UNIT 13: TRIGONOMETRIC SERIES

Σχετικά έγγραφα
Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

EGR 544 Communication Theory

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

Inverse trigonometric functions & General Solution of Trigonometric Equations

General theorems of Optical Imaging systems

Pairs of Random Variables

Transparency and liquidity in securities markets*

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

LAPLACE TRANSFORM TABLE

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Exam Statistics 6 th September 2017 Solution

Estimators when the Correlation Coefficient. is Negative

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Math 6 SL Probability Distributions Practice Test Mark Scheme

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Section 7.6 Double and Half Angle Formulas

Advanced Subsidiary Unit 1: Understanding and Written Response

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

IIT JEE (2013) (Trigonomtery 1) Solutions

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

α & β spatial orbitals in

A study on generalized absolute summability factors for a triangular matrix

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

CRASH COURSE IN PRECALCULUS


Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

EE512: Error Control Coding

Every set of first-order formulas is equivalent to an independent set

A Class of Orthohomological Triangles

Solve the difference equation

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Appendix A. Stability of the logistic semi-discrete model.

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

Homework 3 Solutions

Matrices and Determinants

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII

PULLEYS 1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS. Groove dimensions and tolerances for Hi-Power PowerBand according to RMA engineering standards

C.S. 430 Assignment 6, Sample Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Examples of Cost and Production Functions

MathCity.org Merging man and maths

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

The Multi-Soliton Solutions to The KdV Equation by Hirota Method

Multi-dimensional Central Limit Theorem

Finite Field Problems: Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

Περισσότερα+για+τις+στροφές+

Homework 8 Model Solution Section

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

DYNAMICAL BEHAVIORS OF A DELAYED REACTION-DIFFUSION EQUATION. Zhihao Ge

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Multi-dimensional Central Limit Theorem

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Chapter 3 Prior Information

F19MC2 Solutions 9 Complex Analysis

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

rs r r â t át r st tíst Ó P ã t r r r â

DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

PARTIAL NOTES for 6.1 Trigonometric Identities

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

2 Composition. Invertible Mappings

Second Order RLC Filters

Uniform Convergence of Fourier Series Michael Taylor

Φυγόκεντρος αποθήκευσης Κανονική n 1k Αγωγή n 2k

Section 8.3 Trigonometric Equations

Trigonometry 1.TRIGONOMETRIC RATIOS

Example Sheet 3 Solutions

Modbus basic setup notes for IO-Link AL1xxx Master Block

Calculating the propagation delay of coaxial cable

ΕΛΤΙΟ Ε ΟΜΕΝΩΝ ΑΣΦΑΛΕΙΑΣ

Statistical Inference I Locally most powerful tests

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

ECON 381 SC ASSIGNMENT 2

Galatia SIL Keyboard Information

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

[ ] [ ] ( ) 1 1 ( 1. ( x) Q2bi

Transcript:

UNIT : TRIGONOMETRIC SERIES UNIT STUCTURE. Larg Objctvs. Itroducto. Grgory s Srs.. Gral Thorm o Grgory s Srs. Summato of Trgoomtrc Srs.. CS Mthod.. Srs Basd o Gomtrc or Arthmtco-Gomtrc Srs.. Sum of a Srs of Ss (or Coss) of Agls Arthmtcal Progrsso.. Summato of Srs usg Bomal Srs.. Summato of Srs usg of Epotal Srs..6 Summato of Srs usg Logarthmc Srs ad Grgory s Srs.. Dffrc Mthod. Lt Us Sum Up.6 Aswrs to Chck Your Progrss. Furthr Radg.6 Modl Qustos. LEARNING OBJECTIVES Aftr gog through ths ut, you wll b abl to: kow about Grgory s srs dscrb th summato of trgoomtrc srs.. INTRODUCTION I prvous ut, w dscussd DMovr s Thorm ad ts som mportat dductos. W wll troduc Grgory s srs. Fally, w wll dscuss summato of trgoomtrc srs. Classcal Algbra ad Trgoomtry (Block ) 9

