n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)"

Transcript

1 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r Theorem 6.. (.) i 6.. was as follows. a f <> 0 g 0 d m - a - m - - s0 - + r s - f ( -r ) g r (.) r f < + r> g r f < -r+ s> a g s -r + (-) m - r- r- s0ts Ct s C r (-) m - + (,m) k0 Should be oted here is the et two. a -r a a-r+ d r m+--r+ t m- f m+ -r+s a g ( m+ s) -r a -r aa r+ -C m+k k a f < m+ k > g ( m+ k) d a i Whe of the rd lie does ot eist, whe 0 of the d lie does ot eist also. ii Whe the biomial coefficiet of the th lie is geeralized, the upper limit - of ca be replaced by. Sice >0 - at the time 0,,,, if the ide of the itegratio operator is substituted for - i cosideratio of these, it becomes as follows. a f <> 0 g 0 d - m - a (-) m + ( -,m) k0 r m+k f < -+ r> g r - - k a Sice m may be arbitrary iteger, whe m +, it is as follows. a f <> 0 g 0 d - a f < -+ r> g r r (-) ( -,+) k0 ++k k a f < > a m+ k g ( m+ k) d - ++ k g ( ++ k) d - a f < > However, sice ( -,+) for 0,,,, the d lie disappears. That is, a f g d - f < -+ r> g r 0,,, a r The, replacig the itegratio operators d -,<- + r > with the differetiatio operators,( -r) respectivly, we obtai the desired epressio. d r - -

2 8. Higher Derivative of ^a f Formula 8..0 Whe z deotes the gamma fuctio ad f is times differetiable cotiuous fuctio, the followig epressios hold for a atural umber. f ( + ) r ( + -r) - r f ( - r ) (0.) Where, if -,-,-,, it shall read as follows. ( +) (-) -r ( - +r) + -r ( -) Especially, whe m 0,,, m m f ( +m ) m- r f ( - r ) (0.') r ( +m-r) Whe -,-,-, & - -,-,-, f ( +) -+ r f r (0.) r ( + - +r) Whe g( ) i Theorem 8.., sice r ( + ) - r ( + -r) we obtai the followig epressio immediately. f ( + ) r ( + -r) Especially, whe m 0,,,, (0.) is as follows. m f m ( +m ) r ( +m-r) ( +m ) r ( +m-r) We adopt the coveiet latter for mathematical software. - r f ( - r ) (0.) m- r f ( - r ) m- r f ( - r ) ( +m ) 0 for m<r ( +m-r) Whe -,-,-,, from..5 ( Properties of the Gamma Fuctio ) (5.5), ( -z) (-) - ( +z+) ( is a o-egative iteger ) ( -z-) ( +z) The substitutig -z +, r for this, we obtai the proviso. Last, replacig r with -r i (0.), we obtai (0.). r 0 for <r m Below, substitutig various fuctios f for Formula 8..0, we obtai various formulas. Although there are ad i Formula 8..0, sice is almost meaigless i the case of higher differetiatio, we adopt i priciple. - -

3 8.. Higher Derivative of ( a+b) p ( c+d) q Formula 8.. The followig epressios hold for p >0 ad,,,. ( a+b) p ( c+d) q ( /a) -+ r ( +p) ( +q) r ( /c) r ( +p - +r) ( +q -r) Especially, whe m 0,,, ( a+b) p ( c+d) m m ( /a) -+ r ( +p) ( +m) r ( /c) r ( +p - +r) ( +m-r) Let f( ) ( a+b) p, g( ) ( c+d) q, the - r ( a+b) p f r ( c+d) q g -r r c a -+r ( +p) ( +p - +r) -r ( +q) ( +q -r) Substitutig these for Theorem 8.., we obtai (.). ( c+d) q-r Ad especially, whe q m 0,,,, from (.) ( a+b) p ( c+d) m ( /a) -+ r ( +p) ( +m) r ( /c) r ( +p - +r) ( +m-r) m ( /a) -+ r ( +p) ( +m) r ( /c) r ( +p - +r) ( +m-r) We adopt the latter epressio as (.'). ( a+b) p-+r ( c+d) r-q (.) ( a+b) p-+ r ( c+d) r-m ( a+b) p-+r (.') q,,, ( a+b) p-+r ( c+d) r-m ( a+b) p-+r ( c+d) r-m Eample The d order derivative of - + Substitutig a, b-, p/, c, d, q/, for (.), - + r - r- r ( /) ( /) - r ( +) ( r-/) ( /-r) ( -) - + ( - )( +) ( +) Eample' The rd order derivative of - ( +) Substitutig a, b-, p/, c, d, m, for (.'), - -

