Note: Please use the actual date you accessed this material in your citation.

Σχετικά έγγραφα
6.641, Electromagnetic Fields, Forces, and Motion Prof. Markus Zahn Lecture 7: Polarization and Conduction

Note: Please use the actual date you accessed this material in your citation.

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

6.642 Continuum Electromechanics

Note: Please use the actual date you accessed this material in your citation.

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

6.642 Continuum Electromechanics

TeSys contactors a.c. coils for 3-pole contactors LC1-D

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Capacitors - Capacitance, Charge and Potential Difference

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Electromagnetic Waves I

Second Order RLC Filters

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Homework 8 Model Solution Section

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Matrices and Determinants

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

University of Kentucky Department of Physics and Astronomy PHY 525: Solid State Physics II Fall 2000 Final Examination Solutions

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

[1] P Q. Fig. 3.1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Example 1: THE ELECTRIC DIPOLE

ECE 222b Applied Electromagnetics Notes Set 4c

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

2-1. Power Transistors. Transistors for Audio Amplifier. Transistors for Humidifier. Darlington Transistors. Low VCE (sat) High hfe Transistors

the total number of electrons passing through the lamp.

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Exercises in Electromagnetic Field

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Derivation of Optical-Bloch Equations

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions to Exercise Sheet 5

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Strain gauge and rosettes

Example Sheet 3 Solutions

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

Areas and Lengths in Polar Coordinates

Spherical Coordinates

Higher Derivative Gravity Theories

Rectangular Polar Parametric

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

First Sensor Quad APD Data Sheet Part Description QA TO Order #

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Parametrized Surfaces

Design Method of Ball Mill by Discrete Element Method

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Magnetically Coupled Circuits

Oscillatory integrals

derivation of the Laplacian from rectangular to spherical coordinates

Areas and Lengths in Polar Coordinates

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

3.5 - Boundary Conditions for Potential Flow

Graded Refractive-Index

Lifting Entry (continued)

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Section 8.3 Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

m i N 1 F i = j i F ij + F x

IXBH42N170 IXBT42N170

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Durbin-Levinson recursive method

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F


Section 7.6 Double and Half Angle Formulas

Cable Systems - Postive/Negative Seq Impedance

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Uniform Convergence of Fourier Series Michael Taylor

6.003: Signals and Systems. Modulation

Reminders: linear functions

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices


Homework 3 Solutions

Lecture 21: Scattering and FGR

Second Order Partial Differential Equations

w o = R 1 p. (1) R = p =. = 1

Α Ρ Ι Θ Μ Ο Σ : 6.913

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Solution to Review Problems for Midterm III

High Frequency Chip Inductor / CF TYPE

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)


EE101: Resonance in RLC circuits

Answer sheet: Third Midterm for Math 2339

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions

Linearized Lifting Surface Theory Thin-Wing Theory

Transcript:

MIT OpenCourseWre http://ocw.mit.edu 6.641 Electromgnetic Fields, Forces, nd Motion, Spring 005 Plese use the following cittion formt: Mrkus Zhn, 6.641 Electromgnetic Fields, Forces, nd Motion, Spring 005. (Msschusetts Institute of Technology: MIT OpenCourseWre). http://ocw.mit.edu (ccessed MM DD, YYYY). License: Cretive Commons Attriution-Noncommercil-Shre Alike. Note: Plese use the ctul e you ccessed this mteril in your cittion. For more informtion out citing these mterils or our Terms of Use, visit: http://ocw.mit.edu/terms

6.641, Electromgnetic Fields, Forces, nd Motion Prof. Mrkus Zhn Lecture 7: Polriztion nd Conduction I. Experimentl Oservtion A. Fixed oltge - Switch Closed (v = o ) As n insulting mteril enters free-spce cpcitor t constnt voltge more chrge flows onto the electrodes; i.e. s x increses, i increses. B. Fixed Chrge - Switch open (i=0) As n insulting mteril enters free spce cpcitor t constnt chrge, the voltge decreses; i.e. s x increses, v decreses. II. Dipole Model of Polriztion A. Polriztion ector P = N p = Nqd (p = q d dipole moment) N dipoles/olume (P is dipole density) d q q Prof. Mrkus Zhn Pge 1 of 7