Ut Trgoomtrc Srs. GREGORY S SERIES Statmt: If ls wth th closd trval π π.., f, th ta ta ta ta π π,, s Proof: W hav ( ta) ( ) ( s) sc. Now, takg logarthm of both sds, w hav log( ta) log(sc. ) [log(ab) logalogb] logsc log log sc () Now, sc ls btw.., ta s umrcally ot gratr tha. W hav from () π π ad, ta ls btw ad, logsc log( ta ) (By Logarthmc srs (..) ta - ( ta ta ta ) ta (ta ) ta (ta ) to to ta ta ta (ta ) ( ) () Equatg magary part o both sds, w gt ta ta ta () s kow as Grgory s srs. Som Importat Dducto: ) Now w put ta So that ta Th w hav from () () ta whr 0 Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut ) W quat th ral parts o both sds of (), w gt logsc ta ta ta 6 6.. Gral Thorm o Grgory s Srs Statmt: If ls btw π π ad π π.., π π π π, th, Proof: W put π ta ta ta π, th π Th gv codto rducs to Hc, ta ta(π ) s ta s sc. π π. Now, takg logarthm log( ta) log(sc. ) π π Θ π π ta(π π ) ta ta π ta ta(π ) log( ta ) ca b padd powrs of ta. log( ta ) ta ta ta ta (ta ta ) (ta ) to ta ta ta (ta ) ( )... log(sc ) Classcal Algbra ad Trgoomtry (Block ) (ta ) Equatg th magary parts o both sds, w hav

Ut Trgoomtrc Srs Or, ta ta π ta ta Eampl : Prov that: Soluto: L.H.S ta ta. π...... 6 ( ) ( ) ( ).... 6 ta 6. π 6 π R.H.S Eampl : Sum th srs )... ).. Soluto: ) Th gv srs )...... ( ) ( ) ( ) ta (By Grgory s srs ) Th gv srs..... Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut ( ) ( ) ( ) (Grgory s srs)... ta Eampl : Prov that: π Soluto: R.H.S, ( π ). π 6 6.... ta ta (Grgory s srs) ta ta ta 9 ta ta. ta π R.H.S Eampl : Prov that π 8 ( ).9 Soluto: Th th trm of th srs s gv by ( ) T.9 ( ). Classcal Algbra ad Trgoomtry (Block )

Ut Trgoomtrc Srs T, T, T T Hc,, ad so o. S T T T T..... ta ta ta ta. ta ta ta ta. π L.H.S CHECK YOUR PROGRESS Q.: Prov that: Q.: Prov that: π 8.. 9. Q.: Q.: π Prov that:.. ta If ls btw 0 ad π, prov that ta ta ta 6 ta 0 Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut. SUMMATION OF TRIGONOMETRICAL SERIES Hr, w shall dscuss mportat mthods for summg up trgoomtrc srs whch may b ft or ft. Thr ar two mportat mthods for summato. Ths ar (a) mthod... C S Mthod Cosdr th srs: ad 0,a, a C C S mthod, (b) th dffrc a0 a ( β) a ( β) () S a0 s a s( β) a s( β) () Th abov srs may b ft or ft.th coffcts a... ad, β,... may b ay umbrs ral or compl. I th srs (), w hav trms whch cota s of umbrs.it s calld srs ad ts sum s dotd by C. Th srs () cotas ss of umbrs.it s calld s srs ad ts sum s dotd by S. C a Now, usg Eulr,s Thorm S a0( s) a[ ( β) s( β) ] [ ( β) s( β) ] ( β) ( β) a a a () C a 0 S a0( s) a[ ( β) s( β) ] [ ( β) s( β) ] ( β) ( β) a a a () 0 From th srs () ad (),w us C [(C S) (C S) ] ad S [(C S) (C S) ] to fd th valus of C ad S rspctvly. Classcal Algbra ad Trgoomtry (Block )

Ut Trgoomtrc Srs.. Srs Basd o Gomtrc or Arthmtco- Gomtrc Srs Sum of trms G.P a ar ar r a r or ar... ar r a r Sum of th ft Gomtrc srs: a ar ar ar... ar accordg as r < or r >. a, f r <.., < r <. r ar.. Sum of a Srs of Ss(or Coss) of Agls Lt Arthmtcal Progrsso { ( β} S s s( β) s( β) s( β) s ) W assum that, { ( β} C ( β) ( β) ( β) ) So, C S ( s) { ( β) s( β) } { ( β) s( β) } [ { ( ) β} s{ ( β} ] ) ( β) ( β) { β β ()β } β β β β. β β ( β ) ( β) β ( β β ( ) ) ( β) β { () β} { () β} { () β} ( s) { ( β) s( β) } { ( β) s( β) } [ { ( ) β} s{ ( ) β} ] ( β) 6 Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut [ ( β) ( β) { () β} ] [ s s( β) s( β) s{ () β} ] ( β Equatg ral ad magary parts, w gt ( β) ( β) C ( β) ( β ) { ( ) β} [ { ( ) β} ] { ( β) ( β) } ( β) β β β β β s β β β β s β β β.s s β s β βs β s s s( β) s( β) s{ ( ) β} ad S ( β) [ s s{ ( ) β} ] { s( β) s( β) } ( β) s β β s β β β s s β β β β s Classcal Algbra ad Trgoomtry (Block )

