L 0 Tuto Rfcton of pn wvs Wv mpdnc of th tot fd
Rfcton of M wvs Rfcton tks pc whn n M wv hts on bound. Pt of th wv gts fctd, nd pt of t gts tnsmttd. Popgton dctons nd mptuds of th fctd nd tnsmttd wvs dpnd on bound condtons t th ntfc nd mt popts of th two md spctv. Anss pocdu: Dtmn pssons of th ncdnt pn wv ( &. Dtmn pssons of th fctd pn wv ( &. Dtmn pssons of th tnsmttd pn wv ( t & t f ncss. It dpnds on ntnsc mpdncs of th two md. Dtmn mptuds of fctd nd tnsmttd pn wvs wth th d of fcton nd tnsmsson coffcnts. pss th mptuds n tms of ncdnt mptud, 0. Dtmn pn wv pssons n mdum nd. Sum up pssons of ncdnt nd fctd wvs to gv pn wv psson n mdum. psson of tnsmttd pn wv s d th on n mdum.
mp
mp (cont. snθ n cosθ snθ cosθ 8 sn θ cos θ 0 ± but, 0 λ > 0 n 4 5 5 4 5 5
mp (cont. n θ θ cos sn [ ] n θ θ sn cos 0 0 0 0 (,,, 8 8 sn 8 0 sn 8 0 0,,, 8 8 8 8 sn 8 0 cos8 5 sn 8 0 cos8 5 0 5
mp
Souton: mp (cont. 0 0 ( snθ cosθ ( snθ cosθ ( cosθ snθ 0 0 ( snθ cosθ ( snθ cosθ ( cosθ snθ cosθ cosθ ( sn( cosθ snθ 0 0 0 snθ [ ] θ θ snθ cosθ cosθ snθ cosθ cosθ [ θ ( θ ( ] cos sn 0 snθ cos θ { θ [ cos( cosθ ] snθ [ sn( cos ]} ( [ sn( cosθ ] sn( ωt snθ 0 (nstntnous fom 0 { cosθ [ cos( cosθ ] cos( ωt snθ snθ [ sn( cosθ ] sn( ωt snθ } (b 0 ( snθ sn ( cosθ P v R tm vnshs bcus nd n tm qudtu. Rc: snθ cosθdθ 0 0 R( 0 P v
Rfcton of M wvs Consd nom ncdnc t pn dctc bound Rfcton coffcnt 0 Γ 0 Tnsmsson coffcnt t0 τ..: Γ τ 0 Popts: Γ s dmnsonss. It cn th b postv, ngtv o comp. A comp Γ (o τ mns phs shft s ntoducd t th ntfc upon fcton (o tnsmsson. Consd pn wv psson n mdum : Γ 0 0[ ( Γ Γ( ] [ τ Γ( sn ] 0 0 [ τ cos( ωt Γsn sn ωt] (nstntnous fom Tvng wv Stndng wv (ng dos not popgt
mp Suppos pn wv pod n -dcton nd popgtng n - dcton s ncdnt nom fom mdum (ε, μ to mdum (ε, μ (both ossss t 0. Amptud of th ctc fd ntnst n mdum s wh fqunc nd nt phs s f 0 nd o spctv. Fnd: ( ntnsc mpdncs nd phs constnt of th two md. (b nstntnous fom of ctc nd mgntc fd ntnsts n th two md. pss thm n tms on,, tnsmsson nd fcton coffcnt ( nd τ. Γ
mp (cont. Souton: ( Intnsc mpdnc of mdum nd spctv μ μ nd ε ε Phs constnt of mdum chctd b ε nd μ s k ω με f 0 με Thfo, phs constnt of mdum nd spctv ε f0 μ nd f 0 με (b ( Γ [ τ ( ωt sn snωt] cos Γ (fom sd 8 t τ τ ( ωt cos
mp (cont. (b (cont. ( ( ( Γ [( Γ Γ( ] [( Γ Γ( sn ] [( Γ cos( ωt Γsn snωt] Stps sm to thos n sd 8. t ( τ τ
Wv mpdnc of th tot fd Z Γ Z Γ Γ Z Γ Γ, wh 0 Γ Γ Wv mpdnc t pn p to th bound pn ong -s s dfnd b: Suppos, n mdum, Thfo, wv mpdnc n mdum, Bcus w on concn Z n mdum, t s mo convnnt to pmt Z b postv vb. W put. Thn, Z sn cos sn cos Z cn so b pssd s
mp 4 A pn wv of λ cm, n f-spc, s ncdnt nom on sht of substt (ε 4.9, α 0, fnd: ( thcknss of th sht such tht no fcton occus. (b to of tnsmttd to ncdnt pow f wv fqunc s dcsd b 0%. Lt mdum nd b f-spc nd mdum b th substt.
mp 4 (cont. ( In mdum, Z ( Souton: cos cos sn sn Sm, n mdum, Z ( 0 cos d cos d sn d sn d Fo no fcton, w put Γ ( 0 Z Z ( 0 ( 0 0 Thfo, ( cos sn d ( cos d d d sn B compng nd mgn pt of both sds, w hv: ( cos 0 cos d cos d d (ctd snc ( sn 0 sn d sn d d Suppos, Put n, d nλ sn d 0 d n d.5 λ.777 mm 8 c 0 0 f 0 λ 0 8 c 0 u 5.5 0 μ ε ε 4.9 u λ f 5.5 0 0 0.55 mm m/s
mp 4 (cont. (b Ω 0 Ω 70.07 4.9 0 0 0 ε ε μ μ 0 9 0.9 0 9 0 f Fo - nd -fd n mdum, w hv: d d d d d d Γ Γ d d 5.7 8 0. d Γ, wh Γ Γ 0 At 0, Γ Γ Γ Γ Γ Γ.95 0. 4.9 4.9 4.9 4.9 Γ Γ 0. Thn,
mp 4 (cont. (b (cont. S v S v Lt nd b vg ncdnt nd fctd pow spctv, such tht: S v nd S v Lt S v b vg tnsmttd pow, such tht: S v S v S v Thfo, S S v v 0. 0.9