4 - ( +) r -( +) r ( /) ( -/+r) ( -r) 8( -) ( -) r ( +) r- - + ( + )( -) + ( -) Eample The rd order derivative of - / ( +) Whe q -,-,-,, (.) ca be read as follows. ( a+b) p ( c+d) q ( /a) -+ r ( +p) ( -q +r) r (-/c) r ( +p - +r) ( -q) Substitutig a, b-, p/, c, d, q-, for this, ( a+b) p-+ r ( c+d) r-q r (-) r ( /) ( +r) ( -/+r) 8( -) 9 + ( -) ( +) ( -) r ( +) r+ 7 + ( -)( +) 6 - ( +) 8.. Higher Derivative of log Formula 8.. log - - (-) -r ( -r) ( +) r - ( +) + - log ( + -r) ( + -) Especially, whe m 0,,, m log - - (-) -r ( -r) ( +m) r m- ( +m) + m- log ( +m-r) ( +m-) Where, there shall be o d term of the right side at the time of m<. (.) (.') Let f( ) log. The ( log ) -(-) ( -r) -+r r 0,,,- log r Substitutig these for (0.) i Theorem 8..0, we obtai (.). Whe m 0,,,, applyig (0.'), we obtai the followig. m log - - (-) -r ( -r) ( +m) r m- ( +m) + m- log ( +m-r) ( +m-) m + ( +m) m- ( log ) ( -r) r ( +m-r) r + Where, sice r does ot reach at the time of m<, the d term does ot eist. - -

5 Eample The rd order derivaive of Substitutig /, for (.), log - (-) -r log 5 5 ( -r) ( /) - ( /) - + log r ( /-r) ( -/) 0!! 0! - - ( / ) ( /) ( /) + / - / -/ Eample' The d order derivaive of log 5 ( /) - + log ( -/) 5 5 ( /) log ( -/) - + log 8 Substitutig m, for (.'), log - (-) -r ( -r) r + log ( -r) - (-)!! + (-) 0! 0!!!! + log! ( log ) Eample" The rd order derivaive of log Substitutig m, for (.'), log - (-) -r ( -r) - r ( -r) 0 - -! + -! + - Eample The rd order derivaive of log / -! Whe -,-,-,, (.) ca be read as follows. log -(-) - ( -r) ( - +r) - + (-) ( - +) - log r ( -) ( -) Substitutig -, for this, log -(-) - ( -r) ( +r) - + (-) - - log r - 0 ( + ) ( + ) ( - ) 6 log ( - 6log ) - 5 -

6 8.. Higher Derivatives of si, cos Formula 8.. si {} cos {} r ( +) -r ( + -r) si+ r ( +) -r ( + -r) cos+ ( -r) ( -r) Especially, whe m 0,,, m si {} m ( +m) m-r ( -r) r ( +m-r) si+ m cos {} m ( +m) m-r ( -r) r ( +m-r) cos+ (.s) (.c) (.'s) (.'c) Eample The d order derivative of si Substitutig /, for (.s), si ( /) -rsi r /-r + ( -r) / si + + / - si 0 / / + - si + - cos - 9-5si 5 / - si -/ + Eample' The rd order derivative of si Substitutig m, for (.'s), si {} -r r -r si+ si cos - 6 si + 6 cos 8.. Higher Derivatives of sih, cosh ( -r) + + si + 0 si + Formula 8.. sih cosh r ( + ) ( + -r) r ( + ) ( + -r) - r e -(-) -( -r) e - - r e +( -) -( -r) e - (.s) (.c) - 6 -

7 Especially, whe m 0,,, m sih m m cosh m ( +m ) r ( +m-r) ( +m ) r ( +m-r) m- r e -(-) -( -r) e - m- r e +( -) -( -r) e - (.'s) (.'c) Eample The d order derivaive of sih Substitutig /, for (.s), sih ( /) r /-r -r e -(-) -( -r) e - ( /) sih + ( /) - cosh + 5 ( /) - sih 0 / / -/ sih + - cosh - 9-5sih Eample' The rd order derivative of sih Substitutig m, for (.'s), sih {} r -r 0 cosh + -r e -(-) -( -r) e - cosh + 6 sih + 6 cosh sih + 0 cosh - 7 -

