HPLC 527 2 ECONOMOU A FIELDEN P R. Applications potentialities and limitations of adsorptive stripping analysis on mercury film electrodesj. Trends Anal Chem 1997 16 5 286-292. 3 OL IVEIRA M FSACZK A AOKUMURA L Let al. Simultaneous determination of zinc copper lead and cadmuth in fuel ethanol by anodic stripping voltammetry using a glassy carbon-mercury-film electrodej. Anal Bioanal Chem 2004 380 1 135-140. 4 BA BAEI ASHAMS ESAMADZADEH A. Simultaneous determination of copper bismuth and lead by adsorptive stripping voltammetry in the presence of thymolphthalexonej. Anal Sci 2006 22 955-959. 7 DU XIAOYAN GONG WEILEI ZHANG YUXUE et al. Bismuth film-modified gold electrodes for the determination of trace level of heavy metals in vegetablesj. Sensor Lett 2007 5 572-577. 8. J. 2008 36 2 177-181. 9 BABKINA S S ULAKHOVICH N A. Complexing of heavy metals with DNA and new bioaffinity method of their determination based on amperometric DNA-based biosensorj. Anal Chem 2005 77 5678-5685. 10HOCEVAR S B SVANCARA IOGOREVC B. Antimony film electrode for electrochemical stripping analysisj. Anal Chem 5. K 2007 79 8639-8643. J. 2000 28 2 194-196. 11. 6. Pb CdJ. 2011 34 1 40-43. J. 2002 30 11 1367-1370. HPLC 100013 15 HPLC CAPCELL PAK C 18 MG 250 mm 4. 6 mm 5 μm - - 20 mmol / L 450 530 600 nm 2 ~ 50 μg / ml r 0. 99 15 0. 05 ~ 0. 53 mg / kg 15 73. 68% ~ 89. 33% n = 6 0. 8% ~ 8. 1% 15 HPLC O657. 72 X836 B 1004-8456 2011 06-0527-05 Methodology of simultaneous determination of illegally added industrial dye in condiments by HPLC Zhao HaiyanZhao RongLi BingChen Zhonghui Wu Guohua Beijing Center for Disease Prevention and ControlBeijing 100013China Abstract Objective To determine 15 kinds of industrial dyes simultaneously in condiments with high performance liquid chromatography HPLC. Methods Samples were separated on a CAPCELL PAK C 18 MG 250 mm 4. 6 mm 5 μm chromatographic column and gradient eluted with nitrofuran-acetonitrile-20 mmol / Lammonium acetate and detected at 450530 and 600 nm. Results The calibration curve showed good linearity in the rang of 2 ~ 50 μg / mland the correlation coefficients were better than 0. 99. The limits of detection were in the rang of 0. 05 ~ 0. 53 mg / kg. The recoveries of standard addition at three levels was 73. 68% ~ 89. 33% and the RSD n = 6 was 0. 8% ~ 8. 1%. Conclusion The method was sensitive and accurateit could be used for the detection of the 15 kinds of industrial dyes in condiments simultaneously. Key words Industrial dye Sudan Condiment HPLC food contaminants food safety 2011-04-27 QN - 2007-16 E-mail zhaohy_yan@ hotmail. com
