Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com
|
|
- Ὅμηρ Ουζουνίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com
2 . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge e t 5 7 O 7 e t O e Ike e t I e e f I t I I I o I *M545A08*
3 . Sttig fom the efiitios of sih cosh i tems of epoetils, pove tht cosh sih Leve lk Solve the equtio cosh sih 5, givig ou swes s ect logithms. I si ti I t Ece e I t e e I t e e t I I t t e e K cosh sih5 I t Sih sih 5 Sih Sih Sih 4 0 Sih 7 si.h so Iz o Sih sih Z o se sihf I Ztf o I 55 I *N589RA068*
4 5. The cuve C hs equtio sih, the cuve C hs equtio e. Leve lk Sketch the gph of the cuves C C o oe set of es, givig the equtio of smptote the cooites of poits whee the cuves coss the es. 4 Solve the equtio sih e, givig ou swe i the fom l k, whee k is itege. 5 µ o p o 7 Smh Je o e I flk e o 7 si e e EZ e 9e e e 6 Ge e K to 9e 0 o oots EZ 0 e I *P544A08* zl
5 Questio 5 cotiue f 5cos.hu 4Sih Ele te q e e Ee t e Iz e t 95 f 5 e t 9 e 7 5 e t 9 e to t 9 toe e toe 9 0 e e 9 o e o e 9 0 O I 9 Leve lk *P544A08* Tu ove
6 7. f 5cosh 4sih, R c Show tht f e 9e Hece solve f 5 c show tht l l fi 5cosh 4sih π 8 I fi 5coh lis I Is Zz ELIA si *P40A0* e ti'ed t l Ti't ELE I 8 Is Let u 4 5 e IT.se u Leve lk e oc
7 Questio 7 cotiue Itesect whe g 6E e't e 9 E e e e t e 9 e te e t e 9 to 4 9 e t 0 4 e e to 4 e o e I I I *P40A0* Leve lk Tu ove
8 7. I Leve lk Ae 9 Sih Gosh I't O 9 Zeoshoe 6 sih Figue The cuves show i Figue hve equtios It cosh 9 sih Iz Iz 9k Usig the efiitios of sih cosh i tems of e, fi ect vlues fo the -cooites of the two poits whee the cuves itesect. 6 9 I 7 t 9A 7 The fiite egio etwee the two cuves is show she i Figue. Usig clculus, fi the e of the she egio, givig ou swe i the fom l c, whee, c e iteges. 94 t I 4 Ig 4 4 *P4956A04*
9 Questio 7 cotiue Leve lk *P4956A05* 5 Tu ove
10 0 Eecel AS/A level Mthemtics Fomule List: Futhe Pue Mthemtics FP Issue Septeme 009 Futhe Pue Mthemtics FP Cites sittig FP m lso equie those fomule liste ue Futhe Pue Mthemtics FP, Coe Mthemtics C C4. Vectos The esolve pt of i the iectio of is. The poit iviig AB i the tio µ λ : is µ λ λ µ Vecto pouct: ˆ si k j i θ c. c. c. c c c If A is the poit with positio vecto k j i the iectio vecto is give k j i, the the stight lie though A with iectio vecto hs ctesi equtio λ z The ple though A with oml vecto k j i hs ctesi equtio. z 0 whee The ple though o-collie poits A, B C hs vecto equtio c c µ λ µ λ µ λ The ple though the poit with positio vecto pllel to c hs equtio c t s The pepeicul istce of,, γ β α fom 0 z is γ β α.
