Solvability of a Maximum Quadratic Integral Equation of Arbitrary Orders

Σχετικά έγγραφα
2 Composition. Invertible Mappings

Uniform Convergence of Fourier Series Michael Taylor

Example Sheet 3 Solutions

Every set of first-order formulas is equivalent to an independent set

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Matrices and Determinants

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Homomorphism in Intuitionistic Fuzzy Automata

A Note on Intuitionistic Fuzzy. Equivalence Relation

SOME PROPERTIES OF FUZZY REAL NUMBERS

ST5224: Advanced Statistical Theory II

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

EE512: Error Control Coding

1. Introduction and Preliminaries.

Section 8.3 Trigonometric Equations

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

C.S. 430 Assignment 6, Sample Solutions

Homework 3 Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Reminders: linear functions

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

Second Order Partial Differential Equations

Commutative Monoids in Intuitionistic Fuzzy Sets

12. Radon-Nikodym Theorem

Congruence Classes of Invertible Matrices of Order 3 over F 2

Finite Field Problems: Solutions

Statistical Inference I Locally most powerful tests

Partial Differential Equations in Biology The boundary element method. March 26, 2013

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

5. Choice under Uncertainty

Solutions to Exercise Sheet 5

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fractional Colorings and Zykov Products of graphs

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

F A S C I C U L I M A T H E M A T I C I

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Problem Set 3: Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Areas and Lengths in Polar Coordinates

Inverse trigonometric functions & General Solution of Trigonometric Equations

The k-α-exponential Function

6.3 Forecasting ARMA processes

Other Test Constructions: Likelihood Ratio & Bayes Tests

Positive solutions for three-point nonlinear fractional boundary value problems

Math221: HW# 1 solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Areas and Lengths in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

On the Galois Group of Linear Difference-Differential Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

derivation of the Laplacian from rectangular to spherical coordinates

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Concrete Mathematics Exercises from 30 September 2016

A General Note on δ-quasi Monotone and Increasing Sequence

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

4.6 Autoregressive Moving Average Model ARMA(1,1)

Space-Time Symmetries

Memoirs on Differential Equations and Mathematical Physics

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

On a four-dimensional hyperbolic manifold with finite volume

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Chapter 3: Ordinal Numbers

Tridiagonal matrices. Gérard MEURANT. October, 2008

The behavior of solutions of second order delay differential equations

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

( y) Partial Differential Equations

Solution Series 9. i=1 x i and i=1 x i.

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Fixed point theorems of φ convex ψ concave mixed monotone operators and applications

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

New bounds for spherical two-distance sets and equiangular lines

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

D Alembert s Solution to the Wave Equation

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

The semiclassical Garding inequality

GAUGES OF BAIRE CLASS ONE FUNCTIONS

arxiv: v3 [math.ca] 4 Jul 2013

Section 7.6 Double and Half Angle Formulas

Lecture 21: Properties and robustness of LSE

n=2 In the present paper, we introduce and investigate the following two more generalized

Generating Set of the Complete Semigroups of Binary Relations

Parametrized Surfaces

Approximation of distance between locations on earth given by latitude and longitude

Srednicki Chapter 55

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Transcript:

Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 11, Number 2, pp. 93 14 (216) http://campus.mst.edu/aa Solvability of a Maximum Quadratic Integral Equation of Arbitrary Orders Mohamed Abdalla Darwish King Abdulaziz University Sciences Faculty for Girls Department of Mathematics Jeddah, Saudi Arabia dr.madarwish@gmail.com Johnny Henderson Baylor University Department of Mathematics Waco, Texas 76798-7328, USA Johnny Henderson@baylor.edu Kishin Sadarangani Universidad de Las Palmas de Gran Canaria Departamento de Matemáticas Campus de Tafira Baja, 3517 Las Palmas de Gran Canaria, Spain ksadaran@dma.ulpgc.es Abstract We investigate a new quadratic integral equation of arbitrary orders with maximum and prove an existence result for it. We will use a fixed point theorem due to Darbo as well as the monotonicity measure of noncompactness due to Banaś and Olszowy to prove that our equation has at least one solution in C[, 1] which is monotonic on [, 1]. AMS Subject Classifications: 45G1, 47H9, 45M99. Keywor: Fractional, monotonic solutions, monotonicity measure of noncompactness, quadratic integral equation, Darbo theorem. Received August 24, 216; Accepted November 27, 216 Communicated by Martin Bohner

