Λύσεις στο επαναληπτικό διαγώνισμα 3
|
|
- Φωκάς Δημητρίου
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή σειράς ολοκλήρωσης). (i) Υπολογίστε το ολοκλήρωμα y sin(x y) da, όπου, το επίπεδο χωρίο που ορίζουν οι ευθείες y =, y =, x =, y = x. (ii) Υπολογίστε το ολοκλήρωμα ln ln e x dxdy. y/ Λύση: (i): Εδώ το χωρίο ολοκλήρωσης είναι (κάντε σχήμα!!!) το = {(x, y) y, x y}, το οποίο είναι τύπου IΙ. Οπότε, έχουμε I = y y sin(xy) dxdy = y cos(xy) y y dy = y cos(y ) dy = = sin() sin(4) +. (ii): Εδώ πρέπει να αλλάξουμε τη σειρά ολοκλήρωσης. Έχουμε = {(x, y) x ln(), y x}, το οποίο είναι τύπου IΙ. Οπότε, έχουμε
2 I = ln() x e x dydx = ln() xe x dx = =. Άσκηση (Εύρεση εμβαδού με το διπλό ολοκλήρωμα). Βρείτε το εμβαδόν του επίπεδου χωρίου, που ορίζουν οι καμπύλες x = y, y = x +. Λύση: (i) Εδώ το χωρίο ολοκλήρωσης είναι το = {(x, y) y, y x y }, όπου τα άκρα ως προς y, τα βρήκαμε λύνοντας την εξίσωση y = y, η οποία δίνει τα σημεία τομής των δύο καμπυλών. Οπότε έχουμε Α = y y dxdy = y y dy = = 7 6. Άσκηση (Εύρεση όγκου με το διπλό ολοκλήρωμα). (i) Να υπολογίσετε τον όγκο του στερεού, που φράσσεται από πάνω από το επίπεδο z = y και έχει ώς βάση το χωρίο στο xy-επίπεδο, που ορίζουν οι καμπύλες y = x, y =. (ii) Να υπολογίσετε τον όγκο του στερεού, που φράσσεται από πάνω από τον παραβολικό κύλινδρο z = x και έχει ώς βάση το χωρίο στο xy-επίπεδο, που ορίζουν οι καμπύλες y = x, y = x, x =. Λύση: (i): Από την υπόθεση καταλαβαίνουμε ότι z y. Οπότε V = y dzdxdy, όπου = {(x, y) x, x y }.
3 [ Εδώ, αυτό που χρείαζεται να καταλάβουμε γεωμετρικά, είναι το χωρίο, καθώς τα άκρα για το z προκύπτουν άμεσα από την εκφώνηση ]. Άρα V = y dzdxdy = = x 4 dx = = 8 5. y dydx x (ii): Όμοια με το (i), έχουμε, z x. Οπότε όπου V = x dzdxdy, = {(x, y) x, x y x }, Άρα V = x dzdxdy = x x dydx x = x x x 4 dx = = 6. Άσκηση 4 (Αλλαγή σε πολικές συντεταγμένες). (i) Κάνοντας αλλαγή σε πολικές συντεταγμένες να υπολογίσετε το ολοκλήρωμα στο δακτύλιο x + y 9 da, = {(x, y) 9 x + y 5}. (ii) Κάνοντας αλλαγή σε πολικές συντεταγμένες να υπολογίσετε το ολοκλήρωμα x + y da,
