent Samples (Lab_2.sta) Note: Variables were treated as independent samples Mean Group 1 Mean Group 2 t-value df p Valid N Group 1,7407,5064,4276 8, ,7407,6956,0676 8, ,7407,6490,8172 8, Valid N Group 2 Std.Dev. Group 1,47937,47937,47937 Std.Dev. Group 2 1, , ,95353 F-ratio P Variances Variances 1 1,74335, ,05937, ,74375, ,, : Var 1 vs Var 2 ( ); Mean Group 1, Mean Group 2, ; t-value ( ); df ; p,, t-value ( ); Valid N Group 1, Valid N Group 2 ; Std.Dev. Group 1, Std.Dev. Group 2 ; F-ratio Variances ; P Variances, F. Statistica ( ) ( ). (..2.2),, F. 21
22 : ( ). (2.3)..2.2 ( 2 ),,., ( ). ( ) 2%,.,.,.., Var 1 Var ( ), 67%. ( ). ~ 0.05%,., 500., [10, 20]., Statistics Distribution Fitting. ( ) Rectangular, OK., : Variable: Var1. Distribution:. Quick, Plot of observed and expected distribution. 22
23 70 Variable: Var1, Distribution: Rectangular No. of observations Category (upper limits) Summary: Observed and expected distribution Upper Boundary <= 10, , , , , , , , , , ,00000 < Infinity Variable: Var1, Distribution: Rectangular (Lab_2_b.sta) Chi-Square = 10,05597, df = 7 (adjusted), p = 0,18542 Observed Cumulative Percent Cumul. % Expected Cumulative Percent Cumul. % Observed- Frequency Observed Observed Observed Frequency Expected Expected Expected Expected 0 0 0, ,0000 0, ,0000 0, ,0000 0, , , , ,7737 9, ,9547-0, , , , , , ,9709-4, , , , , , , , , , , , , ,0033 0, , , , , , ,0195-1, , , , , , ,0357 5, , , , , , , , , , , , , ,0681-6, , , , , , ,0843-3, , , , ,0000 9, ,0000 9, , ,0000 0, ,0000 0, ,0000 0,0000 Number of valid cases:500 Observed mean = 14,970339, Observed variance = 8, Distribution: Rectangular ,,. 18%,..,.,,, 12. Parameters : Number of categories: 10, Lower limit: 10, Upper limit: 20.. Quick : Distribution: Normal. 23
24 Upper Boundary <= 11, , , , , , , , ,00000 < Infinity Variable: Var1, Distribution: Normal (Lab_2_b.sta) Chi-Square = 39,47135, df = 7, p = 0,00000 Observed Cumulative Percent Cumul. % Expected Cumulative Percent Cumul. % Observed- Frequency Observed Observed Observed Frequency Expected Expected Expected Expected , , , ,2484 8, ,6497 5, , , , ,9985 6, , , , , , ,7231 9, , , , , , , , ,9557-9, , , , , , , , , , , , , , , , , , , , , , , , , ,3918 9, ,0784-2, , , , ,3343 6, , , , , , ,0000 8, , ,3343 Number of valid cases:500 Observed mean = 14,970339, Observed variance = 8, Distribution: Normal Parameters: Mean = 14,97034, Variance = 8, ,, Nonparametrics Statistics. Comparing two independent samples (groups),,. Kolmogorov- Smirnov two-sample test., ( ).,,,., Uniform 29, [10, 20]. Codes. 13, 16. Dependent variable list: Uniform, Indep. (grouping) variable: Codes Kolmogorov-Smirnov Test (Lab_2_b.sta) By variable Codes Marked tests are significant at p <,05000 Max Neg Max Pos p-level Mean Mean Std.Dev. Std.Dev. Valid N Valid N variable Differnc Differnc Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Uniform -0, , p >.10 14, , , , , 24