11 Hpeolic fuctios cosh sih sih sih cosh cosh cosh sih cosh l{ } sih l{ } th l < Coics Ellipse Pol Hpeol Rectgul Hpeol St Fom 4 c Pmetic Fom cosθ, siθ t, t sec θ, t θ ± cosh θ, sih θ ct, c t Ecceticit e < e e e > e e Foci ± e, 0, 0 ± e, 0 ± c, ± c Diectices ± e ± ± c e Asmptotes oe oe ± 0, 0 Eecel AS/A level Mthemtics Fomule List: Futhe Pue Mthemtics FP Issue Septeme 009
12 Diffeetitio f f csi ccos ct sih cosh cosh sih th sech sih cosh th Itegtio costt; > 0 whee elevt f f sih cosh cosh sih th l cosh csi ct < cosh, l{ } sih, l l l { } th > < Eecel AS/A level Mthemtics Fomule List: Futhe Pue Mthemtics FP Issue Septeme 009
13 Eecel AS/A level Mthemtics Fomule List: Futhe Pue Mthemtics FP Issue Septeme 009 Ac legth s ctesi cooites t t t s pmetic fom Sufce e of evolutio S s π π t t t π
14 Futhe Pue Mthemtics FP Cites sittig FP m lso equie those fomule liste ue Coe Mthemtics C C. Summtios 6 4 Numeicl solutio of equtios The Newto-Rphso itetio fo solvig f 0 : f f Coics Pol Rectgul Hpeol St Fom 4 c Pmetic Fom t, t ct, c t Foci, 0 Not equie Diectices Not equie Mti tsfomtios Aticlockwise ottio though θ out O: cosθ siθ siθ cosθ Reflectio i the lie cos θ si θ tθ : si θ cos θ I FP, θ will e multiple of Eecel AS/A level Mthemtics Fomule List: Futhe Pue Mthemtics FP Issue Septeme 009
15 Coe Mthemtics C4 Cites sittig C4 m lso equie those fomule liste ue Coe Mthemtics C, C C. Itegtio costt f f sec k t k k t l sec cot l si cosec l cosec cot, l t sec l sec t, l t 4 π v u u uv v Eecel AS/A level Mthemtics Fomule List: Coe Mthemtics C4 Issue Septeme 009 7
16 Coe Mthemtics C Cites sittig C m lso equie those fomule liste ue Coe Mthemtics C C. Logithms epoetils e l Tigoometic ietities si A ± B si Acos B ± cos Asi B cos A ± B cos Acos B si Asi B t A ± t B t A ± B A ± B k t A t B A B A B si A si B si cos A B A B si A si B cos si A B A B cos A cos B cos cos A B A B cos A cos B si si π Diffeetitio f t k sec cot cosec f g f k sec k sec t cosec cosec cot f g f g g 6 Eecel AS/A level Mthemtics Fomule List: Coe Mthemtics C Issue Septeme 009
17 Eecel AS/A level Mthemtics Fomule List: Coe Mthemtics C Issue Septeme Coe Mthemtics C Cites sittig C m lso equie those fomule liste ue Coe Mthemtics C. Cosie ule c c cos A Biomil seies whee!!! C <, Logithms epoetils log log log Geometic seies u S S fo < Numeicl itegtio The tpezium ule: h{ 0... }, whee h
18 Coe Mthemtics C Mesutio Sufce e of sphee 4π Ae of cuve sufce of coe π slt height Aithmetic seies u S l [ ] 4 Eecel AS/A level Mthemtics Fomule List: Coe Mthemtics C Issue Septeme 009
PhysicsAndMathsTutor.com
PhysicsAMthsTuto.com . Leve lk A O c C B Figue The poits A, B C hve positio vectos, c espectively, eltive to fie oigi O, s show i Figue. It is give tht i j, i j k c i j k. Clculte () c, ().( c), (c) the
Διαβάστε περισσότεραEdexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com
Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45
Διαβάστε περισσότεραphysicsandmathstutor.com
physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o
Διαβάστε περισσότεραList MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)
List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS
Διαβάστε περισσότεραGCE Edexcel GCE in Mathematics Mathematical Formulae and Statistical Tables
GCE Edecel GCE Mthemtcs Mthemtcl Fomule d Sttstcl Tles Fo use Edecel Advced Susd GCE d Advced GCE emtos Coe Mthemtcs C C4 Futhe Pue Mthemtcs FP FP Mechcs M M5 Sttstcs S S4 Fo use fom Jue 009 Ths cop s
Διαβάστε περισσότερα[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3
Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-
Διαβάστε περισσότεραFourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function
Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..
Διαβάστε περισσότεραGCE Edexcel GCE in Mathematics Mathematical Formulae and Statistical Tables
GCE Edecel GCE Mthemtcs Mthemtcl Fomule d Sttstcl Tles Fo use Edecel Advced Susd GCE d Advced GCE emtos Coe Mthemtcs C C4 Futhe Pue Mthemtcs FP FP Mechcs M M5 Sttstcs S S4 Fo use fom Ju 009 UA08598 TABLE
Διαβάστε περισσότεραCHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar
CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.