Ut Trgoomtrc Srs β β s β.s s β s β s βs β s Hc, s s( β) s ( β) { ( ) β} { ( ) β} β s β s β s β β s β s () () Partcular cas (): Puttg β () ad (), w gt s s s s s s s ad s π β ) If β, th s sπ 0 () ad (), π π th, s s s to trms 0 ad π π to trms 0 Eampl : Sum to trms of th srs s s( β) s( β) s( β) Soluto: Lt S s s( β) s( β) s( β) to trms s s( π β) s(π β) s(π β) to trms 8 Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut - s π β s s ( π β) s ( π β) ( -)( π β) ( π β) s β Eampl : Sum to trms of th srs: s s ( β) s ( β) Soluto: S s s ( β) s ( β) to trms - - ( β) - ( β) to trms ( to trms).β.s.β. s β. [ ( β) ( β) to trms] { (. ) β}.s( β) sβ Eampl : Sum th srs: to trms Soluto: C... to trms. Now, s s s S to trms ( s) ( s) ( s) C S sc ( sc ) sc sc ( sc )( sc ) ( sc )( sc ) sc to trms to trms Classcal Algbra ad Trgoomtry (Block ) 9

Ut Trgoomtrc Srs sc sc sc () sc sc sc sc ( ) sc sc sc ( sc ) () () sc sc sc sc sc sc ta sc sc [ ( ) s( ) ] sc ( s) sc( s) ta ( ) sc sc sc ta Equatg ral parts o both sds,w gt sc C sc sc sc sc s( ) sc s sc ta ( ) sc sc ta ( ) sc ta ( ) sc ta sc s ta [ ( ) ] ta ss ta CHECK YOUR PROGRESS Q.: Sum th srs: a) s s s to trms b) ( β) ( β) to trms c) to trms d) s s s to trms ) to trms 0 Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut.. Summato of Srs usg Bomal Srs W should rmmbr th followg formula : ) Wh s a postv tgr ad,a ar ay compl umbr, ) w hav ( )! ( a) a ( )! ( a) a ( )! a a a ( )( )! ( ) a ( ) ( )! ( )( )! ( ) Wh s ay ratoal d ad s a compl umbr such that <, w hav ( ) ( ) ( ) ( )! ( )! ( )! ( )( )! ( )( )! ( )( )! ( ) Also, ( )......6 ( )......6 ad ( ) ( )..6..6 Eampl : Sum th Srs: Soluto: Lt Now, S s s...6.9...6.9 s s.... s to. C to. Th, usg Boomal Thorm s to Classcal Algbra ad Trgoomtry (Block )

Ut Trgoomtrc Srs C S.. ( s) ( s) ( s) to ε [ ].... to to ( s)[ s s] ( s) ( s ) (s ) π π ( s ) ( s) s π π ( s ) ( s) s π π ( s ) s (Sc ( s)( φ sφ) ( φ) s( φ) ) π π ( s ) s Equatg th magary parts o both sds,w gt π ( s ) s S Eampl : Sum th srs Soluto: Lt Th,......6... C...6... S s s s...6... C S...6 ( s) ( s) ( s )......6 Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut... whr...6 ( ) ( ) ( s) s s s [By D Movr s Thorm] Equatg ral parts, w gt C.. Summato of Srs usg of Epotal Srs Th followg srs ar frqutly usd. )!! ) ) v)!! s!!!! Classcal Algbra ad Trgoomtry (Block )

