Gaussian related distributions

Σχετικά έγγραφα
Solution Series 9. i=1 x i and i=1 x i.

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ST5224: Advanced Statistical Theory II

An Inventory of Continuous Distributions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Probability and Random Processes (Part II)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

4.6 Autoregressive Moving Average Model ARMA(1,1)

Solutions to Exercise Sheet 5

Statistical Inference I Locally most powerful tests

FORMULAS FOR STATISTICS 1

6.3 Forecasting ARMA processes

6. MAXIMUM LIKELIHOOD ESTIMATION

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Homework 3 Solutions

Homework for 1/27 Due 2/5

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Second Order Partial Differential Equations

2 Composition. Invertible Mappings

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

w o = R 1 p. (1) R = p =. = 1

The Simply Typed Lambda Calculus

Example Sheet 3 Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Partial Differential Equations in Biology The boundary element method. March 26, 2013

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Problem Set 3: Solutions

Areas and Lengths in Polar Coordinates

D Alembert s Solution to the Wave Equation

5.4 The Poisson Distribution.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Inverse trigonometric functions & General Solution of Trigonometric Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Approximation of distance between locations on earth given by latitude and longitude

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

( ) 2 and compare to M.

Every set of first-order formulas is equivalent to an independent set

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Section 8.3 Trigonometric Equations

Concrete Mathematics Exercises from 30 September 2016

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 12: Pseudo likelihood approach

EE512: Error Control Coding

Notes on the Open Economy

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Quadratic Expressions

Reminders: linear functions

Tutorial on Multinomial Logistic Regression

Lecture 34 Bootstrap confidence intervals

Exercises to Statistics of Material Fatigue No. 5

Introduction to the ML Estimation of ARMA processes

Matrices and Determinants

Theorem 8 Let φ be the most powerful size α test of H

Second Order RLC Filters

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

EE101: Resonance in RLC circuits

Μηχανική Μάθηση Hypothesis Testing

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Differential equations

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

5. Choice under Uncertainty

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

derivation of the Laplacian from rectangular to spherical coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

BarChart y 1, y 2, makes a bar chart with bar lengths y 1, y 2,.

Local Approximation with Kernels

Math221: HW# 1 solutions

( y) Partial Differential Equations

These derivations are not part of the official forthcoming version of Vasilaky and Leonard

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Fractional Colorings and Zykov Products of graphs

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Multi-dimensional Central Limit Theorem

Homework 8 Model Solution Section

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Additional Results for the Pareto/NBD Model

SPECIAL FUNCTIONS and POLYNOMIALS

Section 9.2 Polar Equations and Graphs

The Relationship Between Flux Density and Brightness Temperature

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Biostatistics for Health Sciences Review Sheet

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Module 5. February 14, h 0min

On the Galois Group of Linear Difference-Differential Equations

C.S. 430 Assignment 6, Sample Solutions

Transcript:

Gaussian related distributions Santiago Aja-Fernández June 19, 009 1 Gaussian related distributions 1. Gaussian: ormal PDF: MGF: Main moments:. Rayleigh: PDF: MGF: Raw moments: Main moments: px = 1 σ π exp x µ σ R = M X t = exp µt + σ t Mean µ Median µ Mode µ Variance σ X 1 + X X i 0, σ px = x σ exp x σ M X t = 1 + σte σ t / π σt erf + 1 µ k = σ k k/ Γ1 + k/ Mean σ π Median σ log 4 Mode σ Variance 4 π σ 1 π µ 1 = σ µ = σ π µ 3 = 3 σ3 µ 4 = 8σ 4 1