528 CHINESE JOURNAL OF FOOD HYGIENE 2011 23 6 Chrysoidine G 250 mm 5 μm Rhodamine B Ⅱ Orange Ⅱ A 20 mmol / L B Metanil Yellow Para Red Sudan Yellow Sudan Orange Ⅰ ~ Ⅳ Sudan Ⅰ ~ Ⅳ B Sudan Black B 35 Solvent Blue 35 7B Sudan Red 7B 18 min 5 20 75 G Sudan Red G 27 min 5 20 75 28 min 70 5 25 Ⅱ G Ⅰ Ⅱ 450 nm Ⅲ Ⅳ 7B 530 nm 35 600 nm 1-8 1. 0 ml / min 35 10 μl 3 9 10 1. 3 2 ~ 5 g 50 ml 5 ml + 90 + 10 20 min 10 000 r / h 10 min10 μl Ⅱ Ⅱ 15 1 C = c 10 W 1. 1 C μg / g Waters-Allains2695 c μg / ml Waters-2996 W g 2 2. 1 0. 010 0 g Ⅱ Ⅱ 10 ml / 50 /50 G Ⅰ Ⅱ Ⅲ Ⅳ 7B 35 C A B C 0 min 70 5 25 1. 4 10 μl HPLC 2. 1. 1 10 mmol / L 20 mmol / L Ⅱ 1. 0 ml Ⅱ Ⅱ 10 mmol / L 10 ml G Ⅰ Ⅱ Ⅲ Ⅳ 7B 20 mmol / L 35 / 50 /50 0. 2 0. 5 1. 0 2. 0 2. 1. 2 5. 0 ml 10 ml / 50 /50 15 2 G 5 10 20 40 μg / ml 7B Ⅳ 1. 2 CAPCELL PAK C 18 MG 4. 6 mm /
HPLC 529 20 mmol / L / 2. 2 15 450 nm Ⅱ G Ⅰ Ⅱ 530 nm Ⅲ Ⅳ 7B 600 nm 35 15 1 2 35 λ = 600 nm 2. 3 Ⅱ / Ⅰ~ Ⅳ 35 7B B G Ⅰ~ Ⅳ Ⅳ 7B B Ⅱ 4 / / 90 /10 15 2. 4 4 2 ~ 50 μg / ml 1 1 Table 1 15 Linear equations and detection limits of 15 kinds of illegally added industrial dyes R mg / kg Ⅱ Y = 28400X - 292 0. 9999 0. 48 Y = 51100X - 2920 0. 9999 0. 24 Y = 43400X - 2070 0. 9999 0. 27 Y = 203000X - 1920 0. 9999 0. 05 Y = 55700X - 770 0. 9992 0. 53 35 Y = 8740X - 4890 0. 9993 0. 49 7B Y = 56800X - 1110 0. 9999 0. 17 Y = 55300X - 13900 0. 9999 0. 23 Y = 18700X - 7060 0. 9999 0. 47 Y = 30600X - 4390 0. 9999 0. 26 Y = 50500X - 13000 0. 9999 0. 14 G Y = 25800X - 18000 0. 9999 0. 29 1 Y = 25300X - 6090 0. 9999 0. 26 2 Y = 19500X - 3790 0. 9999 0. 25 3 Y = 30700X - 10700 0. 9999 0. 25 a λ = 450 nm 1 Ⅱ 2 3 4 5 6 7 G 8 Ⅰ 9 Ⅱ b λ = 530 nm 1 2 Ⅲ 3 Ⅳ 4 7B c λ = 600 nm 1 B 2 35 1 Figure 1 Chromatogram of standard industrial dyes 6 40 μg / g 2 2. 5 70 15 20 3 Ⅱ
530 CHINESE JOURNAL OF FOOD HYGIENE 2011 23 6 a λ = 450 nm 1 Ⅱ 2 b λ = 530 nm 1 2 7B Figure 2 2 Chromatogram of samples Table 2 Ⅱ 2 35 7B Ⅳ G Ⅰ Ⅱ Ⅲ The recovery of standard addition and precision of the method n = 6 μg / g μg / g % RSD% 6 5. 13 85. 57 8. 1 40 32. 34 80. 84 4. 3 6 5. 26 87. 73 6. 7 40 32. 00 79. 99 5. 2 6 5. 06 84. 37 7. 4 40 30. 95 77. 37 5. 6 6 5. 36 89. 33 3. 4 40 32. 20 80. 49 1. 3 6 4. 81 80. 22 6. 7 40 29. 47 73. 68 3. 7 6 4. 93 82. 20 5. 3 40 31. 08 77. 69 2. 9 6 4. 81 80. 23 2. 0 40 30. 36 75. 91 1. 3 6 4. 97 82. 80 1. 0 40 30. 06 75. 16 0. 8 6 5. 03 83. 88 2. 1 40 32. 14 80. 35 1. 2 6 5. 12 85. 33 2. 9 40 31. 25 78. 12 1. 6 6 5. 02 83. 62 1. 6 40 31. 28 78. 19 0. 9 6 4. 99 83. 18 1. 4 40 30. 03 75. 07 1. 1 6 5. 02 83. 65 2. 0 40 30. 16 75. 41 1. 7 6 4. 99 83. 