n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
|
|
- Νικόλας Βάμβας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r Theorem 6.. (.) i 6.. was as follows. a f <> 0 g 0 d m - a - m - - s0 - + r s - f ( -r ) g r (.) r f < + r> g r f < -r+ s> a g s -r + (-) m - r- r- s0ts Ct s C r (-) m - + (,m) k0 Should be oted here is the et two. a -r a a-r+ d r m+--r+ t m- f m+ -r+s a g ( m+ s) -r a -r aa r+ -C m+k k a f < m+ k > g ( m+ k) d a i Whe of the rd lie does ot eist, whe 0 of the d lie does ot eist also. ii Whe the biomial coefficiet of the th lie is geeralized, the upper limit - of ca be replaced by. Sice >0 - at the time 0,,,, if the ide of the itegratio operator is substituted for - i cosideratio of these, it becomes as follows. a f <> 0 g 0 d - m - a (-) m + ( -,m) k0 r m+k f < -+ r> g r - - k a Sice m may be arbitrary iteger, whe m +, it is as follows. a f <> 0 g 0 d - a f < -+ r> g r r (-) ( -,+) k0 ++k k a f < > a m+ k g ( m+ k) d - ++ k g ( ++ k) d - a f < > However, sice ( -,+) for 0,,,, the d lie disappears. That is, a f g d - f < -+ r> g r 0,,, a r The, replacig the itegratio operators d -,<- + r > with the differetiatio operators,( -r) respectivly, we obtai the desired epressio. d r - -
2 8. Higher Derivative of ^a f Formula 8..0 Whe z deotes the gamma fuctio ad f is times differetiable cotiuous fuctio, the followig epressios hold for a atural umber. f ( + ) r ( + -r) - r f ( - r ) (0.) Where, if -,-,-,, it shall read as follows. ( +) (-) -r ( - +r) + -r ( -) Especially, whe m 0,,, m m f ( +m ) m- r f ( - r ) (0.') r ( +m-r) Whe -,-,-, & - -,-,-, f ( +) -+ r f r (0.) r ( + - +r) Whe g( ) i Theorem 8.., sice r ( + ) - r ( + -r) we obtai the followig epressio immediately. f ( + ) r ( + -r) Especially, whe m 0,,,, (0.) is as follows. m f m ( +m ) r ( +m-r) ( +m ) r ( +m-r) We adopt the coveiet latter for mathematical software. - r f ( - r ) (0.) m- r f ( - r ) m- r f ( - r ) ( +m ) 0 for m<r ( +m-r) Whe -,-,-,, from..5 ( Properties of the Gamma Fuctio ) (5.5), ( -z) (-) - ( +z+) ( is a o-egative iteger ) ( -z-) ( +z) The substitutig -z +, r for this, we obtai the proviso. Last, replacig r with -r i (0.), we obtai (0.). r 0 for <r m Below, substitutig various fuctios f for Formula 8..0, we obtai various formulas. Although there are ad i Formula 8..0, sice is almost meaigless i the case of higher differetiatio, we adopt i priciple. - -
3 8.. Higher Derivative of ( a+b) p ( c+d) q Formula 8.. The followig epressios hold for p >0 ad,,,. ( a+b) p ( c+d) q ( /a) -+ r ( +p) ( +q) r ( /c) r ( +p - +r) ( +q -r) Especially, whe m 0,,, ( a+b) p ( c+d) m m ( /a) -+ r ( +p) ( +m) r ( /c) r ( +p - +r) ( +m-r) Let f( ) ( a+b) p, g( ) ( c+d) q, the - r ( a+b) p f r ( c+d) q g -r r c a -+r ( +p) ( +p - +r) -r ( +q) ( +q -r) Substitutig these for Theorem 8.., we obtai (.). ( c+d) q-r Ad especially, whe q m 0,,,, from (.) ( a+b) p ( c+d) m ( /a) -+ r ( +p) ( +m) r ( /c) r ( +p - +r) ( +m-r) m ( /a) -+ r ( +p) ( +m) r ( /c) r ( +p - +r) ( +m-r) We adopt the latter epressio as (.'). ( a+b) p-+r ( c+d) r-q (.) ( a+b) p-+ r ( c+d) r-m ( a+b) p-+r (.') q,,, ( a+b) p-+r ( c+d) r-m ( a+b) p-+r ( c+d) r-m Eample The d order derivative of - + Substitutig a, b-, p/, c, d, q/, for (.), - + r - r- r ( /) ( /) - r ( +) ( r-/) ( /-r) ( -) - + ( - )( +) ( +) Eample' The rd order derivative of - ( +) Substitutig a, b-, p/, c, d, m, for (.'), - -