8 8. Higher Derivative of log f 8.. Higher Derivative of ( log ) Formula 8.. log ( log ) - r -r r r (.) Let f( ) g( ) log. The ( log ) ( - r ) (-) - r- ( -r) - r, ( log ) r (-) r- ( r) r,, Substitutig these for Theorem 8.., log ( log ) ( - r ) ( log ) r r 0 ( log ) ( log ) r ( log ) ( - r ) ( log ) r r ( log ) ( - ) ( log ) (-) - log + + (-) - r ( -r) r r log - r -r r Eample The rd order derivative of ( log ) log - - log - r -r r log - ( )- ( log -6) r r 8.. Higher Derivatives of log si, log cos Formula 8.. ( log si ) log si+ r + (-) r r- r si r + ( -r) (.0s) - 8 -

9 ( log cos ) log cos+ r + (-) r r- r cos r + ( -r) (.0c) Eample The rd order derivative of log si ( log si ) log si+ -log cos + + r si + - r- r r si + r -log cos - si - cos + si - + ( -r) si + 0 si Higher Derivatives of log sih, log cosh Formula 8.. log sih log log cosh log e -(-) - e - + (-) r r- r e +( -) - e - + (-) r r- r Eample The th order derivative of log cosh ( log cosh ) log e +( -) - e - + r r r r r - r- ( r) r r e -(-) r- e - (.0s) e +( -) r- e - (.0c) e +( -) r- e - log cosh + sih - cosh + sih - cosh log cos + sih - cosh + sih - cosh - 9 -

10 8. Higher Derivative of e^ f 8.. Higher Derivative of e Formula 8.. e e ( + ) - r r ( + -r) for -,-,-, (.) e ( - +r) - r r ( -) for -,-,-, (.) - r Especially, whe m 0,,, e m e m ( +m ) r ( +m-r) m- r Substite f( ) e for Theorem The sice e ( -r ) e, we obtai the desired epressio immediately. Eample The d order derivative of e e e ( /) r /-r (.') - r e ( /) + ( /) - + ( /) - 0 / / -/ e e + - Eample The d order derivative of e / e r e ( +r) (-) r - r e e Higher Derivative of e log Formula 8.. e log e log + e (-) r r- r Let f( ) e, g( ) log. The r r (.) - 0 -

11 ( log ) r (-) r- r r r,,, Substitutig this for Theorem 8.., e log e ( log ) r r 0 e e log + e (-) r r- r r r log 0 + e r log r Eample The th order derivative of e log e log e log + e (-) r r- r r r e log + e ( ) e log + e Higher Derivatives of e si, e cos Formula 8.. e si e cos si - e si + - si e cos+ (.0s) (.0c) " 共 立 数 学 公 式 " p87 was posted as it was. Eample e si e cos si - e si + - si e cos+ e cos -e si + cos Higher Derivatives of e si, e cos ed ow. There is o ecessity for Theorem 8... However, darig use Theorem 8.., we obtai a iterestig result. Trigoometric Polyomial Formula 8..' r r si + si - si + (.s) - -

12 r Especially, whe 0 r r r cos+ - si cos+ r si si - si r cos si - cos (.c) (.'s) (.'c) Substitutig f( ) e, g( ) si, cos for Theorem 8.., e si e r si r + e cos e r r cos+ Ad comparig these with Formula 8.., we obtai the desired epressios. Whe 5, if both sides of (.s) are illustrated, it is as follows. Both overlap eactly ad blue (left) ca ot be see. Alterative Biomial Polyomial r r Removig si, cos from (.'s), (.'c), we obtai the followig iterestig polyomial. Formula 8.." Whe deotes the floor fuctio, the followig epressios hold. ( -)/ / r+ - r r - r si cos (.s) (.c) - -

13 Sice the odd-umbered terms of the left side i (.'s) are all 0, r Also, sice si r 0 si 0 + si + si + si + 5 si si/ - / i the right side i (.'s), ( -)/ r+ si - r Net, sice the eve-umbered terms of the left side i (.'c) are all 0, cos cos r Also, sice r 0 cos 0 cos cos + + si ++ si si ( -)/ - r+ cos + - / si/ - / i the right side i (.'c), / cos r - r I additio, this formula is kow. (See " 岩 波 数 学 公 式 Ⅱ" p) Note Whe k - Eample ( -)/, k,,, / r+ - r r - r si Higher Derivatives of e sih, e cosh Formula 8.. e sih e r cos (.s) cos + / cos / 5 cos - / r - r (.c) e - (-) -r e - (.0s) r - -