3. Rician: R = X 1 + X X i A i, σ PDF: where A = A 1 + A. Raw moments: R = X X = A 1, σ + ja, σ p M M A, σ = M M +A σ e σ where L n x = M n, 1, x = 1 F 1 n; 1; x. Main moments: AM I 0 σ µ k = σ k k/ Γ1 + k/l k/ A σ Mean Median Mode Variance π µ 1 = L 1/ π µ 3 = 3 L 3/ σ π L 1/ A σ σ + A πσ L 1/ A σ A σ A σ σ µ = A + σ σ 3 µ 4 = A 4 + 8σ A + 8σ 4 um, 3 π µ 1 = L 1/ x σ µ = σ 1 + x π µ 3 = 3 L 3/ x σ 3 µ 4 = 4σ 4 + 4x + x Var = A 4 + 8σ A + 8σ 4 σ 1 1 4x 1 8x + Ox 3 with x = A σ Series expansion of Hypergeometric Functions: L 1/ x = x 1 + π π x + 1 16 πx + O x 5/ 3/ L 3/ x = 4x3/ 3 π + 3 x 3 + π 8 π x + 1 3 πx + O x 5/. 3/ 4. Central Chi: on-normalized version R = L Xi X i 0, σ

PDF: Raw moments: Main moments: R = L Y i Y i = 0, σ + j0, σ px σ, L = 1 L ΓL x L 1 σ L µ k = σ k k/ Γk/ + L ΓL µ 1 = ΓL + 1/ σ ΓL µ = Lσ µ 3 = 3 ΓL + 3/ σ 3 ΓL µ 4 = 4LL + 1σ 4 Γk/ + L Var = σ L ΓL x e σ 4 5. on central Chi: on-normalized version R = L Xi X i A i, σ PDF: with A L = i A i Main moments: µ 1 = µ 3 = 3 R = L Y i Y i = A 1,i, σ + ja,i, σ pm L A L, σ, L = A1 L L σ ML L e M L +A L AL M L σ I L 1 σ um L, 5 ΓL + 1/ 1F 1 1 ΓL, L, A L σ ΓL + 3/ 1F 1 3 ΓL, L, A L σ σ µ = A L + Lσ σ 3 µ 4 = A 4 L + 4L + 1A Lσ + 4LL + 1σ 4 µ 1 = ΓL + 1/ 1F 1 1 ΓL, L, x σ µ = σ L + x µ 3 = 3 ΓL + 3/ 1F 1 3 ΓL, L, x σ 3 µ 4 = 4σ 4 x + L + 1x + LL + 1 ΓL + 1/ Var = σ 1 + x ΓL σ 1 + 1 L 3 8L + 4L + 4x 8x + Ox 3 1F 1 1, L, x with x = A σ 3

6. Gamma: PDF: MGF: Main moments: k 1 exp x/θ p x x = x Γkθ k ux 6 M X t = 1 θt k for t < 1/θ Mean kθ Median Mode k 1θ Variance kθ k = µ 1 Var θ = Var µ 1 mode = µ 1 Var µ 1 7. K distribution: PDF: x +1 x p x x = K ux 7 aγ + 1 a a In ultrasound we consider the following parameters: a = 1 b = 4α b E{A } = 4α σ = α 1 and then the PDF becomes: General form of the PDF: p x x = b Γα p x x = α xb K α 1 bx ux 8 with p R x/y a Rayleigh distribution Rσ = a y: and p γ y a Gamma distribution γ + 1, 1: Moments: Main moments for ultrasound: E{x k } = p R x/y = x a y e 0 p γ y = p R x/yp γ ydy x a y ux y Γ + 1 e y Γk/ + 1Γ + 1 + k/ a k Γ + 1 µ 1 = Γ3/Γα + 1/ σ µ = σ αγα µ 3 = σ 3/ Γ5/Γα + 3/ α 3/ Γα [ Var = σ 1 1 α µ 4 = σ 1 + 1 α ] Γ3/Γα + 1/ Γα 4