4 - ( +) r -( +) r ( /) ( -/+r) ( -r) 8( -) ( -) r ( +) r- - + ( + )( -) + ( -) Eample The rd order derivative of - / ( +) Whe q -,-,-,, (.) ca be read as follows. ( a+b) p ( c+d) q ( /a) -+ r ( +p) ( -q +r) r (-/c) r ( +p - +r) ( -q) Substitutig a, b-, p/, c, d, q-, for this, ( a+b) p-+ r ( c+d) r-q r (-) r ( /) ( +r) ( -/+r) 8( -) 9 + ( -) ( +) ( -) r ( +) r+ 7 + ( -)( +) 6 - ( +) 8.. Higher Derivative of log Formula 8.. log - - (-) -r ( -r) ( +) r - ( +) + - log ( + -r) ( + -) Especially, whe m 0,,, m log - - (-) -r ( -r) ( +m) r m- ( +m) + m- log ( +m-r) ( +m-) Where, there shall be o d term of the right side at the time of m<. (.) (.') Let f( ) log. The ( log ) -(-) ( -r) -+r r 0,,,- log r Substitutig these for (0.) i Theorem 8..0, we obtai (.). Whe m 0,,,, applyig (0.'), we obtai the followig. m log - - (-) -r ( -r) ( +m) r m- ( +m) + m- log ( +m-r) ( +m-) m + ( +m) m- ( log ) ( -r) r ( +m-r) r + Where, sice r does ot reach at the time of m<, the d term does ot eist. - -
5 Eample The rd order derivaive of Substitutig /, for (.), log - (-) -r log 5 5 ( -r) ( /) - ( /) - + log r ( /-r) ( -/) 0!! 0! - - ( / ) ( /) ( /) + / - / -/ Eample' The d order derivaive of log 5 ( /) - + log ( -/) 5 5 ( /) log ( -/) - + log 8 Substitutig m, for (.'), log - (-) -r ( -r) r + log ( -r) - (-)!! + (-) 0! 0!!!! + log! ( log ) Eample" The rd order derivaive of log Substitutig m, for (.'), log - (-) -r ( -r) - r ( -r) 0 - -! + -! + - Eample The rd order derivaive of log / -! Whe -,-,-,, (.) ca be read as follows. log -(-) - ( -r) ( - +r) - + (-) ( - +) - log r ( -) ( -) Substitutig -, for this, log -(-) - ( -r) ( +r) - + (-) - - log r - 0 ( + ) ( + ) ( - ) 6 log ( - 6log ) - 5 -
6 8.. Higher Derivatives of si, cos Formula 8.. si {} cos {} r ( +) -r ( + -r) si+ r ( +) -r ( + -r) cos+ ( -r) ( -r) Especially, whe m 0,,, m si {} m ( +m) m-r ( -r) r ( +m-r) si+ m cos {} m ( +m) m-r ( -r) r ( +m-r) cos+ (.s) (.c) (.'s) (.'c) Eample The d order derivative of si Substitutig /, for (.s), si ( /) -rsi r /-r + ( -r) / si + + / - si 0 / / + - si + - cos - 9-5si 5 / - si -/ + Eample' The rd order derivative of si Substitutig m, for (.'s), si {} -r r -r si+ si cos - 6 si + 6 cos 8.. Higher Derivatives of sih, cosh ( -r) + + si + 0 si + Formula 8.. sih cosh r ( + ) ( + -r) r ( + ) ( + -r) - r e -(-) -( -r) e - - r e +( -) -( -r) e - (.s) (.c) - 6 -
7 Especially, whe m 0,,, m sih m m cosh m ( +m ) r ( +m-r) ( +m ) r ( +m-r) m- r e -(-) -( -r) e - m- r e +( -) -( -r) e - (.'s) (.'c) Eample The d order derivaive of sih Substitutig /, for (.s), sih ( /) r /-r -r e -(-) -( -r) e - ( /) sih + ( /) - cosh + 5 ( /) - sih 0 / / -/ sih + - cosh - 9-5sih Eample' The rd order derivative of sih Substitutig m, for (.'s), sih {} r -r 0 cosh + -r e -(-) -( -r) e - cosh + 6 sih + 6 cosh sih + 0 cosh - 7 -
8 8. Higher Derivative of log f 8.. Higher Derivative of ( log ) Formula 8.. log ( log ) - r -r r r (.) Let f( ) g( ) log. The ( log ) ( - r ) (-) - r- ( -r) - r, ( log ) r (-) r- ( r) r,, Substitutig these for Theorem 8.., log ( log ) ( - r ) ( log ) r r 0 ( log ) ( log ) r ( log ) ( - r ) ( log ) r r ( log ) ( - ) ( log ) (-) - log + + (-) - r ( -r) r r log - r -r r Eample The rd order derivative of ( log ) log - - log - r -r r log - ( )- ( log -6) r r 8.. Higher Derivatives of log si, log cos Formula 8.. ( log si ) log si+ r + (-) r r- r si r + ( -r) (.0s) - 8 -
9 ( log cos ) log cos+ r + (-) r r- r cos r + ( -r) (.0c) Eample The rd order derivative of log si ( log si ) log si+ -log cos + + r si + - r- r r si + r -log cos - si - cos + si - + ( -r) si + 0 si Higher Derivatives of log sih, log cosh Formula 8.. log sih log log cosh log e -(-) - e - + (-) r r- r e +( -) - e - + (-) r r- r Eample The th order derivative of log cosh ( log cosh ) log e +( -) - e - + r r r r r - r- ( r) r r e -(-) r- e - (.0s) e +( -) r- e - (.0c) e +( -) r- e - log cosh + sih - cosh + sih - cosh log cos + sih - cosh + sih - cosh - 9 -
