1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Σχετικά έγγραφα
Answer sheet: Third Midterm for Math 2339

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Homework 8 Model Solution Section

Spherical Coordinates

Parametrized Surfaces

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Double Integrals, Iterated Integrals, Cross-sections

Solutions to Exercise Sheet 5

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

Tutorial Note - Week 09 - Solution

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Solution to Review Problems for Midterm III

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Approximation of distance between locations on earth given by latitude and longitude

Section 8.2 Graphs of Polar Equations

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Section 8.3 Trigonometric Equations

Second Order Partial Differential Equations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

11.4 Graphing in Polar Coordinates Polar Symmetries

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

D Alembert s Solution to the Wave Equation

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

derivation of the Laplacian from rectangular to spherical coordinates

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Example Sheet 3 Solutions

EE512: Error Control Coding

Matrices and Determinants

Section 9.2 Polar Equations and Graphs

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Rectangular Polar Parametric

CRASH COURSE IN PRECALCULUS

Numerical Analysis FMN011

( y) Partial Differential Equations

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

Homework 3 Solutions

Differentiation exercise show differential equation

CURVILINEAR COORDINATES

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Finite Field Problems: Solutions

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα

Solution Series 9. i=1 x i and i=1 x i.

ECE 468: Digital Image Processing. Lecture 8

w o = R 1 p. (1) R = p =. = 1

Variational Wavefunction for the Helium Atom

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

1 String with massive end-points

New bounds for spherical two-distance sets and equiangular lines

Winter 2012 Math 255. Review Sheet for Second Midterm Exam Solutions. 1. Let r(t) = cost,sint,t. Find T(π), N(π), and B(π)...

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Λύσεις στο επαναληπτικό διαγώνισμα 3

Geodesic Equations for the Wormhole Metric

Trigonometric Formula Sheet

Math221: HW# 1 solutions

If we restrict the domain of y = sin x to [ π 2, π 2

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Srednicki Chapter 55

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

CYLINDRICAL & SPHERICAL COORDINATES

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Second Order RLC Filters

Cosmological Space-Times

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Chapter 7 Transformations of Stress and Strain

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Reminders: linear functions

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Quadratic Expressions

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

2 Composition. Invertible Mappings

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Lecture 26: Circular domains

Differential equations

ST5224: Advanced Statistical Theory II

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

PARTIAL NOTES for 6.1 Trigonometric Identities

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

x 3 D 1 (x 1)dxdy = dydx = (x 1)[y] x x 3 dx + x)dx = 3 x5

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Transcript:

1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,, cost, r t) 9+16 5 +1 point) Tt) r t) r t) 5 sint, 5, 5 cost +1 point) At the point P: t π, sin π 1, cos π 1. +1 point) ) π Then T 5, 5, 5 1, 5, +1 point) 1 T t) 5 cost,, 5 sint, T t) 5. Nt) T t) T t) + points) cost,, sint, N ) π,, 1,, 1. b) r π ),,, r t) cost,, sint, r π ) ) π π r r ) i j k,,, 6, 9, 6, + points) π r ) π r ) 15, π r ) 15, κ 15 15. + points) 5 1

. 1 points) Use LINEAR approximation to approximate the number.+e.8. Solution: enote fx,y) x+e y. Then f x x,y) 1 f x+ey, y x,y) e y x+ey. + points) We are looking for a linear approximation near the point x,y ),). +1 point) f,), f x,) 1, f y,) 1. +1 point) Let Lx,y) be the linearization of fx,y) near,). Then Therefore, fx,y) Lx,y) + 1 x )+ 1 y. + points).+e.8 f.,.8) L.,.8) + 1. )+ 1.8) +.1. 1.99 or.+e.8 1.99 + points)

. 1 points) Find all critical points of the function fx,y) x x xy. For each critical point determine if it is a local maximum, local minimum or a saddle point. Solution: f x x,y) 9x y, f y x,y) xy. +1 point) The equation f y x,y) gives two solutions x or y. +1 point) Case x : f x,y) y gives solutions y or y and points, ) and, ). +1 point) Case y : f x x,) 9x gives solutions x or x and points ), and, ). +1 point) Critical points are, ),, ), ) ),, and,. +1 point) f xx x,y) 18x, f xy x,y) y, f yy x,y) x. +1 point) x,y) f xx x,y)f yy x,y) f xyx,y) 7x 16y 89x y ). +1 point), ), ) <. Therefore,, ) and, ) are saddle points. +1 point) ), >, f xx ), 1 >. Therefore, ), is a point of a local minimum. +1 point) ) ), >, f xx, 1 <. Therefore, ), is a point of a local maximum. +1 point)

. 1 points) Find the volume of the solid E bounded by y x, x y, z x+y + 5, and z. Solution: E {x,y,z) x 1, x y x, z x+y+5}. + points) The volume V of the solid E is V dv x x+y+5 dzdydx + points) E x x x x+y +5)dydx ] x+5)y + y x x dx x / +5x 1/ + 1 x x 5x 1 ) x dx + points) 5 x5/ + 1 x/ + 1 x 1 x 5 x 1 ] 1 1 x5 5 + 1 + 1 1 5 1 1 59. + points)

