ECE 222b Applied Electromagnetics Notes Set 4c

Σχετικά έγγραφα
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Oscillatory integrals

Electromagnetic Waves I

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval


Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Example Sheet 3 Solutions

Solutions_3. 1 Exercise Exercise January 26, 2017

Note: Please use the actual date you accessed this material in your citation.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Geodesic Equations for the Wormhole Metric

Matrices and Determinants

Graded Refractive-Index

EE512: Error Control Coding

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Example 1: THE ELECTRIC DIPOLE

Every set of first-order formulas is equivalent to an independent set

1 String with massive end-points

Homework 8 Model Solution Section

For a wave characterized by the electric field

Math221: HW# 1 solutions

Uniform Convergence of Fourier Series Michael Taylor

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

D Alembert s Solution to the Wave Equation

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

2 Composition. Invertible Mappings

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Section 7.6 Double and Half Angle Formulas

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Higher Derivative Gravity Theories

Finite difference method for 2-D heat equation

Parametrized Surfaces

Concrete Mathematics Exercises from 30 September 2016

Finite Field Problems: Solutions

Section 8.3 Trigonometric Equations

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Srednicki Chapter 55

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Numerical Analysis FMN011

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

Fourier Transform. Fourier Transform

Reminders: linear functions

Rectangular Polar Parametric

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Approximation of distance between locations on earth given by latitude and longitude

6.4 Superposition of Linear Plane Progressive Waves

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Second Order RLC Filters

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Notes on Tobin s. Liquidity Preference as Behavior toward Risk

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Solutions to Exercise Sheet 5

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

University of Kentucky Department of Physics and Astronomy PHY 525: Solid State Physics II Fall 2000 Final Examination Solutions

Derivation of Optical-Bloch Equations

Some definite integrals connected with Gauss s sums

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Trigonometry 1.TRIGONOMETRIC RATIOS

Homework 3 Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Second Order Partial Differential Equations

MathCity.org Merging man and maths

4.6 Autoregressive Moving Average Model ARMA(1,1)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Tables of Transform Pairs

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Differentiation exercise show differential equation

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

ANTENNAS and WAVE PROPAGATION. Solution Manual

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

CRASH COURSE IN PRECALCULUS

Areas and Lengths in Polar Coordinates

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Areas and Lengths in Polar Coordinates

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Problem Set 3: Solutions

SPECIAL FUNCTIONS and POLYNOMIALS

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Transcript:

ECE 222b Applied Electromgnetics Notes Set 4c Instructor: Prof. Vitliy Lomkin Deprtment of Electricl nd Computer Engineering University of Cliforni, Sn Diego 1

Cylindricl Wve Functions (1) Helmoholt eqution: 2 2 ψ + k ψ ψ 1 ψ 1 ψ ψ 2 2 2 2 + + + + k ψ 2 2 2 2 φ Seprtion of vribles: ψ( φ,, ) Ρ( Φφ ) ( ) Z( ) 2 2 2 1 dρ 1 dρ 1 dφ 1 dz 2 + + + + 2 2 2 2 k Ρ d Ρ d Φ dφ Z d 2 1 dz Z d 2 2 2 dz 2 h + 2 hz jh ( ) ( ) + ( ) d Z Ahe Bhe jh 2

Cylindricl Wve Functions 1 d 2 2 2 Ρ Ρ Φ d d 1 d + + + 2 2 Ρ d Ρ d Φ dφ Φ 2 2 m 2 Φ dφ 2 d 2 2 2 ( k h ) Φ 2 + m Φ ( ) c cos sin 2 m m + dm m dφ Φφ φ φ 2 2 Ρ Ρ d d + + ( k h ) m 2 Ρ d Ρ d 2 2 2 2 2 2 d Ρ dρ 2 2 + + ( k ) m 2 Ρ d d k k h 2 2 2 Dispersion reltion Ρ( ) J ( k ) + by( k ) m m m m 3