25 ,... ( 10%) 5%,. -,. Norm, Codes Kolmogorov-Smirnov Test (Lab_2_b.sta) By variable Codes Marked tests are significant at p <,05000 Max Neg Max Pos p-level Mean variable Differnc Differnc Group 1 Mean Group 2 Std.Dev. Group 1 Std.Dev. Group 2 Valid N Group 1 Valid N Group 2 Norm -0, , p < , , , , %,.,.,. 13 Rand, 16 Gaus. Graphs 2D Histograms. : Graph type Multiple; Fit type Off; Showing Type Standard; Variables Rand-Gaus; Categories 5; Show percentages; Y axis: N&%. OK (. 2.8). 8 Histogram (Lab_2_b.sta 8v*500c) 7 54% % No of obs 4 25% 25% 25% 3 19% 2 1 8% 6% 0 0% 0% -0,4358 4,3501 9, , , ,4933 Rand Gaus
26 3. 1. (.. 2.1). 2.,, (, ),, / ;,. 2.1 n n 1 N(0,1) R[-3, 0] R[2, 6] E[0.333] E[7] N(-2,1) N(10,2) R[50, 75] R[3, 8] E[0.111] E[1/3] N(15, 5) N(1,2) R[35, 70] R[1, 10] E[50] E[0.1] N(13,11) N(2,1) R[0, 10] R[4, 5] E[2.5] E[0.4] N(-10,10) N(-5,5) R[-1, 1] ? 2. ( ) ( ) ( )? 6. /? 7. /? 8.,,? 26
27 3.,. 1. xy X Y. ( ) : K xy xy. (3.1),. xy 0. xy 0. X Y. N X Y. :. (3.2) " " (, ) : (3.3) ; (3.4) ; (3.5). (3.6) : xy. (3.7) [ 1; 1], 27
28 . ( ),, rxy. rxy,. N 50 1%. r xy : r xy. (3.8) :. (3.9) ( ) "0"... -, X Y.,,. (3.9), xy 0 m w 0. :. (3.10),.,.. " ". [3], ( )., (, ) (, ). (X i, Y i ), i = 1,..., n 28
29 , Y X:.,,, :. (, ).,, (3.11), - ; Y X. ;,,., :, (3.12) ( )..,. ( ).,,,,, : (3.13), (3.12), :. (3.14)., (3.15). (3.16)., x y, : 29
30 (3.17),, 1),.. ; 2). (3.18) 3) ;, 4) ; 5) (3.15), " - ". 5) (3.19),, (3.20). ( ),. (3.21)., (3.21) ( ).. :, ; 30
31 ., (3.22). ( (3.22)) (3.23),, 1. (3.24),. ( ):. x x 0.,,. :. (3.25) (3.25) y i S y x,. (3.26),.. ( ): (total sum of square) ; 31
32 (regression sum of square) ; (error sum of square)., (3.27)..., (.. ). (3.28).,... :. 1, ( ). 2. Statistica 6.0, Product. sta. 45, (Fonds,.) 1 (Product,..). z: z = 1, z = 2. : Statistics Basic Statistic and Tables Correlation matrices. Summary.. 1,.. i. ( 0.1), 0.,,? ( ),,.,.. Options Display r, p-levels. 32
33 : Correlations (Product.sta) Marked correlations are s Variable Fonds Product Z N=45 (Casewise deletion Fonds Product Z 1,0000,7723 -,1371 p= --- p=,000 p=,369,7723 1,0000 -,2084 p=,000 p= --- p=,170 -,1371 -,2084 1,0000 p=,369 p=,170 p= , Fonds Product 0 ~ ,...,,, Graphs - 2D Graphs - Scatter plots - Variables - X: Fonds, Y : Product, Advanced, Graphs Type: Regular, Fit ( ): Linear, Elipse, Normal coefficient OK - OK (.. 3.2). 50 Scatterplot (Product.sta 3v*45c) Product = 11,5021+1,4344*x Product Fonds. 3.2.,., Multiple Regression ( ). Variables Dependent var: Product Independent var: Fonds - OK. Input file Raw Data. MD deletion 33
34 Casewise (, ). Multiple Regressions Results.,, : Multiple R, ;,, ; adjusted R.,, adjusted R; F ( ); df F ; p F ; Standard error of estimate ( ); ; Intercept ; 34
35 Std.Error ; t ; p. Beta.,..,,. 0. Multiple Regression Results : R 2 = 0.597; p = (.. p < 10-6 ). Regression summary (. 3.3). Regression Summary for Dependent Variable: Product (Product.sta) R=, R?=, Adjusted R?=, F(1,43)=63,544 p<,00000 Std.Error of estimate: 5,0082 Std. Err. B Std. Err. t(43) p-level Beta N=45 of Beta of B Intercept 11, , , , Fonds 0, , , , , , ; : ; St. Err. of B, t ; p level., p-level ( 10-5 ),., : Product = Fonds. : R 2 = (R = 0.77,.. 77 % )., (z=1). Scatterplot ( Select cases Use selection conditions for this Analysis/Graph only Include cases Specific, selected by: By Expression: z= ,,. 35