Sample Local Variance Gamma Approximation The biased SLV of an image Mx is defined as VarMx = 1 ηx p ηx M p 1 ηx p ηx Mp 9 with ηx a neighborhood centered in x. If = ηx, we define the random variable V = VarMx with moments E{V } = 1 1 µ µ 1 E{V } = 1 3 [ + 1µ 4 + 3 3 + 5 3µ + 3 + 1 + 1µ µ 1 + 3 6 + 11 6µ 4 1 + 4 + 6 4µ 3 µ 1 ] VarV = 1 [ 4 3 + 8 4µ 3 µ 1 + 8 0 + 1µ µ 1 + + 4 3µ + + 1µ 4 + 4 + 10 6µ 4 ] 1 For the main models: 1. Rayleigh E{V } = σn 1 π 4 σn 1 π 4 σ V = σ4 n 1 4 + π π + O 1. Rice E{V } = 1σ n σ4 n 4 + π π 1 1 4x 1 8x + O x 3 for x = A σ. n σv = 4σ4 n with KL = 1σ n σ V = 1σ4 n 1σ4 n 3. Central Chi E{V } = σ n 1 ΓL + 1/ L ΓL L + 8L Γ L + 1/ Γ 4 Γ4 L + 1/ L Γ 4 L L Γ L+1/ Γ L. 1 x + 3 5 + 3 8 1x + O x 3 4 ΓL + 1/ΓL + 3/ 1 Γ + O L 5

4. on central Chi E{V } = σ n 1 1 + 1 L 3 8L + 4L + x 8x + O x 3 σ n 1 σv = σ4 n 1 + 1 L + O x x σ4 n 1 5. K distribution with E{V } = σ 1 1 K 1 α σ V = σ4 K α + O Γ3/Γα + 1/ K 1 α = 1 1 α Γα K = 4 + 8 a + 1 a Γa 4 [ πγa + 1/ Γa a 3πΓa + 1/ Γa π Γa + 1/ 4] On the four cases, the PDF of the SLV may be approximated using a Gamma distribution. The mode of the distribution for each case is: 1. Rayleigh. Rice mode{v } = E{V } σ V E{V } = σn π 1 σn π mode{v } = σ n σ 5π 16π + O1/ π 8 1 3 + O σ/a 3. Central Chi mode{v } = σ n L Γ L + 1/ 1 Γ + O L KLσ n 4. on central Chi 1 3 + O σ n /A mode{v } = σ n σ n 6

5. K distribution mode{v } σ n 4 8K 1 K + 4K1 K 1 1 1/ 3 Combination of Gaussian Variables Let X i A, σ, i = 1,, be a set of Gaussian random variables. 1. Constant added and multiplied: aµ, σ + b aµ + b, a σ. Sum of zero mean Gaussian variables: IID 0, σ1 + 0, σ 0, σ1 + σ 3. Sum of Gaussian variables: IID L L i 0, σi 0, σi µ 1, σ1 + µ, σ µ 1 + µ, σ1 + σ L L L i µ i, σi µ i, 4. Difference of Gaussian variables: IID µ 1, σ1 µ, σ µ 1 µ, σ1 + σ 5. Product of Gaussian variables: IID µ 1, σ1 µ, σ σ i with PDF: px = 1 x K 0 πσ 1 σ σ 1 σ 6. Sum of square zero mean Gaussian variables: IID Xi σ γ/, σ χ σ / with X i σ = 0, σ and χ σ / a chi-square with degrees of freedom. 7. Square root of the sum of square Gaussian variables: IID X1 0, σ + X 0, σ Rσ with Rσ a Rayleigh distribution. X 1 A 1, σ + X A, σ R c A 1 + A ; σ 7

with R c A; σ a Rician distribution. L Xi 0, σ χ C L, σ i 1 with χ C L, σ a central Chi distirbution with parameters σ and L. L Xi A i, σ χ A L ; L, σ i 1 with χ A L, L, σ a non central Chi distirbution with parameters σ, L and A L = i A i. 8. Sample variance of Gaussian S = 1 1 4 Combination of Rayleigh Variables Let R i σ, i = 1,, be a set of Rayleigh random variables. 1. Sum of square Gaussian variables: with X i σ = 0, σ. Sum of square Rayleigh variables: X i X 1 σ γ, 1 Xi σ γ/, σ Ri σ γ, σ with PDF: p x x = x 1 e x/σ Γσ ux 3. Sample mean of square Rayleigh variables: 1 Ri σ γ, σ χ σ / with PDF: p x x = x 1 Γσ e x/σ ux 4. Sum of Rayleigh variables: R i σ 8