Cylindricl Wve Functions (3) J Y m m ( k ) : Bessel functions of the first kind ( k ) : Bessel functions of the second kind Specil properties : 1. J ( x) is finite t x m Y ( x) is infinite t x m 2. J ( x) ~ cos x x m Y ( x) ~ sin x x m Generl solution: ψ( φ,, ) [ J ( k ) + by( k )][ c cos mφ+ d sin mφ] m m m m m m jh jh [ Ahe ( ) + Bhe ( ) ] 4

Cylindricl Wve Functions (4) J Y m m ( x): Bessel functions of the first kind ( x): Bessel functions of the second kind x x 5

Circulr Wveguides (1) TM modes: y sin mφ E EJ m( k ) e cos mφ E ( φ+ 2 π) E ( φ) cos m( φ+ 2 π) cos mφ sin m( φ+ 2 π) sin mφ jk ε, µ Boundry condition: x m,1, 2, E Jm( k) Denote J ( χ ) then k χ m mn mn 6

Circulr Wveguides Propgtion constnt: 2 2 2 2 χmn k k k k k k Cutoff wvenumber: First four modes: k cmn χ mn rel k > k img. k < k f cmn χmn 2π µε TM1 TM11 TM21 TM2 7

Circulr Wveguides (3) TE modes: y sin mφ H HJ m( k ) e cos mφ H ( φ+ 2 π) H ( φ) cos m( φ+ 2 π) cos mφ sin m( φ+ 2 π) sin mφ m,1, 2, jk x ε, µ Boundry condition: H J ( k) Denote J ( χ ) then k χ m mn mn m 8

Circulr Wveguides (4) Propgtion constnt: rel k > k 2 2 2 2 χ mn k k k k k k Cutoff wvenumber: First four modes: k cmn χ mn img. k < k f cmn χ mn 2π µε Dominnt mode TE11 TE21 TE1 TE31 9

Circulr Wveguides (5) Wveguides tht cn be nlyed similrly: 1

Coxil Wveguide (1) TM modes: sin mφ E [ mjm( k) + by m m( k)] e cos mφ jk y Boundry condition: E E b x J ( k) + by( k) m m m m ε, µ J ( kb) + by( kb) m m m m 2 2 k k k mn Chrcteristic eqution: J ( ky ) ( kb) Y( kj ) ( kb) m m m m 11

Coxil Wveguide TE modes: sin mφ H [ mjm( k) + by m m( k)] e cos mφ Boundry condition: m,1, 2, H H b J ( k) + by ( k) m m m m J ( kb) + by ( kb) m m m m Chrcteristic eqution: jk y ε, µ k k k 2 2 mn x J ( ky ) ( kb) Y ( kj ) ( kb) m m m m k mn,, 12

Coxil Wveguide (3) The nlysis given bove is crried out bsed on the ssumption tht k. When m nd k, there is specil solution to the eqution: A 1 A 2 2 2 + + + k A 2 2 A Specil solution: A Cln e jk E H φ C 1 jk e E E µε φ C 1 jk e H H µ TEM mode 13

Circulr Cvity (1) TM modes: sin mφ E EJ m( k ) cos k cos mφ k χmn, kh pπ p,1, 2, h k + k k 2 2 2 2 ω µε y ω TM 1 mn r mnp 2 2 χ pπ + µε h x 14

Circulr Cvity TE modes: sin mφ H HJ m( k ) sin k cos mφ k χ, kh pπ p 1, 2, mn h k + k k 2 2 2 2 ω µε y ω TE 1 mn r mnp 2 2 χ pπ + µε h x 15

Circulr Dielectric Wveguide (1) y y x ε 1, µ 1 ε 1, µ 1 ε 2, µ 2 ε 2, µ 2 x Rel dielectric wveguide Simplified version for nlysis 16