5. 1 points) Find the y coordinate of the center of mass of a lamina that occupies the region bounded by y x +, x, and y and has density ρx,y) y. Simplify your answer as much as possible. Solution: The region is R {x,y) y, y x }. + points) The mass of the lamina is m ρx,y)da +1 point) R ydxdy y +y)dy y 1 y +y ] +8. + points) The y coordinate of the center of mass of the lamina is ȳ 1 m R yρx,y)da +1 point) 1 y dxdy 1 y +y )dy + points) 1 1 y 1 5 y5 + ] y 5 + ] 16. + points) 15 5

6. 1 points) Evaluate the integral e x y da R where R is the parallelogram ABC with vertices A,), B,1), C 7,), and,) using the transformation x u+v and y u+v. Simplify your answer as much as possible. Solution: T : x u+v, y u+v. The inverse transformation is T 1 : u 1 x y), v 1 x+y). + points) 9 In the uv-plane the region that corresponds to the parallelogram ABC can be found if we apply T 1 to its vertices: A 1 T 1 A),), B 1 T 1 B) 1,), C 1 T 1 C) 1,1), 1 T 1 ),1), which is the square R 1 A 1 B 1 C 1 1 {u,v) u 1, v 1}. + pts) The Jacobian of the transformation is J x u x v y u y v 1 1 9. + points) e x y da e u v 9 da +1 point) R 9 R 1 e u v dudv 9 e u v ] 1 dv 9 e 1 ) e v dv e 1 ) e 1 ) e 1)e v] 1 e 1 e 1 +e ). + points) 6

7. 1 points) Evaluate the line integral e x+y dx+e y dy C along the negatively oriented closed curve C, where C is the boundary of the triangle with the vertices,),,1), and 1,). Solution: Px,y) e x+y, Qx,y) e y. Hence P y x,y) ex+y, Q x,y). + points) x The triangle bounded by C is {x,y) x 1, y x+1}. + points) Using Green s Theorem +1 point) and negative orientation of C we get e x+y dx+e y dy ) e x+y da + points) C x+1 e x+y dydx e x+y ] x+1 dx e x+1 e x) dx e x+1 1 ex ] 1 e 1 e e+ 1 1 e e+ 1. + points) 7

8. 1 points) Evaluate the integral S 1 z)ds, where S is the part of the surface z 5 x y inside the cylinder x +y 1. Solution: z gx,y) 5 x y, g x x,y) x, g x,y) y, +1 point) y ) ) g g ds 1+ + da 1+x x y +y da. + points) The domain in the xy-plane is the disk {x,y) x +y 1}. In polar coordinates x rcosθ, y rsinθ, and {r,θ) r 1, θ < π}. +1 point) Hence 1 z)ds 1 1 x y ) ) 1+x +y da S x +y ) 1+x +y da π r 1+r r drdθ π r 1+r r dr + points) Substitution: u 1+r gives r u 1, du rdr, rdr 1 du. Then π r 1+r r dr π u 1)u 1/ 1 du +1 point) 1 Hence S π π 1 z)ds 15 1 u / u 1/ )du π 5 u5/ ] u/ 1 8 ) 5 5 + ) +1 π. 15 +1 ) π. + points) 8

9. 1 points) Evaluate the line integral C F dr for the vector field Fx,y,z) yi+xj zk, where the closed curve C is the boundary of the triangle with vertices,,5),,,1), and,,) traced in this order. Solution: Use Stokes Theorem F dr curlf ds. +1 point) C S i j k curlf x y z k,,. + points) y x z S is the triangle with vertices P,,5), Q,,1), R,,). To find the equation of S we consider vectors PQ,, and PR,,. A normal vector n to the surface S is i j k n PQ PR 1, 6, 6. +1 point) S lies in the plane with the equation 1x+6y+6z 5) or z 5 x y. +1 pt) Using x and y as parameters we define S by rx,y) x, y, 5 x y, +1 pt) where x,y) and is the triangle with vertices,),,), and,) in the xy-plane. r x x,y) 1,,, r y x,y), 1, 1. i j k r x r y 1, 1, 1. + points) 1 1 Then F dr curlf ds,,, 1, 1 da da A) 6, C S where A) is the area of the triangle. Therefore, C F dr 6. + points) 9

1. 1 points) Evaluate the flux of Fx,y,z) z yi+x yj+x+y)k over S, where S is the closedsurfaceconsisting ofthecoordinateplanesandthepartofthespherex +y +z in the first octant x, y, z, with the normal pointing outward. Solution: By the ivergence Theorem the flux is FdS div F dv, +1 point) S E where divf x +1 point) and E is the region bounded by S. In the spherical coordinates x ρsinφcosθ, y ρsinφsinθ, z ρcosφ the region is E {ρ,θ,φ) ρ, θ π/, φ π/}. + points) Then divfdv π/ π/ ρ sin φcos θ ρsin φ dρdφdθ E π/ cos θdθ π/ sin φdφ ρ dρ. +1 point) π/ π/ sin φ dφ cos θdθ π/ 1 φ sinφ]π/ + 1 π/ cosθ+1 1 cosφ π/ dθ 1 ) dφ 1 cosφ+1 ] π/ 1 sinθ+θ π, +1 point) π/ dφ π 8 + 1 8 ρ dρ. +1 point) 1 cosφ+cos φ ) dφ ] π/ 1 sinφ+φ π, + points) 16 Hence π/ cos θdθ π/ sin φdφ ρ dρ π 16 π 16 π. +1 point) Therefore, the flux is 16 π. 1