Courtesy of Krieger Pulishing. Used with permission. Prof. Mrkus Zhn Pge of 7

Q = inside qnd i d = ρ d P S pired chrge or equivlently polriztion chrge density P S Q inside = P i d = i P d = ρ d (Divergence Theorem) P=qNd i P = ρ P B. Guss Lw i (ε E) = ρ = ρ ρ = ρ i P o totl u P u unpired chrge density; lso clled free chrge density i (ε E P ) = ρ o u D = ε o E P Displcement Flux Density i D = ρ u C. Boundry Conditions Prof. Mrkus Zhn Pge 3 of 7

i D = ρ u D i d = ρ u d n i D D = σ su S i P = ρ P P i d = ρ P d n i P P = σ i (ε E) = ρ ρ S ε E i d = (ρ ρ sp ) d n i ε E E = σ o u P o u P o su S σ sp D. Polriztion Current Density Q = qnd = qndi d = P i d [Amount of Chrge pssing through surfce re element d] di p = Q = P i d t t [Current pssing through surfce re element d] = Jp i d polriztion current density P Jp = t Ampere s lw: x H = Ju Jp ε o E t = Ju P E ε o t t = Ju (ε oe P) t D = Ju t Prof. Mrkus Zhn Pge 4 of 7

III. Equipotentil Sphere in Uniform Electric Field ( ) o o o lim Φ r, θ = E r cos θ Φ = E z = E r cos θ r Φ (r = R, θ) = 0 Φ (r, θ) = E o r R 3 cos θ r This solution is composed of the superposition of uniform electric field plus the field due to point electric dipole t the center of the sphere: Φ = p cos θ with p = 4 πε E R 4πε o r dipole o o 3 This dipole is due to the surfce chrge distriution on the sphere. σ (r = R, θ) = ε E (r = R, s o r o θ) = ε Φ = ε o E o 1 R 3 r r R r = r= R = 3ε o E o cos θ 3 cos θ Prof. Mrkus Zhn Pge 5 of 7

I. Artificil Dielectric E = v, σ d s = ε E = ε v d q = σ s A = ε A v d q C = = v ε A d _ υ ε E d Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. For sphericl rry of non-intercting spheres (s >> R) P=4 π ε R 3 E _ i z P =N p =4 π ε R 3 E N o o z z o o N= 1 s 3 R 3 R 3 P = ε o 4 π E = ψ e ε o E ψ e =4 π s s ψ e (electric susceptiility) D = ε o E P = ε o 1 ψ e E = ε E ε r (reltive dielectric constnt) R ε = ε ε = ε 1 ψ = ε 1 4 π 3 r o o e o s Prof. Mrkus Zhn Pge 6 of 7

. Demonstrtion: Artificil Dielectric Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. Prof. Mrkus Zhn Pge 7 of 7

Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. v E= σ s = ε E= d ε v d ε A q ε A q= σ s A= v C= = d v d i = ω C v o = R s ( ε ε o ) A R 3 C = =4 π ε o d s A d R=1.87 cm, s=8 cm, A= (0.4) m, d=0.15m ω =π(50 Hz), R s =100 k Ω, =566 volts pek C=1.5 pf v = ω CR 0 s =(π) (50) (1.5 x 10-1 ) (10 5 ) 566 = 0.135 volts pek Prof. Mrkus Zhn Pge 8 of 7

I. Plsm Conduction Model (Clssicl) dv p m = q E m ν v n m dv = q E m ν v p n p = n kt, p = n kt k=1.38 x 10-3 joules/ o K Boltzmnn Constnt A. London Model of Superconductivity [ T 0, ν ± 0 ] dv m = q E dv, m = q E J = q n v, J = q n v dj d dv q n = (q n v ) = q n = q n ( q E ) = m m ω ε p E dj d dv q n m m ω ε p = (q n v ) = q n = q n ( q E ) = E ω p = q n q n m ε, ω p = ( ω p = plsm frequency) m ε For electrons: q - =1.6 x 10-19 Couloms, m - =9.1 x 10-31 kg 1 n - =10 0 /m 3, ε = ε o 8.854 x10 frds/m ω = p q n m ε 11 5.6 x10 rd/s f p = ωp 10 9x10 Hz π Prof. Mrkus Zhn Pge 9 of 7

B. Drift-Diffusion Conduction [Neglect inerti] dv 0 (n k T ) q k T m = q E m ν v v = E n n m ν m ν n 0 n k T dv = q E m ν v ( ) q v = k T m E n n m ν m ν n q n q k T J = q n v = E n m ν m ν J = q n v = q n q k T m ν E n m ν ρ =q n, ρ = q n J = ρ µ E D ρ J = ρ µ E D ρ µ = q, D = kt m ν m ν µ = q m ν, D = kt m ν chrge moilities Moleculr Diffusion Coefficients D D = kt = = therml voltge (5 m @ T 300 o K) µ µ q Einstein s Reltion Prof. Mrkus Zhn Pge 10 of 7