Circulr Dielectric Wveguide Inside the dielectric wveguide: sin mφ E1 AJ 1 m( k1 ) e cos mφ jk y cos mφ H1 BJ 1 m( k1 ) e sin mφ Outside the dielectric wveguide: jk sin mφ E2 AH 2 m ( k2 ) e cos mφ cos mφ H2 BH 2 m ( k2 ) e sin mφ jk jk ε 1, µ 1 ε 2, µ 2 sin mφ E2 AK 2 m( α2 ) e cos mφ cos mφ H2 BK 2 m( α2 ) e sin mφ k jα x 2 2 jk jk 17

Circulr Dielectric Wveguide (3) Boundry conditions: E E 1 2 H H 1 2 E E 1φ 2φ H H 1φ 2φ A mk 1 1 µ J ( k ) µ K ( α ) B m 1 m 2 ± 1 + 2 2 1 + ω k1 α 2 k1 Jm( k1) α2 Km( α2) A ε J ( k ) ε K ( α ) mk 1 1 + B + 1 m 1 2 m 2 1 1 2 2 k1 Jm( k1) α2 Km( α2) ω k1 α2 18

Circulr Dielectric Wveguide (4) Chrcteristic eqution: 2 2 mk ( 1 ) ( 2 ) 1 1 µ J m k µ K m α + 2 2 + ω k1 α 2 k1 Jm( k1) α2 Km( α2) ε J ( k ) ε K ( α ) k1 Jm( k1) α2 Km( α2) 1 m 1 2 m 2 + k 2 2 ω µε k α ω µε 2 2 1 1 2 k 2 2 2 1 1 2 2 1 m 1 m ε r 1 m εr2 m m m m m J () u K () v J () u K () v ( mδ ) + + + u v u J () u v K () v u J () u v K () v 2 u k k ε δ 1 r1 v α k δ ε 2 2 r 2 19

Circulr Dielectric Wveguide (5) Axisymmetric modes (m ): 1 J () u 1 K () v εr1 J () u εr2 K () v + + u J () u v K () v u J () u v K () v First solution: εr1 J () u εr2 K () v + u J () u v K () v A1 B 1 E H TM n modes Cutoff: v J ( u ) TM χn kc n ε ε r1 r2 2

Circulr Dielectric Wveguide (6) Second solution: 1 J () u 1 K () v + uj () u vk() v A 1 E B H 1 TE modes n Cutoff: v J ( u ) TE χn kc n ε ε r1 r2 Non-xisymmetric modes: m 2 2 1 1 2 2 1 m 1 m ε r 1 m εr2 m m m m m J () u K () v J () u K () v ( mδ ) + + + u v u J () u v K () v u J () u v K () v EH mn modes HE mn modes 21

Circulr Dielectric Wveguide (7) Cutoff: HE modes mn uj J m 1 ( u) ( u ) c m c c 2( m 1) m 1 k HE 1n 1 cn 1 χ ε ε r1 r2 EH modes mn uj J m+ 1 ( u) ( u ) c m c c m 1 k EH 1n cn 1 ε χ ε r1 r2 Dominnt mode: HE k c11 HE 11 mode First-order modes: k k 2.448 ε ε TE TM c1 c1 r1 r2 22

Circulr Dielectric Wveguide (8) Dispersion curves for ε r1 2.19 nd ε 2 2.13 r k ε ε r1 r2 23

Wve Trnsformtion (1) Propgting wve: + jk e cos k + j sin k jk e cos k j sin k Propgting in the - direction Propgting in the + direction Define: H (1) ( k) J ( k) + jy ( k) m m m Propgting in the direction H ( k) J ( k) jy ( k) Propgting in the +direction m m m H, H : (1) m m Hnkel functions of the first nd second kind. 24

Wve Trnsformtion Consider plne wve To determine n, jkx e j k x jkcosφ n jnφ n e e e Since 2π 2π jkcosφ jmφ jmφ jnφ n n e e dφ e e dφ 2π 2π j( cos φ+ mφ) m e d j J m k φ 2 π ( ) m m m 2 π j J ( k) 2 π j J ( k) m m m m Therefore jkx e j n J ( ) jn n k e φ n 25