Διαβάστε περισσότεραSHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12
SHORT REVISION Trigoometric Rtios & Idetities BASIC TRIGONOMETRIC IDENTITIES : ()si θ + cos θ ; si θ ; cos θ θ R (b)sec θ t θ ; sec θ θ R (c)cosec θ cot θ ; cosec θ θ R IMPORTANT T RATIOS: ()si π 0 ; cos
Διαβάστε περισσότεραMATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Διαβάστε περισσότεραTutorial Note - Week 09 - Solution
Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5
Διαβάστε περισσότεραThe Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
Διαβάστε περισσότεραIIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Διαβάστε περισσότεραL.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
Διαβάστε περισσότεραPolynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation
Qudrti Equtios d Iequtios Polyomil Algeri epressio otiig my terms of the form, eig o-egtive iteger is lled polyomil ie, f ( + + + + + +, where is vrile,,,, re ostts d Emple : + 7 + 5 +, + + 5 () Rel polyomil
Διαβάστε περισσότεραCHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Διαβάστε περισσότεραe t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2
Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,
Διαβάστε περισσότεραTrigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Διαβάστε περισσότεραQuadruple Simultaneous Fourier series Equations Involving Heat Polynomials
Itertiol Jourl of Siee Reserh (IJSR ISSN (Olie: 39-764 Ie Coperius Vlue (3: 6.4 Ipt Ftor (3: 4.438 Quruple Siulteous Fourier series Equtios Ivolvig Het Poloils Guj Shukl, K.C. Tripthi. Dr. Aekr Istitute
Διαβάστε περισσότερα1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Διαβάστε περισσότεραn r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Διαβάστε περισσότεραIntroduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
Διαβάστε περισσότερα(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
Διαβάστε περισσότεραAppendix B: Mathematical Formulae and Statistical Tables
Aedi B: Mathematical Formulae ad Statistical Tables Pure Mathematics Mesuratio Surface area of shere = π r Area of curved surface of coe = π r slat height Trigoometry a = b + c bccosa Arithmetic Series
Διαβάστε περισσότεραDIPLOMA PROGRAMME MATHEMATICS HL FURTHER MATHEMATICS SL INFORMATION BOOKLET
b DIPLOMA PROGRAMME MATHEMATICS HL FURTHER MATHEMATICS SL INFORMATION BOOKLET For use by techers d studets, durig the course d i the emitios First emitios 006 Itertiol Bcclurete Orgiztio Bueos Aires Crdiff
Διαβάστε περισσότεραLIST OF FORMULAE STATISTICAL TABLES MATHEMATICS. (List MF1) AND
ADVANCED SUBSIDIARY GENERAL CERTIFICATE OF EDUCATION ADVANCED GENERAL CERTIFICATE OF EDUCATION MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES (List MF) MF CST5 Jauary 007 Pure Mathematics Mesuratio
Διαβάστε περισσότεραMEI EXAMINATION FORMULAE AND TABLES (MF2)
MEI EXAMINATION FORMULAE AND TABLES (MF) For use with: Advaced Geeral Certificate of Educatio Advaced Subsidiary Geeral Certificate of Educatio MEI STRUCTURED MATHEMATICS ad Advaced Subsidiary GCE QUANTITATIVE
Διαβάστε περισσότεραPerturbation Series in Light-Cone Diagrams of Green Function of String Field
Petuto Sees ht-coe Dms of ee Fucto of St Fel Am-l Te-So Km Chol-M So- m Detmet of Eey Scece Km l Su Uvesty Pyoy DPR Koe E-y Km l Su Uvesty Pyoy DPR Koe Detmet of Physcs Km l Su Uvesty Pyoy DPR Koe Astct
Διαβάστε περισσότεραOn Quasi - f -Power Increasing Sequences
Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008
Διαβάστε περισσότεραFundamental Equations of Fluid Mechanics
Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.
Διαβάστε περισσότεραExample 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Διαβάστε περισσότεραPresentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
Διαβάστε περισσότεραPhysics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.