4 στον κύκλο = {(x, y) x + y x, x, y }. Λύση: (i): Εδώ το χωρίο ολοκλήρωσης (κάντε σχήμα!!!) είναι ο δακτύλιος = {(x, y) 9 x + y 5}, Έχουμε x = r cos(θ), y = r sin(θ), όπου r 5, θ π. Επομένως, το χωρίο που προκύπτει με αλλαγή σε πολικές συντεταγμένες είναι = {(r, θ) r 5, θ π}. Επίσης η Ιακωβιανή ορίζουσα είναι ίση με r, οπότε το ολοκλήρωμα γίνεται π I = 5 π r 9r drdθ = (r 9) / 5 dθ = 64 π dθ = = 8π. (ii): Εδώ το χωρίο, είναι το άνω ημικύκλιο (αφού x, y ) του κυκλικού δίσκου με κέντρο το (, ) και ακτίνα, που δίνεται από την εξίσωση (x ) + y. Επειδή βρισκόμαστε στο πρώτο τεταρτημόριο, θα ισχύει θ π. Επίσης, από τη σχέση x + y x, προκύπτει με αντικατάσταση, ότι r cos(θ). Επομένως, το χωρίο που προκύπτει με αλλαγή σε πολικές συντεταγμένες είναι = {(r, θ) r cos(θ), θ π/}. Επίσης η Ιακωβιανή ορίζουσα είναι ίση με r, οπότε το ολοκλήρωμα γίνεται 4
5 π/ I = cos(θ) r π/ drdθ = r cos(θ) dθ = 8 π/ cos (θ) dθ = = 6, όπου, υπενθυμίζω ότι το τελευταίο ολοκλήρωμα υπολογίζεται, ώς εξής: π/ Οπότε θέτοντας u = sin(θ), προκύπτει ότι π/ cos π/ (θ) dθ = cos π/ (θ) dθ = ( sin (θ)) cos(θ) dθ. ( sin (θ)) cos(θ) dθ = u du = =. Άσκηση 5 (Αλλαγή μεταβλητών μέσω γραμμικού μετασχηματισμού). Υπολογίστε το ολοκλήρωμα όπου, το τραπέζιο που ορίζουν οι ευθείες x+y x y e da, y = x, y = x, x =, y =, κάνοντας την αλλαγή μεταβλητών u = x + y, v = x y. Λύση: Από τις παραπάνω σχέσεις έχουμε x = u + v u v, y =. Βρίσκουμε τα όρια ολοκλήρωσης για τα u, v. Αρκεί να βρούμε που απεικονίζεται το σύνορο του (δηλ. το τραπέζιο στο xy-επίπεδο) στο u v-επίπεδο. Έχουμε y = x x y = v =. Άρα η ευθεία y = x, απεικονίζεται στην ευθεία v =. Δουλέυοντας όμοια, έχουμε y = x x y = v =. Άρα η ευθεία y = x, απεικονίζεται στην ευθεία v =. Τέλος, έχουμε y = u = v 5
6 και x = u = v Άρα η ευθεία y =, απεικονίζεται στην ευθεία u = v, ενώ η ευθεία x =, απεικονίζεται στην ευθεία u = v. Οπότε το χωρίο που προκύπτει μετά την αλλαγή συνεταγμένων είναι το τραπέζιο στο u v-επίπεδο (κάντε σχήμα!!!), που ορίζουν οι ευθείες u = v, u = v v =, v =. Δηλαδή Για την Ιακωβιανή ορίζουσα έχουμε = {(u, v) v, v u v }. (x, y) (u, v) = x u y u x v y v = / / / / = /. Τελικά έχουμε Ι = x+y x y e dxdy = e u v dudv = v e u v v dudv = v e u v v v dv v = (e e ) du = = (e e ). 4 Eπικαμπύλιο ολοκλήρωμα-θεώρημα Green Άσκηση 6 (Υπολογισμός έργου με το επικαμπύλιο ολοκλήρωμα ). Να υπολογίστεί το έργο που παράγει το πεδίο δυνάμεων F(x, y) = (4x, 4y), κατά μήκος της καμπύλης C = {(x, y) (x ) + (y ) =, y }, όπου C θετικά προσανατολισμένη. 6