Ut Trgoomtrc Srs v) sh!! v) h!! Eampl : Sum th Srs Soluto: Lt ad Th, C S β C β S sβ β! β! sβ! (β sβ)! β! β! sβ! (β sβ)! ( β sβ) β β β β ( β s β).! s β β! β { ( sβ) s( c sβ) } Equatg ral parts o both sds, w gt C β ( sβ) Eampl : Fd th sum of th srs Soluto: Lt ad c c!! c c C!! c c S s s!! c! Th C S ( s) ( s) c! c! ( ) h c { ( ) } h c s c! Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut { c( s) } ( c c s) h( c ) ( c s) sh( c ) s( c s) Equatg ral parts, w gt C h( c ) ( c s)..6 Summato of srs usg Logarthmc srs ad Grgory s srs ) log( ) ) log( ) ) ta whr Eampl: Sum th Srs: ) ) s s s Soluto: Lt th srs () ad () b dotd by C ad S rspctvly.. C ad S s s s Th C S ( s) ( s) ( s ) log( ) by Logarthmc srs log( s) log ( { ) s } ta s s log( s ) ta Classcal Algbra ad Trgoomtry (Block )

Ut Trgoomtrc Srs log log ( ) ta s { ( ) } ta ta log. ta log. log. ta ta ta Equatg ral ad magary parts, w gt C log.. ) log ad. ) s s s S CHECK YOUR PROGRESS Q.6: Sum th srs:! ) ( β) ( β) ) ) v) β β!! s s s.. Dffrc Mthod 6 I ordr to sum a srs,somtms t s covt to splt up ach trm as th dffrc of two prssos such that o prsso of ach dffrc occurs succdg wth a oppost Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut sg. Th splttg s do such a way that wh all th trms of th srs ar addd togthr, th compot trms cacl pars. Fally w ar lft wth two trms, o from th frst trm ad o from last trm. Suppos, w hav to fd th sum of u u u u Frst w wrt f( ) f() () u From () puttg u u u,,,...,, w gt f() f() f() f() f() f()......... u f( ) f() Addg vrtcally, w gt u u u u f( ) f() (sc all th trmdat trms cacl pars) Eampl: Sum th srs to trms ta Soluto: Hr T ta ta ta ta ta ta ( ) ( ) ( ) ta () Now, T ta ta T T ta ta ta ta...... T ta Addg, w gt ( ) ta Eampl : Sum th srs: Θ ta () ta ta y ta ( ) y y S T T T T ta ( ) ta ssc ssc s sc to trms Classcal Algbra ad Trgoomtry (Block )

Ut Trgoomtrc Srs Soluto: W hav s s ssc. T s s( ) s s ta [ ta ] Smlarly, T [ ta ta] [ ta ta ] T [ ta ta ] T...... [ ta ta ] T Addg ths,w hav th rqurd sum S T T T T [ ta ] ta, othr trms cacllg ach othr. CHECK YOUR PROGRESS Q.: Sum th srs to trms by Dffrc Mthod. a) ta ta ta ta 9 6 ( ) b) ss s s s s c) tata ta ta ta ta 8 Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut. LET US SUM UP If ls wth th closd trval th srs ta ta ta π π,,.., f ta π π, th s calld Grgory s srs.w also drv mportat rsults from Grgory s srs. W dscuss mportat mthods for summg up trgoomtrc srs whch may b ft or ft.thr ar two mportat mthods for summato.ths ar (a) C S mthod (b) Th dffrc mthod..6 ANSWERS TO CHECK YOUR PROGRESS As. to Q. No. : W hav.... 9. 9... 9.. ta.. π π 8 As. to Q. No. : From R.H.S,. 9. 9. 9 9..... Classcal Algbra ad Trgoomtry (Block ) 9

Ut Trgoomtrc Srs ta ta (By Grgory s srs ) ta ta ta ( ) ta 9 ta ta. π Th L.H.S As. to Q. No. : L.H.S - ad.f.. ad.f.. ta By Grgory, s srs bcaus <. R.H.S As to Q No : W hav - ta ta s ta ta () π Sc ls btw 0 ad π ls btw ad,so that ta <. - ta ta π Sc ls btw 0 ad s ta π ls btw ad,so that ta ta <. 60 Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut Thrfor, ta ta ca b padd by Grgory s srs. ta ta ta ta 6 0 ta - ta ta - Hc, from () ad (), w hav ta () - ta ta As. to Q. No. : a) Lt S b) Lt S - ta 6 ta 0 - Hc provd. s s s s 6 () s s ( ) sc ( 6 ) ( ( β) ( β) ( β) ) ( ) {( ( β) } { ( β) } { ( ( } ) [ ( β) ( β) ( ( ) ] ( ) β (β) s β s ( ( ) β)sβ cβ c) Lt S ( ) ( ) ( 6) ( ) Classcal Algbra ad Trgoomtry (Block ) 6