94 M. A. Darwish, J. Henderson and K. Sadarangani 1 Introduction In several papers, among them [1,11], the authors studied differential and integral equations with maximum. In [6 9] Darwish et al. studied fractional integral equations with supremum. Also, in [4, 5], Caballero et al. studied the Volterra quadratic integral equations with supremum. They showed that these equations have monotonic solutions in the space C[, 1]. Darwish [7] generalized and extended the Caballero et al. [4] results to the case of quadratic fractional integral equations with supremum. In this paper we will study the fractional quadratic integral equation with maximum y(t) = f(t) (T y)(t) t ϕ (s)κ(t, s) max [,σ(s)] y(τ) (ϕ(t) ϕ(s)) 1β, t J = [, 1], < β < 1, (1.1) where f, ϕ : J R, T : C(J) C(J), σ : J J and κ : J J R. By using the monotonicity measure of noncompactness due to Banaś and Olszowy [3] as well as the Darbo fixed point theorem, we prove the existence of monotonic solutions to (1.1) in C[, 1]. Now, we assume that (E, ) is a real Banach space. We denote by B(x, r) the closed ball centred at x with radius r and B r B(θ, r), where θ is a zero element of E. We let X E. The closure and convex closure of X are denoted by X and ConvX, respectively. The symbols X Y and λy are using for the usual algebraic operators on sets and M E and N E stand for the families defined by M E = {A E : A, A is bounded} and N E = {B M E : B is relatively compact}, respectively. Definition 1.1 (See [2]). A function µ : M E [, ) is called a measure of noncompactness in E if the following conditions: hold. 1 {X M E : µ(x) = } = kerµ N E, 2 if X Y, then µ(x) µ(y ), 3 µ(x) = µ(x) = µ(convx), 4 µ(λx (1 λ)y ) λµ(x) (1 λ)µ(y ), λ 1 and 5 if (X n ) is a sequence of closed subsets of M E with X n X n1 (n = 1, 2, 3,...) and lim n µ(x n ) = then X = n=1x n, We will establish our result in the Banach space C(J) of all defined, real and continuous functions on J [, 1] with standard norm y = max{ y(τ) : τ J}. Next, we define the measure of noncompactness related to monotonicity in C(J); see [2, 3]. Let Y C(J) be a bounded set. For y Y and ε, the modulus of continuity of the function y, denoted by ω(y, ε), is defined by ω(y, ε) = sup{ y(t) y(s) : t, s J, t s ε}.

A Maximum Quadratic Integral Equation 95 Moreover, we let and Define and d(y) = ω(y, ε) = sup{ω(y, ε) : y Y } ω (Y ) = lim ε ω(y, ε). sup ( y(t) y(s) [y(t) y(s)]) t,s J, s t d(y ) = sup d(y). y Y Notice that all functions in Y are nondecreasing on J if and only if d(y ) =. Now, we define the map µ on M C(J) as µ(y ) = d(y ) ω (Y ). Clearly, µ satisfies all conditions in Definition 3, and therefore, it is a measure of noncompactness in C(J) [3]. Definition 1.2. Let P : M E be a continuous mapping, where M E. Suppose that P maps bounded sets onto bounded sets. Let Y be any bounded subset of M with µ(py ) αµ(y ), α, then P is called verify the Darbo condition with respect to a measure of noncompactness µ. In the case α < 1, the operator P is said to be a contraction with respect to µ. Theorem 1.3 (See [1]). Let Ω E be a closed, bounded and convex set. If P : Ω Ω is a continuous contraction mapping with respect to µ, then P has a fixed point in Ω. We will need the following two lemmas in order to prove our results [4]. Lemma 1.4. Let r : J J be a continuous function and y C(J). If, for t J, then F y C(J). (F y)(t) = max [,σ(t)] y(τ), Lemma 1.5. Let (y n ) be a sequence in C(J) and y C(J). If (y n ) converges to y C(J), then (F y n ) converges uniformly to F y uniformly on J.