C. Drift-Diffusion Conduction Equilirium ( J = J = 0) J = 0 = ρ µ E D ρ = ρ µ Φ D ρ J = 0 = ρ µ E D ρ = ρ µ Φ D ρ Φ = D ρ = kt (ln ρ ) ρ µ q Φ = D ρ = kt (ln ρ µ q ρ ) ρ = ρ o e q Φ /kt Boltzmnn Distriutions Φ ρ = ρ e q /kt o ρ ( Φ =0 ) = ρ ( Φ =0 ) = ρ [Potentil is zero when system is chrge neutrl] o ρ (ρ ρ ) ρ o q /kt q Φ /kt ρ o q Φ Φ= = = e Φ e = sinh ε ε ε ε kt (Poisson-Boltzmnn Eqution) Smll Potentil Approximtion: q Φ << 1 kt q Φ sinh kt q Φ kt ρ0q Φ Φ =0 ε kt Φ ε kt Φ =0 ; L d = Deye Length ρ o q L d Prof. Mrkus Zhn Pge 11 of 7

D. Cse Studies 1. Plnr Sheet d Φ Φ =0 Φ = A 1 e x/l d A e x/l d dx L d B.C. Φ (x ± ) = 0 Φ (x = 0) = o Φ ( x ) = d e x/l o x > 0 e x/l d x < 0 o Prof. Mrkus Zhn Pge 1 of 7

o e x/l d x > 0 dφ E x = = dx L d o L d e x/l d x < 0 ε o e x/l d x > 0 L d x ρ = ε de = dx ε o e x/l d x < 0 L d σs (x=0) = ε E x (x = 0 ) E x (x = 0 ) = ε o L d. Point Chrge (Deye Shielding) Φ =0 Φ L d d r Φ ( r Φ) = 0 dr r /Ld 1 r Φ = A e A e r r r Φ r 1 Φ ( r ) = Q r /L e d 4 π ε r = 1 (r Φ) r r E. Ohmic Conduction L d 0 r /L d J = ρ µ E ρ D J = ρ µ E ρ D If chrge density grdients smll, then ρ ± negligile ρ = ρ = ρ o J = J J = (ρ µ ρ µ ) E= ρ o (µ µ ) E = σe J = σ E (Ohm s Lw) σ = ohmic conductivity Prof. Mrkus Zhn Pge 13 of 7

F. pn Junction Diode Prof. Mrkus Zhn Pge 14 of 7

kt NA ND Φ = Φ n Φ p = ln q n i Φ (x = 0 )= Φ p qn x A p ε = Φ n qn x D n ε qn D x n qn A x p Φ = Φ n Φ p = ε ε qn D x n qn D x n N D = (x n x p ) = 1 ε ε N A Prof. Mrkus Zhn Pge 15 of 7

II. Reltionship Between Resistnce nd Cpcitnce In Uniform Medi Descried y ε nd σ. q u C= v = S L Di d Ei ds = ε E i d L S E i ds v R= = i L S Ei ds Ji d = σ L E i ds S E i d RC = σ L Ei ds S Ei d ε L L E i d Ei ds = ε σ Check: Prllel Plte Electrodes: l R=, σ A ε A C = l RC = ε σ Prof. Mrkus Zhn Pge 16 of 7

Coxil ln πεl R=, C= RC = ε πσl ln σ Concentric Sphericl 1 1 R 1 R 4 πε R=, C= RC = ε 4 πσ 1 1 σ R 1 R Prof. Mrkus Zhn Pge 17 of 7

III. Chnge Relxtion in Uniform Conductors i Ju ρu = 0 t i E = ρ u ε J u = σ E σ i E ρ u ρ u σ = 0 ρ u = 0 t t ε ρ u ε τ = ε σ = dielectric relxtion time e ρ u ρ u =0 ρ u = ρ 0 (r, t=0 ) e t τ e t τe IX. Demonstrtion 7.7.1 Relxtion of Chrge on Prticle in Ohmic Conductor Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. Prof. Mrkus Zhn Pge 18 of 7

J i d= S σ q u E i d= = ε σ S dq dq q t e =0 q=q ( t=0 ) e τ (τ e = ε σ ) τ e Prtilly Uniformly Chrged Sphere Courtesy of Krieger Pulishing. Used with permission. Prof. Mrkus Zhn Pge 19 of 7

ρ 0 r < R 1 ρ u (t=0) = Q T = 4 π R 1 3 ρ 0 3 0 r > R 1 ( ) ρ e t τ e r < R (τ = ε σ) ρ u t = 0 1 e 0 r > R 1 Er ( r,t ) = ρ 0 re t e 3 ε τ Qe t e τ τ Qre t e = 0 < r < 4 π ε R 3 R < r < R 4 π ε r 1 Q r > R 4 π ε 0 r 1 R 1 σ su ( r = R ) = ε 0 Er ( r = R ) ε Er ( r = R ) = Q τ (1 e t e ) 4 π R X. Self-Excited Wter Dynmos A. DC High oltge Genertion (Self-Excited) Prof. Mrkus Zhn Pge 0 of 7