36 50 Scatterplot (Product.sta 3v*45c) Product = 12,5105+1,4436*x Product Fonds Multiple Regression - Select cases - Case Selection Conditions ( z = 1) - OK - OK - M.R.Results Regression summary : Regression Summary for Dependent Variable: Product (Product.sta) R=, R?=, Adjusted R?=, F(1,13)=113,38 p<,00000 Std.Error of estimate: 2,6886 Std. Err. B Std. Err. t(43) p-level Beta N=15 of Beta of B Intercept 12, , , Fonds 0, , , , , : Product = Fonds , ( ). (Product) (Fonds) ( Residuals/assumptions/prediction). Fonds = 18,, Statistica, (.. 3.6). Predicting Values for (Product.sta) variable: Product Variable Include condition: z=1 B-Weight Value B-Weight * Value Fonds 1, , ,98403 Intersept 12,51054 Predicted 38, ,0%CL 36, ,0%CL 40,
37 . Perform residual analysis Residuals/assumptions/prediction (.. 3.7). :, ( Residuals Predicted & Residuals Values),.,,,. (Mahalanobis Distance). ( ). ( ). " ",....,,,. Case No Minimum Maximum Mean Predicted & Residual Values (Product.sta) Dependent variable: Product Include condition: z=1 Observed Predicted Residual Standard Standard Std.Err. Mahalanobis Deleted Cook's Value Value Pred. v. Residual Pred.Val Distance Residual Distance 18, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , (Normal plot of residuals)
38 2,0 Normal Probability Plot of Residuals 1,5 1,0 Expected Normal Value 0,5 0,0-0,5-1,0-1,5-2, Re sid uals y ( / ) ( ) [4], : ; ; ; 4 -, ( / ); 5 -, ( / ) y x 1 x 2 x 3 x 4 x
39 v 20c. y,, (.. 3.2) , ( ), 2 5.,. 3.2 N II III IV V 1 x 1 x 2 (x 1 ) 2 (x 2 ) 2 2 x 1 x 3 x 1/ x 3 (x 3 ) 2 3 x 1 x 4 x 1 x 4 (x 4 ) 2 4 x 1 x 5 x 5/ x 1 ln(x 5 ) 5 x 2 x 3 exp(x 2 ) exp(x 3 ) 6 x 2 x 4 ln(x 4 ) x 2 x 4 7 x 2 x 5 x 2 +x 5 y x 5 8 x 3 x 4 x 3/ x 4 exp(x 4 ) 9 x 3 x 5 x 5 -x 3 ln(x 3 ) 10 x 4 x 5 y x 4 (x 5 ) 2 11 x 1 x 2 ln(x 1 ) ln(x 2 ) 12 x 1 x 3 (x 1 ) 2 x 3/ x 1 13 x 1 x 4 x 1 /x 4 x 4 / x 1 14 x 1 x 5 x 5 x 1 exp(x 5 ) 15 x 2 x 3 exp(x 2 ) x 2 x 3 16 x 2 x 4 ln(x 2 ) x 2 /x 4 17 x 2 x 5 x 2 -x 5 y x 5 18 x 3 x 4 x 4/ x 3 exp(y x 4 ) 19 x 3 x 5 ln(x 5 -x 3 ) y x 3 20 x 4 x 5 y x 5 ln(x 5 ) 2 21 x 1 x 2 exp(x 1 ) exp(x 2 ) 22 x 1 x 3 x 3/ x 1 ln(x 3 ) 23 x 1 x 4 ln(x 1 x 4 ) exp(x 4 ) 24 x 1 x 5 (x 5 ) 2 exp(x 1 ) 25 x 2 x 3 y x 2 ln(x 2 x 3 ) 26 x 2 x 4 ln(x 2 x 4 ) x 2 +x ? 2. x? 3.? 4..,? 39
40 5. ( )?? 6.. ( )? 7.? 1 Statistica 5.1: :, 2006, Statistica ( 2): 4..,..,.....:, ( ) 40
41 /16.. XEROX.... 2, NATIONAL QUALITY ASSURANCE BS EN ISO 9001: ,.,., 30./ : 8(3822) , 41
Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
Διαβάστε περισσότεραΜενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
Διαβάστε περισσότεραΜαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
Διαβάστε περισσότεραPENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
Διαβάστε περισσότεραBiostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Διαβάστε περισσότεραΑν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
Διαβάστε περισσότεραLampiran 1 Output SPSS MODEL I
67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables
Διαβάστε περισσότεραΕργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.