7 Λύση: Η καμπύλη C, παριστάνει το άνω ημικύκλιο, του κύκλου με κέντρο το (, ) και ακτίνα. Μια παραμετρική παράσταση για την καμπύλη C, είναι η ακόλουθη. r(t) = ( + cos(t), + sin(t) ), t [, π]. Οπότε, C π F ds = F (r(t)) r π (t) dt = (4 + 4 cos(t), cos(t)) ( sin(t), cos(t)) dt π = 4 cos(t) 4 sin(t) dt = = 8. Άσκηση 7 (Υπολογισμός επικαμπύλιου ολοκληρώματος με το Θεώρημα Green). Με τη βοήθεια του Θεωρήματος Green, να υπολογιστεί το επικαμπύλιο ολοκλήρωμα του διανυσματικού πεδίου F(x, y) = (y + sin(x ), x + cos(y )), κατά μήκος της καμπύλης C, η οποία είναι θετικά προσανατολισμένη και αποτελεί σύνορο του τετραγώνου = {(x, y) x, y }. Λύση: Από το Θεώρημα Green, ισχύει ότι F ds = Q + x P y da. Επομένω αρκεί να υπολογίσουμε το διπλό ολοκλήρωμα στο. Εδώ έχουμε ότι P(x, y) = y + sin(x ), Q(x, y) = x + cos(y ), Q x P y = x y. Οπότε Q x P y da = x y dxdy = =. Άσκηση 8 (Επαλήθευση του Θεωρήματος Green). Να επαληθευτεί το Θεώρημα Green για το διανυσματικό πεδίο F(x, y) = ( y, x ), στο δακτύλιο = { (x, y) x + y 4 }. 7
8 Λύση: Θα υπολογίσουμε ξεχωριστά τα δύο μέλη της ισότητας του Θεωρήματος Green. Για το διπλό ολοκλήρωμα: Εδώ έχουμε ότι P(x, y) = y, Q(x, y) = x Q x P y = (x + y ). Χρησιμοποιώντας πολικές συντεταγμένες, έχουμε ότι x = r cos(θ), y = r sin(θ), όπου r, θ π. Οπότε λαμβάνοντας υπόψιν και την Ιακωβιανή ορίζουσα, έχουμε (x + y π ) dxdy = r drdθ = = 45π. Για το επικαμπύλιο: = C C όπου C : r (t) = (sin(t), cos(t)), t [, π] (Ο αρνητικά προσανατολισμένος κύκλος x + y = ). C : r (t) = ( cos(t), sin(t)), t [, π] (Ο θετικά προσανατολισμένος κύκλος x + y = 4). Οπότε οι παραπάνω παραμετρικές καμπύλες προσανατολίζουν θετικά το και F ds = F ds + F ds. + C C + Υπολογίζοντας τα επιμέρους ολοκληρώματα, έχουμε C π F ds = ( cos (t), sin (t)) (cos(t), sin(t)) dt (*): Όπου π = cos 4 (t) sin 4 (t) dt = π 4 + cos(4t) dt = = π 4. cos 4 (t) + sin 4 (t) = + cos(t) + cos(t) = = 4 + cos(4t). 4 Δουλεύοντας όμοια, έχουμε 8
9 C + π F ds = ( 8 sin (t), 8 cos (t)) ( sin(t), cos(t)) dt Τελικά π = 6 Οπότε, το Θεώρημα Green έχει επαληθευτεί. cos 4 (t) + sin 4 (t) dt = π cos(4t) dt = = 4π. 4 + F ds = 4π π = 45π. Άσκηση 9 (Εφαρμογή του Θεωρήματος Green σε αστρόβιλο διανυσματικό πεδίο). (i) Έστω C μια απλή, κλειστή, θετικά προσανατολισμένη καμπύλη, η οποία δεν διέρχεται από το (, ) και η οποία αποτελεί σύνορο ενός χωρίου, στο οποίο μπορεί να εφαρμοσθεί το Θεώρημα Green. Αν y F(x, y) = x + y, να υπολογίσετε το ολοκλήρωμα x x + y, F ds. C (ii) Έστω το διανυσματικό πεδίο y F(x, y) = x + y, x x + y. Να υπολογίστεί το επικαμπύλιο ολοκλήρωμα του F, κατά μήκος της καμπύλης C, η οποία είναι θετικά προσανατολισμένη και αποτελεί σύνορο του τετραγώνου = {(x, y) x, y }. Λύση: (i): Έχουμε Οπότε προκύπτει ότι P(x, y) = Q x P y = y x + y, Q(x, y) = x x + y. y (x + y ) = y (x + y ) =. Δηλαδή το πεδίο είναι αστρόβιλο. Διακρίνουμε τις περιπτώσεις: 9