96 M. A. Darwish, J. Henderson and K. Sadarangani 2 Main Theorem Let us consider the following assumptions: (a 1 ) f C(J). Moreover, f is nondecreasing and nonnegative on J. (a 2 ) The operator T : C(J) C(J) is continuous and satisfies the Darbo condition with a constant c for the measure of noncompactness µ. Moreover, T y if y. (a 3 ) There exist constants a, b such that (T y)(t) a b y y C(J), t J. (a 4 ) The function ϕ : J R is C 1 (J) and nondecreasing. (a 5 ) The function κ : J J R is continuous on J J and nondecreasing t and s separately. Moreover, κ = κ(t, s). sup (t,s) J J (a 6 ) The function σ : J J is nondecreasing and continuous on J. (a 7 ) r > such that and f κ r (a br ) (ϕ(1) ϕ()) β r (2.1) ck r < (ϕ(1) ϕ())β. Now, we define two operators K and F on C(J) as follows and (Ky)(t) = 1 t ϕ (s)κ(t, s) max [,σ(s)] y(τ) (2.2) (ϕ(t) ϕ(s)) 1β (Fy)(t) = f(t) (T y)(t) (Ky)(t), (2.3) respectively. Solving (1.1) is equivalent to find a fixed point of the operator F. Under the above assumptions, we will prove the following theorem. Theorem 2.1. Assume the assumptions (a 1 ) (a 7 ) are satisfied. Then (1.1) has at least one solution y C(J) which is nondecreasing on J. Proof. First, we claim that the operator F transforms C(J) into itself. For this, it is sufficient to show that if y C(J), then Ky C(J). Let y C(J) and t 1, t 2 J (t 1 t 2 ) such that t 2 t 1 ε for fixed ε >, then we have (Ky)(t 2 ) (Ky)(t 1 )

A Maximum Quadratic Integral Equation 97 = 1 ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) (ϕ(t 1 ) ϕ(s)) 1β 1 ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) 1 ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) 1 ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) (ϕ(t 1 ) ϕ(s)) 1β 1 1 ϕ (s) κ(t 2, s) κ(t 1, s) max [,σ(s)] y(τ) ϕ (s) κ(t 1, s) max [,σ(s)] y(τ) 1 t 1 ϕ (s) (ϕ(t 2 ) ϕ(s)) β1 (ϕ(t 1 ) ϕ(s)) β1 max y ω κ(ε,.) where we used { t 1 ϕ (s) (ϕ(t 2 ) ϕ(s)) κ y 1β [,σ(s)] ϕ (s)[(ϕ(t 1 ) ϕ(s)) β1 (ϕ(t 2 ) ϕ(s)) β1 ] } ϕ (s) (ϕ(t 2 ) ϕ(s)) 1β κ(t 1, s) y(τ) = y ω κ(ε,.)(ϕ(t 2 ) ϕ()) β κ y [ (ϕ(t 1 ) ϕ()) β (ϕ(t 2 ) ϕ()) β 2(ϕ(t 2 ) ϕ(t 1 )) β] y ω κ(ε,.)(ϕ(t 2 ) ϕ()) β 2κ y (ϕ(t 2) ϕ(t 1 )) β y ω κ(ε,.)(ϕ(1) ϕ()) β 2κ y [ω(ϕ, ε)]β, (2.4) ω κ (ε,.) = sup κ(t, s) κ(τ, s) t, τ J, tτ ε