Ut Trgoomtrc Srs [ 6 ] () s s d) Try yourslf Lt S ( ) s s s ) Try yourslf Lt S s s ( ) s s s ( s s s ) s s As. to Q. No. 6: ) Lt C ( β) ( β)!! ad S s s( β) s( β) th C S! ( s) [ ( β) s( β) ] [ ( β) s( β) ]! ( β) ( β) β. ( ). β β ( β s β) β.! ( s β) β [ ( sβ) s( sβ) ] Equatg ral parts o both sds, β w gt C.( sβ) ths s a potal srs 6 Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut C S C S ) Lt C β β ) S sβ sβ s ( β sβ) ( β sβ) ( β sβ) Lt β β β ( s) ( β) s S s ( β) ( β) s( β)! C!!! ( β) ( β)! [ ( β) s( β) ] [ ( β) s( β) ] ( β)! β!!! ( β) β β ( ) By srs ( s) (β sβ) ( s)[ (β)(sβ) s(β)s(sβ) ] ( s)[ (β)h(sβ) s(β)sh(sβ) ] ( s)[ (β)h(sβ) s(β)sh(sβ) ] ( β)h(sβ) s( β)sh(sβ) ( β)h(sβ) s( β)sh(sβ) s ( β)h(sβ) s s(β)sh(sβ) [ (β)h(sβ) s s(β)sh(sβ) ] Equatg magary parts, w gt S s ( β)h(s β) s( β)sh(s β) ) Lt C!! ad S s s s!! Classcal Algbra ad Trgoomtry (Block ) 6!

Ut Trgoomtrc Srs! Th ( ) ( ) ( s) C S ( ) s! ( s ). s! s! By potal srs [ ( s) s( s) ] ( ) s s ( s ) Equatg th ral parts o both sds,w gt C ( s) v) Lt S s s s ad C Th C S ( s) ( s) ( s) log ( ) ( ) log s log ( ) ( s) By Logarthmc srs ta Equatg magary parts, w gt S ta As. to Q. No. : a) Hr Puttg s (Sparatg ral ad magary parts) s (cpt wh ),,,..., T ta T ta T ta ta ( ) ta ta ta ta ta ( ) ( ) ta, w hav ( ) 6 Classcal Algbra ad Trgoomtry (Block )

Trgoomtrc Srs Ut T ta ta...... T ta ( ) ta Addg, w gt th rqurd sum to trms S T T T T ta ( ) ta ( ) ta ta b) Hr, ss.ss T T [ ] s s.s s [ ] T...... T Addg up th abov rlatos, w th rqurd sum S T T T T d) Try yourslf. R qurd sum ta ta. FURTHER READING ) Durll, C. V. ad Robso, A; Advacd Trgoomtry. ) J. Smth, Karl; Esstals of Trgoomtry. ) N. Aufma, Rchard, C. Barkar, Vro & D. Nato, Rchard; Collg Algbra. Classcal Algbra ad Trgoomtry (Block ) 6

Ut Trgoomtrc Srs.8 MODEL QUESTIONS Q.: Fd th sum of th followg srs:! a) s s( β) s( β) b) s. s s c) s s s d) ) 9 - f) ta ta ta to trms 9 g) - ta ta ta ta 9 9 *** ***** *** 66 Classcal Algbra ad Trgoomtry (Block )

REFERENCES ) Bal, N. P.; Trgoomtry, for B.A/B.Sc. Classs (st Edto), Nw Dlh: Lam Publcato (P) Ltd. ) Ksha, Har (00); Trgoomtry; (st Edto), Nw Dlh: Atlatc Publshrs. ) Lpschtz, Symour; Lar Algbra: Schum Solvd Problms Srs; Tata McGraw Hll. ) Mapa, S. K.; Hghr Algbra (Classcal). ) Ray, M. & Sharma, H. S.; A Tt Book of Hghr Algbra. 6) Vasstha, A.R. & Sharma, S. K.; Trgoomtry. ) Vasstha, A. R.; Matrcs; Mrut: Krsha Prakasha Madr. Classcal Algbra ad Trgoomtry (Block ) 6