Σημειώσεις για το μάθημα Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Παπάνα Αγγελική E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ Τμήμα Τυποποίησης και
Διαβάστε περισσότερατατιστική στην Εκπαίδευση II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Λφση επαναληπτικής άσκησης Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το
Διαβάστε περισσότερα1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά
1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...
Διαβάστε περισσότεραΜενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική
Διαβάστε περισσότεραStatistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Διαβάστε περισσότεραΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης
Διαβάστε περισσότεραΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία)
ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., -) (Επιµέλεια: Ελευθεράκη Αναστασία) Άσκηση (Εργαστήριο #) Στις εξετάσεις Φεβρουαρίου του µαθήµατος
Διαβάστε περισσότεραAPPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
Διαβάστε περισσότεραΛυμένες Ασκήσεις για το μάθημα:
Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότερα1. Hasil Pengukuran Kadar TNF-α. DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm
HASIL PENELITIAN 1. Hasil Pengukuran Kadar TNF-α DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm NO KADAR ( pg/ml) ABSORBANSI 1. 0 0.055 2. 15.6 0.207 3. 31.5 0.368 4. 62.5 0.624
Διαβάστε περισσότεραΓια να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.
A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:
Διαβάστε περισσότεραLAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk.
LAMPIRAN Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk. 2. BACA PT Bank Capital Indonesia Tbk. 3. BABP PT Bank MNC Internasional Tbk. 4. BBCA
Διαβάστε περισσότεραΔείγμα (μεγάλο) από οποιαδήποτε κατανομή
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)
Διαβάστε περισσότεραΠροϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.
. ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης
Διαβάστε περισσότεραΆσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F
Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),
Διαβάστε περισσότερα$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η.
η &, 7!# v # $ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η. - ι% ιι* ι' F ι ι ι% MS F MS between within MS MS
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Επίλυση: Oneway Anova Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΑσκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων
Ασκήσεις Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων ΑΣΚΗΣΗ 1: Έλεγχος για τη μέση τιμή ενός πληθυσμού Η αντικαπνιστική νομοθεσία υποχρεώνει τους καπνιστές που εργάζονται σε
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» 2 ο Μάθηµα
ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» 2 ο Μάθηµα Γκριζιώτη Μαρία ΜSc Ιατρικής Ερευνητικής Μεθοδολογίας Όταν ανοίγουµε µία βάση στο SPSS η πρώτη εικόνα που
Διαβάστε περισσότεραTABLES AND FORMULAS FOR MOORE Basic Practice of Statistics
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης
Διαβάστε περισσότεραSupplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Διαβάστε περισσότεραΆσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:
Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5
Διαβάστε περισσότεραQueensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
Διαβάστε περισσότερα+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών
Διαβάστε περισσότεραΠαράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς
Διαβάστε περισσότεραΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει
Διαβάστε περισσότεραΑΣΚΗΣΗ 7 (ΛΥΣΗ) Στο αρχείο του SPSS θα υπάρχουν οι µεταβλητές,
ΑΣΚΗΣΗ 7 (ΛΥΣΗ) Στο αρχείο του SPSS θα υπάρχουν οι µεταβλητές, Time: η ώρα γέννησης (4 ψηφία, τα δύο πρώτα είναι ώρες και τα άλλα δυο λεπτά), Sex: το φύλο (:κορίτσι, :αγόρι), Weight: το βάρος του νεογέννητου
Διαβάστε περισσότεραFORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση Διακύμανσης
Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο
Διαβάστε περισσότεραΑπλή Ευθύγραµµη Συµµεταβολή
Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή
Διαβάστε περισσότεραΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ- ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Σηµειώσεις: Θωµόπουλος Γιώργος Ρογκάκος Γιώργος Καθηγητής: Κουνετάς
Διαβάστε περισσότεραΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11
ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η
Διαβάστε περισσότεραΗΥ-SPSS Statistical Package for Social Sciences 6 ο ΜΑΘΗΜΑ. ΧΑΡΑΛΑΜΠΟΣ ΑΘ. ΚΡΟΜΜΥΔΑΣ Διδάσκων Τ.Ε.Φ.Α.Α., Π.Θ.