Wve Trnsformtion (3) 3 term 21 term 41 term 81 term 161 term 321 term 26

Scttering by Circulr Cylinder (1) TM cse: y E E ˆ E ˆ e inc inc jkx Given x Find the scttered field: inc n jn Solution: E E j Jn( k) e φ n sc jn E CH n n ( k) e φ n tot inc sc n jnφ jnφ + n( ) + n n ( ) n n E E E E j J k e C H k e 27

Scttering by Circulr Cylinder tot n jn [ n( ) n n ( )] + n E E j J k C H k e φ C n n E j J ( k) H n n ( k) 1.λ 28

Scttering by Circulr Cylinder (3) TE cse: H H ˆ H ˆ e inc inc jkx y inc n jn H H j Jn( k) e φ n sc jn H CH n n ( k) e φ n x H H + H tot inc sc From H jωε E E φ 1 H jωε jk jk Eφ H j J k e C H k e tot n jnφ jnφ n( ) + n n ( ) ωε n ωε n 29

Scttering by Circulr Cylinder (4) jk E H j J k C H k e φ tot n jn φ [ n( ) n n ( )] + ωε n C n n H j J n( k) H ( k) n 1.λ 3

Scttering by Circulr Cylinder (5) TM cse: inc n jn E E j Jn( k) e φ n y ε, µ x int n n d n E E cj ( k) e jnφ ε d, µ d E jωµ H E Hφ Hφ [ j J( k) H ( k)] e inc sc n + n + n n jη n int E H ( ) jn φ cj n n kd e jη d n φ jnφ 31

Scttering by Circulr Cylinder (6) Boundry conditions: E + E E inc sc int H + H H inc sc int φ φ φ n n j J n( k) + nh n ( k) cnj n( kd) η j J k H k c J k n n( ) + n n ( ) n n( d ) ηd n µ rj n( k) Jn( kd) εrjn( k) J n( kd) j µ H ( k) J ( k ) ε H ( k) J ( k ) r n n d r n n d c n ( n+ 1) j 2 µ r π k µ H ( k) J ( k ) ε H ( k) J ( k ) r n n d r n n d 32

Scttering by Circulr Cylinder (7) TE cse: inc n jn H H j Jn( k) e φ n sc n n n H H H ( k) e jnφ int n n d n H H cj ( k) e jnφ y ε, µ ε d, µ d x H jωε E inc + sc n n + n n n jn E E j H [ j J( k ) H ( k )] e φ φ φ η int E j ( ) jn dh cj n n kd e φ φ η 33 n

Scttering by Circulr Cylinder (8) Boundry conditions: H + H H inc sc int E + E E inc sc int φ φ φ n j J n( k) + nh n ( k) cnj n( kd) η j J k H k c J k η n d n( ) + n n ( ) n n( d ) n n ε rj n( k) Jn( kd) µ rjn( k) J n( kd) j ε H ( k) J ( k ) µ H ( k) J ( k ) r n n d r n n d c n ( n+ 1) j 2 ε r π k ε H ( k) J ( k ) µ H ( k) J ( k ) r n n d r n n d 34

Scttering by Circulr Cylinder (9) Exmple for TM polrition: 1.λ ε r 4. 35

Scttering by Circulr Cylinder (1) Exmple for TE polrition: 1.λ ε r 4. 36

Rdition by Line Source (1) Rdition by n infinitely long line current: Method # 1 : ( ) 2 + 2 R I y x Method # 2 : 37

Rdition by Line Source When 2 2 : A k A + A CH k ( ) Integrted over smll circulr re with vnishing rdius : 38

Rdition by Line Source (3) Since A H ( k) C CkH ( k) CkH1 ( k) j2 H1 ( x) x π x A j2 j2c Ck πk π Hence: µ I 4 j A H k ( ) 2 k I ki E H ( k), Hφ H ( k) 4ωε 4j 39