10 Έστω ότι (, ). Τότε ισχύουν οι προυποθέσεις του Θεωρήματος Green στο, οπότε F ds = Q x P y da =. C Έστω ότι (, ). Τότε δεν ισχύουν οι προυποθέσεις του Θεωρήματος Green στο, καθώς το πεδίο F δεν ορίζεται στο (, ). Προκειμένου να μπορέσουμε να εφαρμόσουμε το Θεώρημα, θεωρούμε τον ανοικτό κυκλικό δίσκο δ = ((, ), δ) και παίρνουμε το σύνολο (δακτύλιο) Δ δ = δ. Με αυτόν το τρόπο εξαιρούμε το προβληματικό σημείο και τώρα μπορούμε να εφαρμόσουμε το Θεώρημα Green στο Δ δ (κάντε σχήμα), όπου Δ + δ = δ C+. Από το Θεώρημα Green και το γεγονός ότι Q x = P y, έχουμε Οπότε F ds = F ds + F ds =. + δ δ C F ds = F ds = F ds. C δ + δ Θεωρώντας την παραμετρική παράσταση r(t) = ( δ cos(t), δ sin(t) ) για το + δ, έχουμε + δ π F ds = δ sin(t) δ, δ cos(t) δ ( δ sin(t), δ cos(t)) dt Τελικά π = cos (t) + sin π (t) dt = dt = π. F ds = π. C (ii): Επειδή το σημείο (, ) ανήκει στο, δεν μπορούμε να εφαρμόσουμε το Θεώρημα Green. Δουλέυοντας όπως στο (i), θεωρούμε τον ανοικτό μοναδιαίο κυκλικό δίσκο = ((, ), )) και παίρνουμε το σύνολο Δ =.
11 Ακριβώς όπως στο (i), έχουμε ότι F ds = F ds = π. + + Άσκηση (Κυκλοφορία-Εξερχόμενη ροή). Έστω το διανυσματικό πεδίο και το τετράγωνο που ορίζουν οι ευθείες F(x, y) = (x + 4y, x + y ) x =, x =, y =, y =. (i) Εφαρμόστε το Θεώρημα Green (Εφαπτομενική μορφή) για να βρείτε την κυκλοφορία του διανυσματικού πεδίου F κατά μήκος της καμπύλης C =. (ii) Εφαρμόστε την κάθετη μορφή του Θεωρήματος Green για να βρείτε την εξερχόμενη ροή του διανυσματικού πεδίου F διαμέσου της καμπύλης C =. Λύση: (i): Έχουμε P(x, y) = x + 4y, Q(x, y) = x + y Q x P y = 4 =. Οπότε για την κυκλοφορία του F, έχουμε (F T) ds = F ds = Q x P y da = da = A() =, + + όπου A() = (το εμβαδόν του τετραγώνου). (ii): Για την εξερχόμενη ροή, έχουμε (F n) ds = div(f) da = P x + Q y da = x + y da. + Επειδή το είναι τετράγωνο, για το τελευταίο ολοκλήρωμα, έχουμε x + y da = x + y dxdy = =. Τριπλά ολοκληρώματα Άσκηση (Υπολογισμός όγκου με καρτεσιανές και κυλινδρικές συντεταγμένες). Να υπολογιστεί ο όγκος του στερεού που περικλείεται από τον κύλινδρο x + y = 9 και το οποίο φράσσεται από κάτω από το επίπεδο z = και από πάνω από το επίπεδο x + z = 5, με χρηση Καρτεσιανών και κυλινδρικών συντεταγμένων.