10 8. Higher Derivative of e^ f 8.. Higher Derivative of e Formula 8.. e e ( + ) - r r ( + -r) for -,-,-, (.) e ( - +r) - r r ( -) for -,-,-, (.) - r Especially, whe m 0,,, e m e m ( +m ) r ( +m-r) m- r Substite f( ) e for Theorem The sice e ( -r ) e, we obtai the desired epressio immediately. Eample The d order derivative of e e e ( /) r /-r (.') - r e ( /) + ( /) - + ( /) - 0 / / -/ e e + - Eample The d order derivative of e / e r e ( +r) (-) r - r e e Higher Derivative of e log Formula 8.. e log e log + e (-) r r- r Let f( ) e, g( ) log. The r r (.) - 0 -
11 ( log ) r (-) r- r r r,,, Substitutig this for Theorem 8.., e log e ( log ) r r 0 e e log + e (-) r r- r r r log 0 + e r log r Eample The th order derivative of e log e log e log + e (-) r r- r r r e log + e ( ) e log + e Higher Derivatives of e si, e cos Formula 8.. e si e cos si - e si + - si e cos+ (.0s) (.0c) " 共 立 数 学 公 式 " p87 was posted as it was. Eample e si e cos si - e si + - si e cos+ e cos -e si + cos Higher Derivatives of e si, e cos ed ow. There is o ecessity for Theorem 8... However, darig use Theorem 8.., we obtai a iterestig result. Trigoometric Polyomial Formula 8..' r r si + si - si + (.s) - -
12 r Especially, whe 0 r r r cos+ - si cos+ r si si - si r cos si - cos (.c) (.'s) (.'c) Substitutig f( ) e, g( ) si, cos for Theorem 8.., e si e r si r + e cos e r r cos+ Ad comparig these with Formula 8.., we obtai the desired epressios. Whe 5, if both sides of (.s) are illustrated, it is as follows. Both overlap eactly ad blue (left) ca ot be see. Alterative Biomial Polyomial r r Removig si, cos from (.'s), (.'c), we obtai the followig iterestig polyomial. Formula 8.." Whe deotes the floor fuctio, the followig epressios hold. ( -)/ / r+ - r r - r si cos (.s) (.c) - -
13 Sice the odd-umbered terms of the left side i (.'s) are all 0, r Also, sice si r 0 si 0 + si + si + si + 5 si si/ - / i the right side i (.'s), ( -)/ r+ si - r Net, sice the eve-umbered terms of the left side i (.'c) are all 0, cos cos r Also, sice r 0 cos 0 cos cos + + si ++ si si ( -)/ - r+ cos + - / si/ - / i the right side i (.'c), / cos r - r I additio, this formula is kow. (See " 岩 波 数 学 公 式 Ⅱ" p) Note Whe k - Eample ( -)/, k,,, / r+ - r r - r si Higher Derivatives of e sih, e cosh Formula 8.. e sih e r cos (.s) cos + / cos / 5 cos - / r - r (.c) e - (-) -r e - (.0s) r - -
14 e cosh e Eample Note e sih 0 e e cosh e 0 e + (-) -r e - (.0c) r 0 e - (-) -r e - e r sih - -r e - r e + e 0 sih + cosh + sih + cosh e ( sih + cosh ) The followig formula is kow for a atural umber. e sih e cosh - e ( sih + cosh ) However, this formula does ot hold for 0. That is, i this formula, the atural umber is ietesible to the real umber p. So, this is isufficiet as a geeral formula. - -
15 8.5 Higher Derivative of f / e^ 8.5. Higher Derivative of e - Formula 8.5. e - e - - -( -r) (-) - e - Especially, whe m 0,,, e - m e - m - -( -r) ( + ) - r for -,-,-, (.) r ( + -r) ( - +r) - r for -,-,-, (.) r ( -) ( +m ) r ( +m-r) m- r Substite f( ) e - for Theorem The sice e - ( -r ) (-) -( -r) e -, we obtai the desired epressio immediately. (.') Eample The rd order derivative of e - / e - (-) - e - 0 ( +r) --r r -e e Eample' The rd order derivative of e - 7 e - 7 e - 7 -r ( 8 ) r ( 8-r) 7 7- r e ( 8) 5 + ( 8) 6 5 e Higher Derivative of e - log Formula 8.5. e - log - - r log - r r r e (.) Let f( ) e -, g( ) log. The - 5 -