ΗΥ-SPSS Statistical Package for Social Sciences 6 ο ΜΑΘΗΜΑ ΧΑΡΑΛΑΜΠΟΣ ΑΘ. ΚΡΟΜΜΥΔΑΣ Διδάσκων Τ.Ε.Φ.Α.Α., Π.Θ. Κανονική Κατανομή Τυπική Απόκλιση Διακύμανση z τιμές Περιεχόμενα 6 ου μαθήματος Έλεγχος κανονικής
Διαβάστε περισσότεραΔPersediaan = Persediaan t+1 - Persediaan t
Lampiran 4 Data Perhitungan Perubahan Persediaan ΔPersediaan = Persediaan t+1 - Persediaan t No Kode Perusahaan 2011 Persediaan t+1 (2012) Persediaan t (2011) ΔPersediaan a b a-b 1 ADES 74.592.000.000
Διαβάστε περισσότεραο),,),--,ο< $ι ιι!η ι ηι ι ιι ιι t (t-test): ι ι η ι ι. $ι ι η ι ι ι 2 x s ι ι η η ιη ι η η SE x
η &, ε ε 007!# # # ι, ι, η ιι ι ι ι ι η (.. ι, η ι η, ι & ι!ι η 50, ι ηιη 000 ι, ι, ',!,! )!η. (, ηι, ι ι ι ι "!η. #, ι "ι!η ι, ηι, ι ι ι η. ι, ι ι, ' ι ι ι η ι ι ι ι # ι ι ι ι ι 7. ο),,),--,ο< $ι ιι!η
Διαβάστε περισσότεραΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές
Διαβάστε περισσότερα8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι
8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι Απλή γραμμική παλινδρόμηση είναι μία στατιστική μέθοδος που χρησιμοποιείται για τη μελέτη της σχέσης μεταξύ δύο ποσοτικών μεταβλητών εκ των οποίων μία είναι η ανεξάρτητη
Διαβάστε περισσότεραΛογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
Διαβάστε περισσότεραΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο
ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ Παιεάο Δπζηξάηηνο ΑΘΗΝΑ 2014 1 ΠΔΡΙΔΥΟΜΔΝΑ 1) Δηζαγσγή 2) Πεξηγξαθηθή Αλάιπζε 3) ρέζεηο Μεηαβιεηώλ αλά 2 4) Πξνβιεπηηθά / Δξκελεπηηθά Μνληέια
Διαβάστε περισσότεραΠεριγραφή των εργαλείων ρουτινών του στατιστικού
Κεφάλαιο 5 ο Περιγραφή των εργαλείων ρουτινών του στατιστικού πακέτου SPSS που χρησιµοποιήθηκαν. 5.1 Γενικά Το στατιστικό πακέτο SPSS είναι ένα λογισµικό που χρησιµοποιείται ευρέως ανά τον κόσµο από επιχειρήσεις
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ ΟΦΕΛΟΥΣ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΕΝΕΡΓΕΙΑΣ
Εργασία στα πλαίσια του μαθήματος ΟΙΚΟΝΟΜΙΚΑ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ ΟΦΕΛΟΥΣ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΕΝΕΡΓΕΙΑΣ Α.Μ. 12012058 Επιβλέπων: Κωνσταντίνος Κουνετάς ΔΕΚΕΜΒΡΙΟΣ 2014 Περίληψη Η ανάλυση κόστους οφέλους
Διαβάστε περισσότεραΠαράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο δειγμάτων, που διαχωρίζονται βάσει δύο ανεξάρτητων παραγόντων (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς περισσότερους
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Πολλαπλή Παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια
Διαβάστε περισσότεραDoes anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014
Διαβάστε περισσότερα5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Διαβάστε περισσότεραΠαράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,
Διαβάστε περισσότερατατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ 1 Παλινδρόµηση Έλεγχοι Υποθέσεων ΙI ΕΠΙΜΕΛΕΙΑ ΣΗΜEΙΩΣΕΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ ΗΜΗΤΡΙΟΥ ΒΑΣΙΛΕΙΟΣ
Διαβάστε περισσότεραMATHACHij = γ00 + u0j + rij
Stata output for Hierarchical Linear Models. ***************************************. * Unconditional Random Intercept Model. *************************************** MATHACHij = γ00 + u0j + rij. mixed
Διαβάστε περισσότερα2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα
Διαβάστε περισσότεραBayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Διαβάστε περισσότεραAquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Διαβάστε περισσότεραNI it (dalam jutaan rupiah)