98 M. A. Darwish, J. Henderson and K. Sadarangani and the fact that ϕ(t 1 ) ϕ() ϕ(t 2 ) ϕ(). Notice that, since the function κ is uniformly continuous on J J and the function ϕ is continuous on J, then when ε, we have that ω κ (ε,.) and ω(ϕ, ε). Therefore, Ky C(J) and consequently, Fy C(J). Now, for t J, we have Hence (Fy)(t) (T y)(t) f(t) f a b y t t ϕ (s)κ(t, s) max [,σ(s)] y(τ) (ϕ(t) ϕ(s)) 1β ϕ (s) κ(t, s) (ϕ(t) ϕ(s)) 1β f (a b y )κ y (ϕ(t) ϕ()) β. Fy f (a b y )κ y (ϕ(1) ϕ()) β. By assumption (a 7 ), if y r, we get Fy f (a br )κ r (ϕ(1) ϕ()) β r. max y(τ) [,σ(s)] Therefore, F maps B r into itself. Next, we consider the operator F on the set B r = {y B r : y(t), t J}. It is clear that B r is closed, convex and bounded. By these facts and our assumptions, we obtain F maps B r into itself. In what follows, we will show that F is continuous on B r. For this, let (y n ) be a sequence in B r such that y n y and we will show that Fy n Fy. We have, for t J, (Fy n )(t) (Fy)(t) = (T y n )(t) t ϕ (s)κ(t, s) max [,σ(s)] y n (τ) (ϕ(t) ϕ(s)) 1β (T y)(t) t ϕ (s)κ(t, s) max [,σ(s)] y(τ) (ϕ(t) ϕ(s)) 1β (T y n )(t) t ϕ (s)κ(t, s) max [,σ(s)] y n (τ) (ϕ(t) ϕ(s)) 1β (T y)(t) t ϕ (s)κ(t, s) max [,σ(s)] y n (τ) (ϕ(t) ϕ(s)) 1β (T y)(t) t ϕ (s)κ(t, s) max [,σ(s)] y n (τ) (ϕ(t) ϕ(s)) 1β

A Maximum Quadratic Integral Equation 99 (T y)(t) t (T y n)(t) (T y)(t) (T y)(t) t By applying Lemma 1.5, we get ϕ (s)κ(t, s) max [,σ(s)] y(τ) (ϕ(t) ϕ(s)) 1β t ϕ (s) κ(t, s) (ϕ(t) ϕ(s)) 1β ϕ (s) κ(t, s) max [,σ(s)] y n (τ) (ϕ(t) ϕ(s)) 1β max y n(τ) max [,σ(s)] Fy n Fy κ r (ϕ(1) ϕ()) β T y n T y By the continuity of T, n 1 N such that Also, n 2 N such that T y n T y y n y [,σ(s)] y(τ). κ (a br )(ϕ(1) ϕ()) β y n y. (2.5) ε 2κ r (ϕ(1) ϕ()) β, n n 1. ε 2κ (a br )(ϕ(1) ϕ()) β, n n 2. Now, take n max{n 1, n 2 }, then (2.5) gives us that Fy n Fy ε. This shows that F is continuous in B r. Next, let Y B r be a nonempty set. Let us choose y Y and t 1, t 2 J with t 2 t 1 ε for fixed ε >. Since no generality will loss, we will assume that t 2 t 1. Then, by using our assumptions and (2.4), we obtain (Fy)(t 2 ) (Fy)(t 1 ) f(t 2 ) f(t 1 ) (T y)(t 2 )(Ky)(t 2 ) (T y)(t 2 )(Ky)(t 1 ) (T y)(t 2 )(Ky)(t 1 ) (T y)(t 1 )(Ky)(t 1 ) ω(f, ε) (T y)(t 2 ) (Ky)(t 2 ) (Ky)(t 1 ) (T y)(t 2 ) (T y)(t 1 ) (Ky)(t 1 ) (a b y ) y [ ω(f, ε) ωκ (ε,.)(ϕ(1) ϕ()) β 2κ (ω(ϕ, ε)) β] ω(t y, ε) y κ (ϕ(t 1 ) ϕ()) β ω(f, ε) r (a br ) [ ωκ (ε,.)(ϕ(1) ϕ()) β 2κ (ω(ϕ, ε)) β]