12 Λύση: Έστω W, το στερεό του οποίου θα υπολογίσουμε τον όγκο. Από την εκφώνηση καταλαβαίνουμε ότι το z 5 x. Για να βρούμε τα όρια για τα x, y πρέπει να βρούμε την προβολή του W στο επίπεδο x y. Εδώ επειδή το W είναι κομμάτι του κυλίνδρου x + y = 9, το είναι ο κύκλος με κέντρο το (, ) και ακτίνα (κάντε σχήμα!!!). Βλέποντας το ως χωρίο τύπου I στο R, έχουμε ότι = (x, y) x, 9 x y 9 x. Οπότε το W γράφεται ως W = (x, y, z) x, 9 x y 9 x, z 5 x. Οπότε V = W dv = 9 x 5 x dzdydx 9 x = 9 x = 4A() 9 x 4 x dydx = 4 9 x 9 x dydx x 9 x dx = 6π (9 x ) / 9 x x dydx 9 x = 6π. Θεωρώντας τώρα κυλινδρικές συντεταγμένες, έχουμε x = r cos(θ), y = r sin(θ), z = z, όπου, r, θ π, z 5 r cos(θ). Οπότε, αν W, είναι το χωρίο που προκύπτει μετά την αλλαγή σε κυλινδρικές συντεταγμένες, τότε W = {(r, θ, z) r, θ π, z 5 r cos(θ) }. Επίσης, η Ιακωβιανή ορίζουσα είναι ίση με r, οπότε για τον όγκο του W, έχουμε
13 V = W π = π = dxdydz = r drdθdz W 5 r cos(θ) π 4r drdθ π r dzdrdθ = (4 r cos(θ))r drdθ r cos(θ) drdθ = = 6π = 6π. Άσκηση (Υπολογισμός τριπλού ολοκληρώματος με κυλινδρικές συντεταγμένες). Να υπολογιστεί το ολοκλήρωμα z dv, W όπου W, το στερεό που βρίσκεται κάτω από το παραβολοειδές z = 5 x y, μέσα στον κύλινδρο x + y = 4, πάνω από το xy-επίπεδο. Λύση: Από την εκφώνηση καταλαβαίνουμε ότι το z 5 x y. Για να βρούμε τα όρια για τα x, y πρέπει να βρούμε την προβολή του W στο επίπεδο x y. Εδώ επειδή το W είναι κομμάτι του κυλίνδρου x + y = 4, το είναι ο κύκλος με κέντρο το (, ) και ακτίνα (κάντε σχήμα!!!). Βλέποντας το ως χωρίο τύπου I στο R, έχουμε ότι Οπότε το W γράφεται ως W = (x, y, z) x, 4 x y 4 x, z 5 x y. Θεωρώντας τώρα κυλινδρικές συντεταγμένες, έχουμε x = r cos(θ), y = r sin(θ), z = z, όπου, r, θ π, z 5 r. Οπότε, αν W, είναι το χωρίο που προκύπτει μετά την αλλαγή σε κυλινδρικές συντεταγμένες, τότε W = (r, θ, z) r, θ π, z 5 r. Επίσης, η Ιακωβιανή ορίζουσα είναι ίση με r, οπότε
14 I = W π = dxdydz = z r drdθdz W 5 r π z r dzdrdθ = 5 r r drdθ π = 6 5 r dθ = = π (5 ). Άσκηση (Υπολογισμός όγκου με σφαιρικές συντεταγμένες). Να υπολογιστεί ο όγκος του στερεού W, που αποκόπτει από τη σφαίρα x + y + z, ο κώνος z = x + y. Λύση: Κάνοντας αλλαγή σε σφαιρικές συντεταγμένες, έχουμε x = r cos(θ) sin(φ), y = r sin(θ) sin(φ), z = r cos(φ), Όπου, r (προσοχή μην μπερδευτείτε με το r από τις κυλινδρικές