16 e - ( -r ) (-) - +r e - r ( log ) r (-) r- r r,,, Substitutig these for Theorem 8.., e - log (-) - +r e - ( log ) r r 0 (-) - e - ( log ) 0 + r (-) - r e log - r r r Eample The th order derivative of e - log e log - - r log - r e log - e e log e - e 8.5. Higher Derivatives of e - si, e - cos r r (-) - +r e - ( log ) r r + ( ) + ( ) + r Formula 8.5. e - si e - cos -si - e - si - - -si e - cos- (.0s) (.0c) Replacig with - i Formula 8.., we obtai the desired epressios. Eample e - si e - cos -si - e - si - - -si e - cos- -e - cos -e - si - cos Higher Derivatives of e - sih, e - cosh ed ow. There is o ecessity for Theorem 8... Darig use Theorem 8.., we obtai the followig epressio first. -r e - si e - ( - ) r si r
17 Ad from this ad (.0s), we obtai -r ( - ) r si r + si - si - A similar epressio is obtaied about e - r r cos too. The removig si, cos from these, we obtai the completely same results as Formula 8.." Higher Derivatives of e - sih, e - cosh Formula 8.5. e - sih e - e - cosh e r - -+ r e - (-) e - (.0s) r e + (-) e - (.0c) r Substitutig f( ) e -, g( ) sih, cosh for Theorem 8.., we obtai the dsired epressios. Eample Note e - sih 0 e r 0 e - (-) -r e - e - sih r e - cosh e - (-) -+ r e r + (-) -r e cosh + sih - cosh + sih e - -e - cosh - sih The followig formula is kow for a atural umber. e - sih e - cosh (-) - e ( cosh -sih ) However, this formula does ot hold for 0. That is, i this formula, the atural umber is ietesible to the real umber p. So, this is isufficiet as a geeral formula
18 8.6 Higher Derivatives of si f, cos f 8.6. Higher Derivatives of si, cos Formula 8.6. si - cos - + cos cos - + (.0s) (.0c) From Formula 8.6.' metioed et, Here cos Usig this, Ad sice cosa cosb cos r r cos+ cos( A+B ) +cos( A-B) cos -r cos + r r + + cos -r cos +, r - r r 0 + cos ( -) r r substitutig these for the above, we obtai (.0c). (.0s) is also obtaied i a similar way. Eample si - cos - + cos cos - + cos cos - si si 8 si cos Formula 8.6.' si cos r r si+ cos+ -r si + r -r cos + r (.s) (.c) Substitutig f( ) g( ) si for Theorem 8.., we obtai (.s). (.c) is also obtaied i a similar way
19 Formula 8.6." Whe deotes the floor fuctio, the followig epressios hold. / r ( -)/ - (.e) r+ - (.o) (.s) is trasformed as follows. i.e. si / r ( -)/ + / si+ r r - r si+ ( -)/ + -r si + r r -r si + r+ si ( -r-) ( r+) + si + si+ - r si si+ si ( -r) si ( -r-) r+ si + / r O the other had, (.0s) is trasformed as follows too. cos ( -)/ - cos+ cos si si - + si - cos - + cos From these, the followig epressio follows. si + si / r - - cos + cos I order to hold this equatio for arbitrary, the followigs are ecessary. / r ( -)/ - - 0, r I additio, this formula is kow. (See " 岩 波 数 学 公 式 Ⅱ" p) ( -)/ r+ r Higher Derivatives of si, cos Formula 8.6. si cos si + cos + - si+ + cos+ (.0s) (.0c) - 9 -
20 From Formula 8.6.' metioed et, it is obtaied i a similar way i the case of the d degree. However, it is ot so easy as the case of the d degree. ( See 0.. ) Eample si cos si + cos si+ - si + si cos+ 7 si + si Formula 8.6.' si si 0 si+ - r r cos r- + cos cos 0 cos+ + r r cos r- + ( -r) r si + ( -r) r cos + (.s) (.c) Substitutig f( ) si, g( ) si for Theorem 8.., we obtai (.s). (.c) is also obtaied i a similar way. Formula 8.6." / r- ( -)/ r From (.s) r si si r+ - + (-) (.e) 0 si + si 0 si+ ( -)/ - / - r r - (.o) - r r r- cos + r+ cos r + cos r- + ( -r) r si + r+ ( -r-) si + r si + -r - 0 -
21 Whe, si - - cos si+ ( -)/ ( -r-) + r+ r si si+ - r r - r ( -)/ - / - ( r ) r- ( -r) cos si+ r+ r si cos+ / 0 - cos si+ - r r ( -)/ - r+ si cos+ / - r- cos r si+ si + - si + si + si + si + si + si + si + / r- ( - )/ r Whe, si r - cos si cos cos + si si r- cos si+ 0 - si cos + + si si - ( cos cos - si si ) + si si - cos - ( cos - cos ) - cos - si+ - +( -) r (-) + si + - cos si+ - si cos