14 e cosh e Eample Note e sih 0 e e cosh e 0 e + (-) -r e - (.0c) r 0 e - (-) -r e - e r sih - -r e - r e + e 0 sih + cosh + sih + cosh e ( sih + cosh ) The followig formula is kow for a atural umber. e sih e cosh - e ( sih + cosh ) However, this formula does ot hold for 0. That is, i this formula, the atural umber is ietesible to the real umber p. So, this is isufficiet as a geeral formula. - -

15 8.5 Higher Derivative of f / e^ 8.5. Higher Derivative of e - Formula 8.5. e - e - - -( -r) (-) - e - Especially, whe m 0,,, e - m e - m - -( -r) ( + ) - r for -,-,-, (.) r ( + -r) ( - +r) - r for -,-,-, (.) r ( -) ( +m ) r ( +m-r) m- r Substite f( ) e - for Theorem The sice e - ( -r ) (-) -( -r) e -, we obtai the desired epressio immediately. (.') Eample The rd order derivative of e - / e - (-) - e - 0 ( +r) --r r -e e Eample' The rd order derivative of e - 7 e - 7 e - 7 -r ( 8 ) r ( 8-r) 7 7- r e ( 8) 5 + ( 8) 6 5 e Higher Derivative of e - log Formula 8.5. e - log - - r log - r r r e (.) Let f( ) e -, g( ) log. The - 5 -

16 e - ( -r ) (-) - +r e - r ( log ) r (-) r- r r,,, Substitutig these for Theorem 8.., e - log (-) - +r e - ( log ) r r 0 (-) - e - ( log ) 0 + r (-) - r e log - r r r Eample The th order derivative of e - log e log - - r log - r e log - e e log e - e 8.5. Higher Derivatives of e - si, e - cos r r (-) - +r e - ( log ) r r + ( ) + ( ) + r Formula 8.5. e - si e - cos -si - e - si - - -si e - cos- (.0s) (.0c) Replacig with - i Formula 8.., we obtai the desired epressios. Eample e - si e - cos -si - e - si - - -si e - cos- -e - cos -e - si - cos Higher Derivatives of e - sih, e - cosh ed ow. There is o ecessity for Theorem 8... Darig use Theorem 8.., we obtai the followig epressio first. -r e - si e - ( - ) r si r

17 Ad from this ad (.0s), we obtai -r ( - ) r si r + si - si - A similar epressio is obtaied about e - r r cos too. The removig si, cos from these, we obtai the completely same results as Formula 8.." Higher Derivatives of e - sih, e - cosh Formula 8.5. e - sih e - e - cosh e r - -+ r e - (-) e - (.0s) r e + (-) e - (.0c) r Substitutig f( ) e -, g( ) sih, cosh for Theorem 8.., we obtai the dsired epressios. Eample Note e - sih 0 e r 0 e - (-) -r e - e - sih r e - cosh e - (-) -+ r e r + (-) -r e cosh + sih - cosh + sih e - -e - cosh - sih The followig formula is kow for a atural umber. e - sih e - cosh (-) - e ( cosh -sih ) However, this formula does ot hold for 0. That is, i this formula, the atural umber is ietesible to the real umber p. So, this is isufficiet as a geeral formula

18 8.6 Higher Derivatives of si f, cos f 8.6. Higher Derivatives of si, cos Formula 8.6. si - cos - + cos cos - + (.0s) (.0c) From Formula 8.6.' metioed et, Here cos Usig this, Ad sice cosa cosb cos r r cos+ cos( A+B ) +cos( A-B) cos -r cos + r r + + cos -r cos +, r - r r 0 + cos ( -) r r substitutig these for the above, we obtai (.0c). (.0s) is also obtaied i a similar way. Eample si - cos - + cos cos - + cos cos - si si 8 si cos Formula 8.6.' si cos r r si+ cos+ -r si + r -r cos + r (.s) (.c) Substitutig f( ) g( ) si for Theorem 8.., we obtai (.s). (.c) is also obtaied i a similar way