1 M. A. Darwish, J. Henderson and K. Sadarangani Hence, κ r (ϕ(1) ϕ()) β ω(t y, ε). ω(fy, ε) ω(f, ε) r (a br ) Consequently, κ r (ϕ(1) ϕ()) β ω(t y, ε). ω(fy, ε) ω(f, ε) r (a br ) κ r (ϕ(1) ϕ()) β ω(t Y, ε). [ ωκ (ε,.)(ϕ(1) ϕ()) β 2κ (ω(ϕ, ε)) β] [ ωκ (ε,.)(ϕ(1) ϕ()) β 2κ (ω(ϕ, ε)) β] The uniform continuity of the function κ on J J and the continuity of the functions f and ϕ on J, implies the last inequality becomes ω (FY ) κ r (ϕ(1) ϕ()) β ω (T Y ). (2.6) In the next step, fix arbitrary y Y and t 1, t 2 J with t 2 > t 1. Then, by our assumptions, we have (Fy)(t 2 ) (Fy)(t 1 ) [(Fy)(t 2 ) (Fy)(t 1 )] = f(t 2) (T y)(t 2) ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) f(t 1 ) (T y)(t 1) ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) (ϕ(t 1 ) ϕ(s)) 1β [ f(t 2 ) (T y)(t 2) ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) f(t 1 ) (T y)(t ] 1) ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) (ϕ(t 1 ) ϕ(s)) 1β { f(t 2 ) f(t 1 ) [f(t 2 ) f(t 1 )]} (T y)(t 2 ) t2 ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) (T y)(t 1) ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) (T y)(t 1 ) t2 ϕ (s)κ(t 2, s) max [,σ(s)] y(τ)

A Maximum Quadratic Integral Equation 11 But = = (T y)(t 1) {[ (T y)(t2 ) (T y)(t 1) [ (T y)(t1 ) (T x)(t 1) ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) (ϕ(t 1 ) ϕ(s)) 1β ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) ] ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) ]} ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) (ϕ(t 1 ) ϕ(s)) 1β { (T y)(t 2) (T y)(t 1 ) [(T y)(t 2 ) (T y)(t 1 )]} ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) (T y)(t { 1) t2 ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) (ϕ(t 1 ) ϕ(s)) 1β [ ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) ]} ϕ (s)κ(t 1, s) max [,σ(s)] y(τ). (2.7) (ϕ(t 1 ) ϕ(s)) 1β ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) (ϕ(t 1 ) ϕ(s)) 1β ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) t2 ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) t1 ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) t1 ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) (ϕ(t 1 ) ϕ(s)) 1β ϕ (s)(κ(t 2, s) κ(t 1, s)) max [,σ(s)] y(τ) ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) t 1 t1 κ(t 1, s)[(ϕ(t 2 ) ϕ(s)) β1 (ϕ(t 1 ) ϕ(s)) β1 ] max y(τ). [,σ(s)]

12 M. A. Darwish, J. Henderson and K. Sadarangani Since κ(t 2, s) κ(t 1, s) (κ(t, s) is nondecreasing with respect to t), we have and, since ϕ (s)(κ(t 2, s) κ(t 1, s)) max [,σ(s)] y(τ) (2.8) 1 (ϕ(t 2 ) ϕ(s)) 1 1β (ϕ(t 1 ) ϕ(s)) for s [, t 1) then 1β ϕ (s)κ(t 1, s)[(ϕ(t 2 ) ϕ(s)) β1 (ϕ(t 1 ) ϕ(s)) β1 ] max t 1 t1 t 1 ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) [,σ(s)] y(τ) ϕ (s)κ(t 1, t 1 )[(ϕ(t 2 ) ϕ(s)) β1 (ϕ(t 1 ) ϕ(s)) β1 ] max [,σ(t 1 )] y(τ) ϕ (s)κ(t 1, t 1 ) max [,σ(t1)] y(τ) = κ(t 1, t 1 ) max [,σ(t 1 )] y(τ) [ ϕ (s) = κ(t 1, t 1 ) (ϕ(t 2) ϕ()) β (ϕ(t 1 ) ϕ()) β β. Finally, (2.8) and (2.9) imply that max y(τ) [,σ(t 1 )] ] ϕ (s) (ϕ(t 1 ) ϕ(s)) 1β (2.9) ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) The above inequality and (2.7) lea us to ϕ (s)κ(t 1, s) max [,σ(s)] y(τ) (ϕ(t 1 ) ϕ(s)) 1β. Thus, and therefore, (Fy)(t 2 ) (Fy)(t 1 ) [(Fy)(t 2 ) (Fy)(t 1 )] (T y)(t 2) (T y)(t 1 ) [(T y)(t 2 ) (T y)(t 1 )] ϕ (s)κ(t 2, s) max [,σ(s)] y(τ) κ r (ϕ(1) ϕ()) β d(t y). d(fy) κ r (ϕ(1) ϕ()) β d(t y) d(fy ) κ r (ϕ(1) ϕ()) β d(t Y ). (2.1)