with PDF approx: with 5. Sample mean of Rayleigh variables: e x /b p x x = x 1 1 b Γ ux b = σ [ 1!!]1/ ] σ e σ π 4 1 R i σ with PDF approx: p x x = x 1 1 b Γ e x /b ux 6. Square sample mean of Rayleigh variables: 1 R i σ χ b/ γ/, b with PDF approx: p x x = x 1 b Γ e x/b ux 7. Square root of sum of square Rayleigh variables: Ri σ χ, σ with χ, σ a central chi with PDF: p x x = x 1 Γσ e x /σ ux 8. Square root of sample mean of square Rayleigh variables: 1 Ri σ χ, σ / with χ, σ / a central chi with PDF: 9. Local sample variance of Rayleigh variables: p x x = x 1 Γσ e x /σ ux V = 1 Ri σ 1 R i σ 9

For x 0 and an even number of degrees of freedom the PDF is p V x = x 1 exp 1 4 α+ x 1 Γσ1 σ 1 ρ γ k=0 with σ1 = σ n, σ σ n π 4 γ = Γ + k Γk + 1Γ k [ σ σ 1 + 4σ 1σ 1 ρ ] 1/ σ 1 σ 1 ρ α + = γ + σ σ 1 σ 1 σ 1 ρ, k γ x and ρ the correlation coefficient, which for large may be approximated as ρ 5 Combination of Rician Variables π 4 16π 4π 0.95 Let R i σ, i = 1,, be a set of Rician random variables. 1. Sum of square Rician variables: Ri A i, σ χ x σ, A σ with χ a noncentral chi square with A = i A i, and PDF px = 1 1/ x σ e x+a xa σ I 1 σ A. Sample mean of square Rician variables: 1 L Ri A i, σ χ with χ a noncentral chi square with PDF px = 1 1/ σ x 1/ e x+a σ A 3. Sum of square Rician variables: approx. L R i A i, σ x σ, A σ with PDF L 1 pt = tl c1 c e t c b c tb 1 I L 1 c b c 1 c with c 1 and c constants, t = x/ LKΩ L and b = K+1, [?]. 4. Square of the sample mean of Rician variables: 1 L R i A i, σ χ xa I 1 σ x c, b c 1 10

6 Combination of K Variables Let K i σ, α, i = 1,, be a set of K-distributed random variables. 1. Transformation of K-variables: If then p S x = with T = fr i and R i Rayleigh variables.. Sum of square K variables: with PDF: 3. Sum of K variables: with PDF approximation p S x = p S x = fk i 0 p T x/yp γ ydy M Ki σ, α M+α x ΓMΓαa α+m x M+α 1 M K i σ, α x 1 K α M a M+α a K3M M+α ΓMΓα K α M ux x a K 3 M ux with K 3 M = M 1!! 1/M 7 Logarithmic transformation of RV 7.1 The lograyleigh distribution Let Rσ be a Rayleigh RV with σ parameter, the transformation, la transformacin lrσ = a logrσ + b is a log-rayleigh withpdf with σ a = σ e b a. Main moments p lr x = 1 x aσa e x a e e a σa E{x} = a [ logσ a γ ] where γ is the Euler s constant. E{x } = a 4 [ logσa + b ] a γ + π 6 11