20 1. 3 40 30. 15 75. 37 0. 9 6 5. 11 85. 23 1. 9 40 29. 78 74. 45 1. 2 Table 3 3 Contents of illegally added industrial dyes detected in samples mg / kg Ⅱ Ⅰ Ⅱ Ⅲ Ⅳ G 35 7B B 1 6. 7 6. 5 / / / / / / / / / / / / / / 2 11. 0 12. 7 / / / / / / / / / / / / / / 3 4. 9 5. 4 / / / / / / / / / / / / / / 4 / 1. 3 / / / / / / / / / / / / / / 5 7. 8 3. 1 / / / / / / / / / / / / / / 6 1. 8 2. 4 / / / / / / / / / / / / / / 7 9. 5 11. 8 / / / / / / / / / / / / / / 8 19. 1 4. 3 / / / / / / / / / / / / / / 9 26. 1 56. 3 / / / / / / / / / / / / / / 10 15. 5 1. 2 1835. 7 / / / / / / / / / / / / / 11 68. 9 16. 1 / / / / / / / / / / / / / / 12 69. 6 16. 1 / / / / / / / / / / / / / / 13 64. 5 10. 3 / / / / / / / / / / / / / / 14 100. 0 22. 4 / / / / / / / / / / / / / / 15 571. 8 46. 2 / / / / / / / / / / / / / / 16 34. 7 47. 1 / / / / / / / / / / / / / / 17 87. 3 19. 7 / / / / / / / / / / / / / / 18 72. 3 1. 1 522. 6 / / / / / / / / / / 3. 4 / / 19 46. 3 15. 0 / / / / / / / / / / / / / / 20 14. 3 10. 6 / / / / / / / / / / / / / / /
HPLC 531 1. Ⅱ J. 2006 13 15 2594. J. 2006 12 4 202. 2. RP-HPLC - S. J. 2004 14 1 59. 3. LC-MS / MS 8. R. J. 2006 23 1 27-30. 2005 741. 4. Ⅱ J. 2007 27 11 1794. 6. 7. GB / T 19681 2005 2005. 9. LC-ESI / MS Ⅰ ~ ⅣJ. 2005 24 4 28-31. 10. Ⅰ 5. GC-MS J. 2005 15 9 1073- ⅡJ. 2005 14 1 48. 1074. HPLC 530028 HPLC CAPCELL PAK CR 4. 6 mm 150 mm 5 μm 25 mmol / L + 0. 1% 25 + 75 V / V 1. 0 ml / min 200 nm 0. 2 ~ 26. 0 μg 1. 000 0. 02 μg 99. 5% ~ 101. 0% RSD 1. 03% HPLC O657. 72 TS207. 3 B 1004-8456 2011 06-0531-03 Determination of glucosamine hydrochloride in health food by HPLC Gan BinbinLiu ZhanhuaLi Shaohao Guangxi Zhuang Autonomous Region Center for Disease Prevention and ControlNanning 530028China Abstract Objective To establish a method for the determination of glucosamine hydrochloride in health food by HPLC. Methods Samples were extracted ultrasonically with water and separated on a CAPCELLPAKCR column 4. 6 mm 150 mm5 μm the mobile phase consisted of 25 mmol ammonium acetate + acetonitrile in 0. 1% formic acid 25 + 75V / V. The flow rate was 1. 0 ml / min the detection wavelength was 200 nm. Results The standard curve of glucosamine hydrochloride was linear over the range in 0. 2 ~ 26. 0 μg r = 0. 999 982. The limit of detection was 0. 02 μg. The recovery was 98. 1% ~ 104% RSD was 1. 03%. Conclusion This method is simpleaccurate and reliable which can be used for the quality control of glucosamine hydrochloride in health food. Key words HPLC glucosamine hydrochloride fanction food GAH 1 2- -2- -D- 2 2011-01-18 E-mail gan-bb@ tom. com