Rdition by Line Source (4) 2 H ( k) ~ e x jπ x jx When k >> 1 or >> λ: j jk j E kη I e, Hφ ki e 8πk 8πk For line source locted t : jk µ I ( ) 4 j A H k 4

Cylindricl Surfce Current (1) Cylindricl surfce current: Generl solution: x x Field expressions: 2 int jk E (, ) ( ) jn φ J n n ke φ < ωµε n jk E ( φ, ) bh ( k) e jnφ > 2 ext n n ωµε n 41

Cylindricl Surfce Current int k H (, ) J( ) jn n n k e φ φ φ < µ n k H (, ) bh ( k ) e jnφ φ φ > ext n n µ n ext int Apply BCs: E (, φ) E (, φ) J k bh k n n( ) n n ( ) (, φ) (, φ) ( φ) ext int Hφ Hφ J s Solutions: 2π µ jnφ J n n( k ) bh n n ( k ) cn cn Js( ) e d 2π k φ φ πk n ch n n ( k ) πk bn cj n n( k ) 2 j 2 j 42

Cylindricl Surfce Current (3) Consider specil cse: A line current J s ( φ) Iδφ ( φ ) 2π µ jnφ µ I cn Js( φ) e dφ e 2πk 2πk jnφ Hence, A ( φ, ) µ I Jn( k) Hn ( k ) jn( φ φ ) < e 4 j n Jn( k ) Hn ( k) > Previously, Addition theorem: µ I ( ) 4 j A H k An off-centered cylindricl wve cn be expressed s the superposition of centered cylindricl wves Jn( k) Hn ( k ) jn( φ φ ) < H ( k ) e n Jn( k ) Hn ( k) > 43

Cylindricl Surfce Current (4) 3 terms 11 terms 21 terms 31 terms 44

Cylindricl Surfce Current (5) Appliction exmple: y Tret this s scttering problem with the scttered field ssumed s Line current sc n n n E (, ) dh ( k ) e jn φ φ σ The incident field is (by the ddition theorem) inc ωµ I E ( φ, ) H ( k ) 4 ωµ I Jn( k) Hn ( k ) jn( φ φ ) < e 4 n Jn( k ) Hn ( k) > x ωµ I J n( k) E d ( ) n H n k e 4 H ( k) n jnφ 45

Cylindricl Surfce Current (6) PEC I 1λ 1λ Scttered field Totl field 46

Scttering by Conducting Wedge (1) The line current cn be treted s surfce current with A Js ( φ) Iδφ ( φ ) Generl solution: Jν( k) Hν ( k ) ( φ, ) ν Jν( k ) Hν ( k) [ cosνφ + b sin νφ] ν ν < > Line current y α σ x Boundry conditions: E H H φ J φ s E φ α φ 2π + A jπµ < ( φ, ) sin νφ ( α)sin νφ ( α) 2 π α ( ) ( ) > I Jν( k) Hν ( k ) m 1 Jν k Hν k ν mπ (2 π α) 47

Scttering by Conducting Wedge Finl solution: E πη J k H k < ( φ, ) sin νφ ( α)sin νφ ( α) 2 π α ( ) ( ) > ki ν( ) ν ( ) m 1 Jν k Hν k H jνπ < ( φ, ) sin νφ ( α)cos νφ ( α) (2 π α) ( ) ( ) > I Jν( k) Hν ( k ) m 1 Jν k Hν k H φ jπ ki J ν( k) Hν ( k ) < ( φ, ) sin νφ ( α)sin νφ ( α) 2 π α m 1 Jν( k ) H ν ( k) > 48

Scttering by Conducting Wedge (3) TM polrition TE polrition 49

Scttering by Conducting Wedge (4) Close to the edge: k << 1 J ( ) ν ν Line current y H Hφ k << ν 1, when 1 α σ x m 1 nd α < π For : ν π (2 π α) < 1 H, H s φ E, E s φ Edge singulrities Specil cses: (1) α ν 1 2 α π 2 ν 23 5