From Electromgnetic Field Theory: A Prolem Solving Approch, y Mrkus Zhn, 1987. Used with permission. Courtesy of Herert Woodson nd Jmes Melcher. Used with permission. Woodson, Herert H., nd Jmes R. Melcher. Electromechnicl Dynmics, Prt : Fields, Forces, nd Motion. Mlr, FL: Kreiger Pulishing Compny, 1968. ISBN: 9780894644597. Prof. Mrkus Zhn Pge 1 of 7

nc v = C dv v = e st nc = Cs i 1 1 1 i 1 nc v = C dv 1 v = e st nc = Cs i i 1 nc i 1 Cs 1 =0 nc i 1 Cs Det = 0 nc i nc i =1 s = ± root lows up Cs C nc i t e C Any perturtion grows exponentilly with time B. AC High oltge Self Excited Genertion dv st nci v 1 = C ; v 1 = 1 e dv 3 st nci v = C v = e nc v = C dv 1 v = e st i 3 3 3 nc i Cs 0 1 0 nc Cs i = 0 Cs 0 nc i 3 det = 0 From Electromgnetic Field Theory: A Prolem Solving Approch, y Mrkus Zhn, 1987. Used with permission. Prof. Mrkus Zhn Pge of 7

(nc i ) 3 Cs ) 3 nc ( = 0 s = i ( 1 C ) 1 3 s = nc C (exponentilly decying solution) 1 i 13 1 ± 3j (1) = 1, s = nc i 1 ± 3 j,3 (lows up exponentilly ecuse s rel >0 ; ut lso C oscilltes t frequency s img 0) XI. Conservtion of Chrge Boundry Condition ρu i Ju = 0 t J d d u i ρ u d S = 0 d n i J J σ su = 0 Prof. Mrkus Zhn Pge 3 of 7

XII. Mxwell s Cpcitor A. Generl Equtions E = _ E t i 0 < x < ( ) x _ E t i x < 0 ( ) x < Ex d x = v( t ) =E ( t) ( ) E t J dσ su n i J = 0 σ ( ) E ( ) v t E ( t ) = t E ( t ) σ E ( t ) d ε E t ε E ( ) = 0 ( ) t v( t ) d v ( ) ε E t ε ( t ) E t E t ( ) E ( t) = 0 σ ( ) σ ε de σ E t v t dv ε σ ( )= σ ( ) ε Prof. Mrkus Zhn Pge 4 of 7

B. Step oltge: v ( t ) = u( t) Then dv = δ ( t ) (n impulse) At t=0 dv = ε ε ε de = ε δ ( t ) Integrte from t=0 - to t=0 ε de ε = ε ε E = t= 0 t 0 ε ε = δ ( t ) = t= 0 0 t= 0 t= 0 E ( t = 0 ) = 0 ε = ε ε ε E ( t = 0 ) E ( t = 0 ) = ε ε For t > 0, dv =0 ε de ε σ σ E ( t ) = σ σ ( ) t τ E t = A e σ σ ε ε ; τ = σ σ ( ) = E t = 0 σ ε A = ε A = σ σ σ ε ε ε ε σ σ σ ( ) = E t 1 σ σ E ( t ) = E ( t) ( e t τ ) ε ε ε e t τ Prof. Mrkus Zhn Pge 5 of 7

σ ( ) ε E ( ) ε E ( t ) = ε E ( ) su t = t t ε ε =E ( t ) ε ε (σ ε σ = 1 e (σ σ E ( ) t ε ) t τ ) ) ( C. Sinusoidl Stedy Stte: ( ) = ( ) E t = Re E e jωt v t Re e jω t E ( t) = Re E e jωt Conservtion of Chrge Interfcil Boundry Condition σ E ( t ) σ E ( t ) d ε E ( t ) ε E ( t) = 0 E σ j ω ε E σ j ω ε = 0 E E = E E = E E σ j ω ε σ ω ε = 0 j σ ω ε (σ j ω ε ) E j = σ ω ε = 0 j E E = = j ω ε σ j ω ε σ (σ j ω ε ) (σ j ω ε ) σ su = ε E ε E (ε σ ε σ ) = (σ j ω ε ) (σ j ω ε ) Prof. Mrkus Zhn Pge 6 of 7

D. Equivlent Circuit (Electrode Are A) I = σ j ω ε E A= σ ( ) ( ) j ω ε E A = R R R C j ω1 R C j ω1 R =, R = σ A σ A ε A ε A C =, C = Prof. Mrkus Zhn Pge 7 of 7