19 Formula 8.6." Whe deotes the floor fuctio, the followig epressios hold. / r ( -)/ - (.e) r+ - (.o) (.s) is trasformed as follows. i.e. si / r ( -)/ + / si+ r r - r si+ ( -)/ + -r si + r r -r si + r+ si ( -r-) ( r+) + si + si+ - r si si+ si ( -r) si ( -r-) r+ si + / r O the other had, (.0s) is trasformed as follows too. cos ( -)/ - cos+ cos si si - + si - cos - + cos From these, the followig epressio follows. si + si / r - - cos + cos I order to hold this equatio for arbitrary, the followigs are ecessary. / r ( -)/ - - 0, r I additio, this formula is kow. (See " 岩 波 数 学 公 式 Ⅱ" p) ( -)/ r+ r Higher Derivatives of si, cos Formula 8.6. si cos si + cos + - si+ + cos+ (.0s) (.0c) - 9 -

20 From Formula 8.6.' metioed et, it is obtaied i a similar way i the case of the d degree. However, it is ot so easy as the case of the d degree. ( See 0.. ) Eample si cos si + cos si+ - si + si cos+ 7 si + si Formula 8.6.' si si 0 si+ - r r cos r- + cos cos 0 cos+ + r r cos r- + ( -r) r si + ( -r) r cos + (.s) (.c) Substitutig f( ) si, g( ) si for Theorem 8.., we obtai (.s). (.c) is also obtaied i a similar way. Formula 8.6." / r- ( -)/ r From (.s) r si si r+ - + (-) (.e) 0 si + si 0 si+ ( -)/ - / - r r - (.o) - r r r- cos + r+ cos r + cos r- + ( -r) r si + r+ ( -r-) si + r si + -r - 0 -

21 Whe, si - - cos si+ ( -)/ ( -r-) + r+ r si si+ - r r - r ( -)/ - / - ( r ) r- ( -r) cos si+ r+ r si cos+ / 0 - cos si+ - r r ( -)/ - r+ si cos+ / - r- cos r si+ si + - si + si + si + si + si + si + si + / r- ( - )/ r Whe, si r - cos si cos cos + si si r- cos si+ 0 - si cos + + si si - ( cos cos - si si ) + si si - cos - ( cos - cos ) - cos - si+ - +( -) r (-) + si + - cos si+ - si cos

22 / r- ( - )/ r si + si + si + si + r + 5 cos si + si cos + ( si - si ) + si + 9 si - si ( -) + r+ - -(-) Hereafter, by iductio, we obtai the desired epressios. If both sides of Formula8.6." are illustrated, it is as follows. The left side is blue lie ad the right side is red poit. - -

23 8.6. Higher Derivatives of the product of trigoometric ad hyperbolic fuctios Formula 8.6. ( sisih ) ( sicosh ) r r ( cossih ) ( coscosh ) r r si+ si+ cos+ cos+ ( -r) ( -r) ( -r) ( -r) Substitutig f( ) si, g( ) sih for Theorem 8.., we obtai (.). The others are also obtaied i a similar way. Eample ( sicosh ) r r ( coscosh ) si+ cos+ ( 0-r) ( -r) e -(-) -r e - (.) e +( -) -r e - (.) e -(-) -r e - (.) e +( -) -r e - (.) e +( -) -0 e - sicosh e +( -) -r e - 0 cosh +cos sih +cos cos+ + + cosh -coscosh - si sih + coscosh -si sih - -

24 8.7 Higher Derivatives of sih f, cosh f 8.7. Higher Derivatives of sih, cosh Formula 8.7. sih cosh e -(-) -+r e - e -(-) -r e - (.s) r e +( -) -+r e - e +( -) -r e - (.c) r Substitutig f( ) g( ) sih for Theorem 8.., we obtai (.s). (.c) is also obtaied i a similar way. Eample sih e -(-) -0+r e - e -(-) -r e - sih r cosh e +( -) -+r e - e +( -) -r e - r 0 sihcosh + coshsih + sihcosh + coshsih 8sihcosh sih Alie's Mathematics K. Koo - -

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

Gauss Radau formulae for Jacobi and Laguerre weight functions

Gauss Radau formulae for Jacobi and Laguerre weight functions Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Distances in Sierpiński Triangle Graphs

Distances in Sierpiński Triangle Graphs Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

CYLINDRICAL & SPHERICAL COORDINATES

CYLINDRICAL & SPHERICAL COORDINATES CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου

Διαβάστε περισσότερα