NI it (dalam jutaan rupiah) No Kode Emiten 2009 2010 1 AISA 34.763 75.235 2 ARNA 63.888 79.039 3 ASII 10.040 14.366 4 AUTO 768.265 1.141.179 5 BATA 52.980 60.975 6 BRNA 20.260 34.760 7 BTON 9.388 8.393
Διαβάστε περισσότεραΕρμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το
Διαβάστε περισσότεραΠεριγραφική Στατιστική
Περιγραφική Στατιστική Έστω ότι σε ένα δείγμα 19 ατόμων έχουμε μετρήσει τις επιδόσεις τους στο κατακόρυφο άλμα με υποχωρητική φάση («cmjump») στο κατακόρυφο άλμα από ημικάθισμα («sqjump») έχουμε δημιουργήσει
Διαβάστε περισσότεραΈλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών
Διαβάστε περισσότεραWan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Linear Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
Διαβάστε περισσότεραA Finite Precision of Private Information Precision of Private Information Approaching Infinity 0 θ1 * θ Session Cost of Action A First 20 Last 20 Rounds Rounds Information in Stage 2 First 20 Last
Διαβάστε περισσότερα2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών
Διαβάστε περισσότεραχ 2 test ανεξαρτησίας
χ 2 test ανεξαρτησίας Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ demetri@econ.uoa.gr 7.2 Το χ 2 Τεστ Ανεξαρτησίας Tο χ 2 τεστ ανεξαρτησίας (όπως και η παλινδρόμηση) είναι στατιστικά εργαλεία για τον εντοπισμό σχέσεων μεταξύ
Διαβάστε περισσότεραΑ. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις
Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις Οι παρούσες σημειώσεις επιχειρούν να αποτελέσουν μια βοήθεια τόσο στην παρακολούθηση της διάλεξης όσο και στη μελέτη κάποιων εκ των θεμάτων της Γραμμικής
Διαβάστε περισσότεραΆσκηση 1. Πληθυσμός (Χ i1 )
Άσκηση Μία αντιπροσωπεία πωλήσεως αυτοκινήτων διαθέτει καταστήματα σε 5 διαφορετικές πόλεις. Ο επόμενος πίνακας δίνει τις πωλήσεις Υ i του τελευταίου μήνα καθώς επίσης και τον πληθυσμό Χ i και το οικογενειακό
Διαβάστε περισσότεραStatistics. hrs1 Number of hours worked last week. educ Highest year of school completed. sibs NUMBER OF BROTHERS AND SISTERS. N Valid
1. Να χρησιμοποιηθεί το gssnet.sav για να υπολογιστούν τα περιγραφικά μέτρα για τον αριθμό αδελφών (sibs), έτη εκπαίδευσης (educ), και ώρες εργασίας την τελευταία εβδομάδα(hrs1). Να δημιουργηθούν επίσης
Διαβάστε περισσότεραWan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Poisson Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
Διαβάστε περισσότεραΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας
ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr
Διαβάστε περισσότεραΠαράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο εξαρτημένων δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως
Διαβάστε περισσότερα1991 US Social Survey.sav
Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία
Διαβάστε περισσότεραΒοήθημα Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων
Βοήθημα Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων 2 1. Περιγραφική Στατιστική Θα δίνονται το ιστόγραμμα των σχετικών συχνοτήτων και τα στατιστικά. 1. Να μπορείτε να εξάγετε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5 ο. 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES. Daily calorie intake
----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 5 ο 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES 5000 Daily calorie
Διαβάστε περισσότεραΈλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα Θέλοντας να εξετάσουμε τις μέσες τιμές δύο πληθυσμών πρέπει να διακρίνουμε κατά τα γνωστά από τη θεωρία δύο περιπτώσεις