MGF: Varx = π a 4 Φ lr ω = σ a jω a Γ j a ω + 1 7. Operation over log-rayleigh 1. Sum of lograyleigh lr i σ then the MGF is Φ P lrω = σa jω a Γ j a ω + 1 The mean is. Sum of two lograyleigh with PDF E{x} = a [ logσ a γ ] lr 1 σ + lr σ p t = 1 e aσa 4 e t/a t/a K 0 σa 7.3 The LogRician distribution If we define the variable Lrx = log Mx = log A + nr σn + n i σn this variable follows a LogRician distribution with PDF p L x = ex σn e e x +A σ Ae x n I 0 σn 10 11 with x, +. The moments of this distribution are E{x} = 1 Γl 0, A σn + loga 1 E{x } = 1 4 log σn 1 + log σn [ ] Γ 0, l A A σn + log σn + 1 A 4Ñ1 σn 13 σx = 1 ] A Ñ 1 4 σn + [Γ 0, l A A σn + log σn 14 1 A A Ñ 1 log 15 4 σ n σ n with Γ l a, b the lower incomplete Gamma function and Ñ k x = e x i=0 x i [ ] ψi + k + ψ 1 i + k. Γi + 1 1

ψx is the polygamma function and ψ 1 x is its first derivative. It is easy to see that 1 σx A σn. The same solution for the variance may be obtained using a Series expansion on eq. 10 Lrx loga + n 1 A + n A n 1 A +... loga + n 1 A σ L r = σ A 7.4 The Log-on Central Chi distribution For parallel acquisitions, if we define the variable Lcx = log M L x = 1 L log Clr x + C li x 16 this variable follows a Log-on central Chi distribution with PDF p Lc x = A1 L L σn e x+1 e e x +A L AL e x σn I L 1 σn with x, +. The moments of this distribution are E{x} = 1 log σn 1 + E{x } = 1 [ log σn 4 ] A L +ÑL σ x = 1 4 1 4 σ n [ Ñ L A L σ n ψl + l=1 A L Lσn F 1, 1 :, 1 + L; A L σn + log σ n ψl + A L Lσn Lσ n 17 + 1 ψl 18 F 1, 1 :, 1 + ; A L σ n log σn A L Lσn F 1, 1 :, 1 + ; A L σn ] A L F 1, 1 :, 1 + ; A L [ ] A Ñ L A L σn log L σn 8 About the Coefficient of variation 8.1 CV of a Rayleigh distribution The square coeffiecient of variation CV of a random variable x is defined to be σ n 19 0 1 C x = Varx E {x} = E{x } E {x} E = E{x } {x} E {x} 1 If x is a random variable that follows a Rayleigh distribution, then C x = 4 π σ n = 4 π π σ n π 13

So, the CV of a Rayleigh distribution does not depend on the value of σ n. In the paper, the value of the sample CV is used to tune the filter. 8. Sample CV of Rayleigh Let R i σn, i = {1,, } be a set of random variables with Rayleigh distribution. Then, if X = 1 Ri 1 Y = R i the sample CV may be defined as Z = X Y Y = X Y 1 3 Both X and Y are Chi-Square random variables. σ X χ n b Y χ The PDF of U = X Z assuming that X and Y are independent i i f U u = Γ σ Γ n b u 1 bu + σn 4 and making b σ n π 4 As Z = U 1 then with mode f U u = Γ π u 1 Γ 4 πu/4 + 1 5 f Z z = Γ π z + 1 1 Γ 4 πz + 1/4 + 1 6 f Z z Γ 4 z + 1 1 Γ z + 1 + π/4 mode{f Z z} = 1 4 π 4 π + 1 π π 8.3 CV in a Rician distribution The square CV is Cx = E{x } E {x} 1 = = A [ σ π 4σ n e n 1 + A σn A [ π σ e n 1 + A σn σn + A I 0 + A/σ n I 0 A 4σ n A 4σ n + A σ n + A σ n I 1 A 4σn I 1 A 4σn ] 1 ] 1 14

If R = A σ n we can write C = 1 + R π e R [ 1 + R I 0 R + RI1 R ] 1 15