22 / r- ( - )/ r si + si + si + si + r + 5 cos si + si cos + ( si - si ) + si + 9 si - si ( -) + r+ - -(-) Hereafter, by iductio, we obtai the desired epressios. If both sides of Formula8.6." are illustrated, it is as follows. The left side is blue lie ad the right side is red poit. - -
23 8.6. Higher Derivatives of the product of trigoometric ad hyperbolic fuctios Formula 8.6. ( sisih ) ( sicosh ) r r ( cossih ) ( coscosh ) r r si+ si+ cos+ cos+ ( -r) ( -r) ( -r) ( -r) Substitutig f( ) si, g( ) sih for Theorem 8.., we obtai (.). The others are also obtaied i a similar way. Eample ( sicosh ) r r ( coscosh ) si+ cos+ ( 0-r) ( -r) e -(-) -r e - (.) e +( -) -r e - (.) e -(-) -r e - (.) e +( -) -r e - (.) e +( -) -0 e - sicosh e +( -) -r e - 0 cosh +cos sih +cos cos+ + + cosh -coscosh - si sih + coscosh -si sih - -
24 8.7 Higher Derivatives of sih f, cosh f 8.7. Higher Derivatives of sih, cosh Formula 8.7. sih cosh e -(-) -+r e - e -(-) -r e - (.s) r e +( -) -+r e - e +( -) -r e - (.c) r Substitutig f( ) g( ) sih for Theorem 8.., we obtai (.s). (.c) is also obtaied i a similar way. Eample sih e -(-) -0+r e - e -(-) -r e - sih r cosh e +( -) -+r e - e +( -) -r e - r 0 sihcosh + coshsih + sihcosh + coshsih 8sihcosh sih Alie's Mathematics K. Koo - -
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Διαβάστε περισσότεραPresentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
Διαβάστε περισσότεραα β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
Διαβάστε περισσότεραThe Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
Διαβάστε περισσότεραCHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Διαβάστε περισσότεραBessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
Διαβάστε περισσότεραDegenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραFourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function
Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..
Διαβάστε περισσότεραSolve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Διαβάστε περισσότεραBiorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.
Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces
Διαβάστε περισσότεραIIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Διαβάστε περισσότεραIntroduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραHomework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Διαβάστε περισσότεραSolutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Διαβάστε περισσότεραL.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραFREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότεραFinite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Διαβάστε περισσότεραSCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραLast Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Διαβάστε περισσότεραSUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραOn Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραHomework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραSecond Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραFactorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values
Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q
Διαβάστε περισσότεραNotes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραSrednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Διαβάστε περισσότεραMATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Διαβάστε περισσότεραTridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότεραOn Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