A Maximum Quadratic Integral Equation 13 Finally, (2.6) and (2.1) give us that or ω (FY ) d(fy ) κ r (ϕ(1) ϕ()) β (ω (FY ) d(t Y )) µ(fy ) r κ (ϕ(1) ϕ()) β µ(t Y ) κ cr (ϕ(1) ϕ()) β µ(y ). κ r c Since < (ϕ(1) ϕ())β, F is a contraction operator with respect to µ. Finally, by Theorem 1.3, F has at least one fixed point, or equivalently, (1.1) has at least one nondecreasing solution in B r. This finishes our proof. Next, we present the following numerical example in order to illustrate our results. Example 2.2. Let us consider the following integral equation with maximum y(t) = arctan t y(t) t t2 s 2 max [,ln(s1)] y(τ) 5Γ(1/2) 2 s 1, t J. (2.11) t 1 s 1 Notice that (2.11) is a particular case of (1.1), where f(t) = arctan t, (T y)(t) = y(t)/5, β = 1/2, ϕ(s) = s 1, κ(t, s) = t 2 s 2 and σ(t) = ln(t 1). It is not difficult to see that assumptions (a 1 ), (a 2 ), (a 3 ), (a 4 ), (a 5 ) and (a 6 ) are verified with f = π/4, c = 1/5, a =, b = 1/5 and κ = 2. Now, the inequality (2.1) in assumption (a 7 ) takes the expression π 4 which is satisfied by r = 1. Moreover, cκ r = 2 2 1 r 2 r 5Γ(3/2) 2 5Γ(3/2) =.32 < (ϕ(1) ϕ()) β = 1 2 1 = 1.56. Therefore, by Theorem 2.1, (2.11) has at least one continuous and nondecreasing solution which is located in the ball B 1. Acknowledgements The first author s permanent address is Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt.

14 M. A. Darwish, J. Henderson and K. Sadarangani References [1] D. Bainov and D. Mishev, Oscillation Theory for Neutral Differenial Equations with Delay, Hilger, Bristol, 1991. [2] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, 6, Marcel Dekker, New York, 198. [3] J. Banaś and L. Olszowy, Measures of noncompactness related to monotonicity, Comment. Math. 41 (21), 13 23. [4] J. Caballero, B. López and K. Sadarangani, On monotonic solutions of an integral equation of Volterra type with supremum, J. Math. Anal. Appl. 35 (25), 34 315. [5] J. Caballero, B. López, K. Sadarangani, Existence of nondecreasing and continuous solutions for a nonlinear integral equation with supremum in the kernel, Z. Anal. Anwend. 26 (27) 195 25. [6] J. Caballero, M. A. Darwish and K. Sadarangani, Solvability of a fractional hybrid initial value problem with supremum by using measures of noncompactness in Banach algebras, Appl. Math. Comput. 224 (213), 553 563. [7] M. A. Darwish, On monotonic solutions of a singular quadratic integral equation with supremum, Dynam. Systems Appl. 17 (28), 539 549. [8] M. A. Darwish and K. Sadarangani, Nondecreasing solutions of a quadratic Abel equation with supremum in the kernel, Appl. Math. Comput. 219 (213), 783 7836. [9] M. A. Darwish and K. Sadarangani, On a quadratic integral equation with supremum involving Erdélyi-Kober fractional order, Math. Nachr. 288 (215), 566 576. [1] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw, 1982. [11] S. G. Hristova and D. D. Bainov, Monontone iterative techniques for V. Lakshmikantham for a boundary value problem for systems of impulsive differential equations with supremum, J. Math. Anal. Appl. 172 (1993), 339 352.