Physics 55 Fll 25 Pctice Midtem Solutions The midtem will e 2 minute open ook, open notes exm. Do ll thee polems.. A two-dimensionl polem is defined y semi-cicul wedge with φ nd ρ. Fo the Diichlet polem,
Διαβάστε περισσότεραVidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
Διαβάστε περισσότεραΠαραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου
Διαβάστε περισσότεραAnalytical Expression for Hessian
Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that
Διαβάστε περισσότεραα β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
Διαβάστε περισσότεραMathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
Διαβάστε περισσότεραSolve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Διαβάστε περισσότεραReview Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
Διαβάστε περισσότεραLaplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
Διαβάστε περισσότεραAquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Διαβάστε περισσότεραSixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES
Sixth Term Examiatio Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Pure Mathematics Mesuratio Surface area of sphere = 4πr Area of curved surface of coe = πr slat height Trigoometry a = b
Διαβάστε περισσότερα(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ
Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΕΡΓΑΣΤΗΡΙΟΥ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔ. ΕΤΟΣ 08-09 ΔΙΔΑΣΚΩΝ : Χ. Βοζίκης ΟΝΟΜΑΤΕΠΩΝΥΜΟ Αριθμός
Διαβάστε περισσότεραSpace Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότερα17 Monotonicity Formula And Basic Consequences
Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.).
Διαβάστε περισσότερα8πε0. 4πε. 1 l. πε0 Φ =
. Two concentic sphees hve dii, b (b nd ech is divided into two heisphees by the se hoizont pne. The uppe heisphee of the inne sphee nd the owe heisphee of the oute sphee e intined t potenti V. The othe
Διαβάστε περισσότερα九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )
九十七學年第一學期 PHY 電磁學期中考試題 ( 共兩頁 ) [Giffiths Ch.-] 補考 8// :am :am, 教師 : 張存續記得寫上學號, 班別及姓名等 請依題號順序每頁答一題 Useful fomulas V ˆ ˆ V V = + θ+ V φ ˆ an θ sinθ φ v = ( v) (sin ) + θvθ + v sinθ θ sinθ φ φ. (8%,%) cos
Διαβάστε περισσότεραECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE
ECE 6382 Fall 2017 David R. Jackso Notes 21 Bessel Fuctio Examples Notes are from D. R. Wilto, Dept. of ECE Note: j is used i this set of otes istead of i. 1 Impedace of Wire A roud wire made of coductig
Διαβάστε περισσότερα21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics
I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized
Διαβάστε περισσότεραIf we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Διαβάστε περισσότεραIf we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Διαβάστε περισσότεραVEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor
VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt
Διαβάστε περισσότεραOscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
Διαβάστε περισσότεραrs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Διαβάστε περισσότεραSOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES
Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:
Διαβάστε περισσότεραSUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Διαβάστε περισσότεραFREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
Διαβάστε περισσότεραΣχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν
Διαβάστε περισσότεραDIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET
b DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET For use by teachers ad studets, durig the course ad i the examiatios First examiatios 006 Iteratioal Baccalaureate Orgaizatio Bueos Aires Cardiff
Διαβάστε περισσότερα2 ΑΛΓΕΒΡΑ. 2.1 Ταυτότητες
SECTIN ΑΛΓΕΒΡΑ. Ταυτότητες ( ) + ( + ) + + ( ) 3 3 3 + 3 3 ( + ) 3 3 + 3 + 3 + 3 ( ) 4 4 4 3 + 6 4 3 + 4 ( + ) 4 4 + 4 3 + 6 + 4 3 + 4 ( )( + ) 3 3 ( )( + + ) 3 + 3 ( + )( + ) 4 4 ( )( + )( + ) 4 + 4 (
Διαβάστε περισσότεραMatrix Hartree-Fock Equations for a Closed Shell System
atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has
Διαβάστε περισσότεραANTENNAS and WAVE PROPAGATION. Solution Manual
ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραTo find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.
Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The
Διαβάστε περισσότεραss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
Διαβάστε περισσότεραOscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by
5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)
Διαβάστε περισσότεραr = x 2 + y 2 and h = z y = r sin sin ϕ
Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations
Διαβάστε περισσότεραSynthetic Aperture Radar Processing
Synthetic Apetue Rd Pocessing SAR nd IFSAR Giogio Fnceschetti Univesit Fedeico II Npoli Itly 1 REFERENCE TEXT Giogio Fnceschetti Riccdo Lni SYNTHETIC APERTURE RADAR PROCESSING TECHNIQUES CRC Pess BOCA
Διαβάστε περισσότεραΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα
Διαβάστε περισσότεραReview Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Διαβάστε περισσότεραHomework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
Διαβάστε περισσότεραLifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Διαβάστε περισσότεραGeneral Certificate of Education
Fomule ttstcl Tbles fo GCE Mthemtcs GCE ttstcs Fst Issue eptembe 004 Fo the ew specfctos fo fst techg fom eptembe 004 GCE Mthemtcs ADVANCED UBIDIARY MATHEMATIC (56) ADVANCED UBIDIARY PURE MATHEMATIC (566)
Διαβάστε περισσότεραExercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Διαβάστε περισσότεραΓενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο
πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση του αριθμού του οικονομικά ενεργού
Διαβάστε περισσότεραLecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1
Lecue 6 Goals: Deemine e opimal esold, file, signals fo a binay communicaions poblem VI- Minimum Aveage Eo Pobabiliy Poblem: Find e opimum file, esold and signals o minimize e aveage eo pobabiliy. s s
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραΓενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο
απασχολούμενου πληθυσμού - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού υπολογίζεται με τη διαίρεση του αριθμού του ισοδύναμου πλήρως
Διαβάστε περισσότεραCurvilinear Systems of Coordinates
A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce
Διαβάστε περισσότεραQ π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Διαβάστε περισσότεραOptimal Placing of Crop Circles in a Rectangle
Optiml Plcing of Cop Cicles in Rectngle Abstct Mny lge-scle wteing configutions fo fming e done with cicles becuse of the cicle s pcticlity, but cicle obviously cnnot tessellte plne, no do they fit vey
Διαβάστε περισσότερα8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..
இர மத ப பண கள வ ன க கள 1.கணங கள ம ச ப கள ம 1. A ={4,6.7.8.9}, B = {2,4,6} C= {1,2,3,4,5,6 } i. A U (B C) ii. A \ (C \ B). 2.. i. (A B)' ii. A (BUC) iii. A U (B C) iv. A' B' v. A\ (B C) 3. A = { 1,4,9,16
Διαβάστε περισσότεραΓενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο
15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού
Διαβάστε περισσότερα(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ
Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΕΡΓΑΣΤΗΡΙΟΥ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔ. ΕΤΟΣ 8-9 ΔΙΔΑΣΚΩΝ : Χ. Βοζίκης ΟΝΟΜΑΤΕΠΩΝΥΜΟ Αριθμός
Διαβάστε περισσότερα( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution
L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)
Διαβάστε περισσότεραΠοσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο
Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών υπολογίζεται με
Διαβάστε περισσότεραJEE-2015 : Advanced Paper 2 Answers and Explanations
CDE 5 JEE-5 : dvaced Paper swers ad Explaatios Physics Chemistry Mathematics 6 C 8 5 D B,D 6 5,D,C 6 B 5 B,C,D D 9 5,B 5 5,B 5 9 5 B,C 5 7 55,B,D 6 6 B,C 6 8 6 C,D 6 9 56,C 7 7 7,D 7 7 C 7 57,B 8 8,C 8
Διαβάστε περισσότεραSimilarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
Διαβάστε περισσότεραΠοσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο
οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών υπολογίζεται με τη διαίρεση
Διαβάστε περισσότεραSolutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Διαβάστε περισσότεραΜερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο
Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το μερίδιο εργοδοτουμένων με μερική ή/και προσωρινή απασχόληση
Διαβάστε περισσότεραP P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Διαβάστε περισσότεραMock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Διαβάστε περισσότεραPARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Διαβάστε περισσότεραDifferential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Διαβάστε περισσότεραSolutions Ph 236a Week 2
Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................
Διαβάστε περισσότεραCERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS
Asia Pacific Joual of Mathematics, Vol. 5, No. 08, 9-08 ISSN 57-05 CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS M.I.QURESHI, SULAKSHANA BAJAJ, Depatmet of
Διαβάστε περισσότερα