Διαβάστε περισσότεραSection 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραA Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Διαβάστε περισσότεραBinet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods
DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,
Διαβάστε περισσότεραA study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Διαβάστε περισσότεραThe Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
Διαβάστε περισσότεραB.A. (PROGRAMME) 1 YEAR
Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότεραDifferential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Διαβάστε περισσότερα2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Διαβάστε περισσότεραb. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Διαβάστε περισσότεραLecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Διαβάστε περισσότεραEvery set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Διαβάστε περισσότεραΣτα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
Διαβάστε περισσότεραDerivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
Διαβάστε περισσότεραLecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Διαβάστε περισσότεραFractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Διαβάστε περισσότεραRight Rear Door. Let's now finish the door hinge saga with the right rear door
Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents
Διαβάστε περισσότεραOn Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
Διαβάστε περισσότεραΑπόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Διαβάστε περισσότεραLAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
Διαβάστε περισσότεραp n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
Διαβάστε περισσότερα9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Διαβάστε περισσότεραJesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Διαβάστε περισσότερα6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Διαβάστε περισσότεραNowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Διαβάστε περισσότεραSimilarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Διαβάστε περισσότεραD Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Διαβάστε περισσότεραUniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότεραProblem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Διαβάστε περισσότεραINTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
Διαβάστε περισσότεραMATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Διαβάστε περισσότεραDiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Διαβάστε περισσότεραΑναερόβια Φυσική Κατάσταση
Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής
Διαβάστε περισσότεραGauss Radau formulae for Jacobi and Laguerre weight functions
Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,
Διαβάστε περισσότεραMATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Διαβάστε περισσότεραDistances in Sierpiński Triangle Graphs
Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation
Διαβάστε περισσότερα2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Διαβάστε περισσότεραAppendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Διαβάστε περισσότεραPartial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Διαβάστε περισσότερα1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
Διαβάστε περισσότεραProblem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Διαβάστε περισσότεραCYLINDRICAL & SPHERICAL COORDINATES
CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate
Διαβάστε περισσότεραANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Διαβάστε περισσότεραk A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Διαβάστε περισσότεραΠαραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου
Διαβάστε περισσότερα