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή στο SPSS Ο Data editor Ο Viewer Άνοιγμα Αρχείου στο SPSS Εισαγωγή Δεδομένων
Διαβάστε περισσότεραΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA)
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 8. Ανάλυση διασποράς (ANOVA) Γενικά Επέκταση της σύγκρισης µέσων τιµών µεταβλητής ανάµεσα σε 2 δείγµατα (οµάδες ήστάθµες): Σύγκριση πολλών δειγµάτων (K>2) µαζί Σχέση ανάµεσα σε µια ποσοτική
Διαβάστε περισσότερα6.4. LOGLINEAR 90 8.5 (MANOVA) 121
Φ Γ SPSS Dr. υ υ α α Θ α 2012 2 1. Γ SPSS 19.0 1.1 Φ Γ SPSS 4 1.2 Φ Γ 7 1.3 9 1.4 Φ 10 1.5 Pτ ΘHKH IAΓPAΦH 16 1.6 16 1.7 17 1.8 20 1.9 22 1.10 Γ 23 1.11 Γ Φ 25 1.12 Γ 27 1.13 Θ 28 2. Γ Φ 2.1 Θ, Γ, Γ 29
Διαβάστε περισσότεραΈλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test) Σε ορισμένες περιπτώσεις απαιτείται ο έλεγχος της ύπαρξης στατιστικά
Διαβάστε περισσότεραΕξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική
ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική Το πρώτο βήμα στην ανάλυση ενός συνόλου δεδομένων, που αποτελούν μετρήσεις ενός δείγματος είναι η παρουσίαση και σύνοψη των πληροφοριών
Διαβάστε περισσότεραTable 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
Διαβάστε περισσότεραΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Κωνσταντίνος Ζαφειρόπουλος Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας Άδειες Χρήσης Το παρόν
Διαβάστε περισσότερα10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη
Διαβάστε περισσότεραΕισαγωγή στο SPSS. ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας
Εισαγωγή στο SPSS ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας Στόχος του μαθήματος Τα τέσσερα παράθυρα του SPSS Η διαχείριση των αρχείων δεδομένων Βασικά στοιχεία ανάλυσης
Διαβάστε περισσότεραΚεφάλαιο 3: Ανάλυση μιας μεταβλητής
Κεφάλαιο 3: Ανάλυση μιας μεταβλητής Γενικά Στο Κεφάλαιο αυτό θα παρουσιάσουμε κάποιες μεθόδους της Περιγραφικής Στατιστικής και της Στατιστικής Συμπερασματολογίας που αφορούν στην ανάλυση μιας μεταβλητής.
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες
Διαβάστε περισσότεραOptimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology
2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing
Διαβάστε περισσότεραStatistical product and service solution
SPSS Statistical product and service SPSS SPSS solution SPSS Statistics 17.5
Διαβάστε περισσότεραΜεθοδολογία των επιστημών του Ανθρώπου: Στατιστική Ι
Μεθοδολογία των επιστημών του Ανθρώπου: Στατιστική Ι Εργαστήριο 9 1. Να χρησιμοποιηθεί το αρχείο data_kids. Τα δεδομένα του προέρχονται από την έρευνα των Chase και Dummer (1992), μελέτησαν τον ρόλο των
Διαβάστε περισσότεραΣτατιστική Ανάλυση Δεδομένων II. Γραμμική Παλινδρόμηση με το S.P.S.S.
Στατιστική Ανάλυση Δεδομένων II Γραμμική Παλινδρόμηση με το S.P.S.S. μέρος Α (απλή παλινδρόμηση) Νίκος Τσάντας Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά και Σύγχρονες Εφαρμογές Ακαδημαϊκό
Διαβάστε περισσότεραΆσκηση 2. i β. 1 ου έτους (Υ i )
Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.
Διαβάστε περισσότεραViola adorata X ± 2s 1 344 320 2 348 316 3 224 232 4 372 364 5 336 308 6 372 328 7 292 296 8 316 264 AT1 AT2 1 344 320 342.25 272.25 2 348 316 506.25 156.25 3 224 232 10302.25 5112.25 4 372 364
Διαβάστε περισσότεραΈλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Mann Whitney U τεστ)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Mann Whitney U τεστ) Σε ορισμένες περιπτώσεις απαιτείται ο έλεγχος της ύπαρξης
Διαβάστε περισσότερα