συντεταγμένες, το οποίο κείτεται στο xy-επίπεδο) και θ π. Για να βρούμε που κινείται η γωνία φ, πρέπει να βρούμε τη γωνία που σχηματίζει η γεννέτειρα του κώνου z = x + y με τον άξονα z. Μπορούμε να βρούμε την εν λόγω γωνία είτε γεωμετρικά ή αλγεβρικά. Γεωμετρικά: Για κάθε τιμή του z, ισχύει x + y = z. Άρα τα x, y κινούνται σε κύκλο με κέντρο το (, ) και ακτίνα ρ = z. Από τα παραπάνω, έχουμε ότι tan(φ) = ρ z = φ = π ( φ π). οπότε φ π/. Αλγεβρικά: Έχουμε z = x + y r cos(φ) = r sin (φ) r cos(φ) = r sin(φ) tan(φ) = φ = π, όπου sin(φ) για φ [, π]. Από τα παραπάνω προκύπτει ότι W = (r, φ, θ) r, φ π/, θ π. Επίσης η Ιακωβιανή ορίζουσα είναι r sin(φ), οπότε 4
15 V = W π = dxdydz = r sin(φ) drdφdθ W π/ r sin(φ) drdφdθ = = π. 5
Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο
Διαβάστε περισσότεραΑνασκόπηση-Μάθημα 28 Τριπλό ολοκλήρωμα-κυλινδρικές-σφαιρικές συντεταγμένες
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 28 Τριπλό ολοκλήρωμα-κυλινδρικές-σφαιρικές συντεταγμένες Στο μαθήμα 28 (3 /2/28), συνεχίσαμε
Διαβάστε περισσότεραx 3 D 1 (x 1)dxdy = dydx = (x 1)[y] x x 3 dx + x)dx = 3 x5
1 Επαναληπτικές Ασκήσεις 19-1-18 Διπλά Ολοκληρώματα 1. Να υπολογισθεί το ολοκλήρωμα (x 1)dxdy όπου το χωρίο περιέχεται από τις καμπύλες y x και y x. Λύση Οι δύο καμπύλες τέμνονται στα σημεία όπου x x.
Διαβάστε περισσότεραΑνασκόπηση-Μάθημα 32 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού πεδίου
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 3 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού
Διαβάστε περισσότεραb proj a b είναι κάθετο στο
ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος. Να υπολογιστεί το ολοκλήρωμα I = x ds, όπου c το δεξιό ημικύκλιο x + = 6 α) κινούνοι
Διαβάστε περισσότερα1 3 (a2 ρ 2 ) 3/2 ] b V = [(a 2 b 2 ) 3/2 a 3 ] 3 (1) V total = 2V V total = 4π 3 (2)
Γενικά Μαθηματικά ΙΙΙ Δεύτερο σετ ασκήσεων, Λύσεις Άσκηση 1 Για την επίλυση της άσκησης και την εύρεση του ζητούμενου όγκου, αρχικά αναγνωρίζουμε ότι ο τόπος ολοκλήρωσης, είναι ο κύκλος x + y = b, ο οποίος
Διαβάστε περισσότερα< F ( σ(h(t))), σ (h(t)) > h (t)dt.
ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ IV, /6/9 Θέμα 1. Εστω : a 1, β 1 ] R μια C 1 καμπύλη. Μια C 1 καμπύλη ρ : a, β] R λέγεται αναπαραμετρικοποίηση της αν υπάρχει h : a, β] a 1, β 1 ], 1 1 επί και
Διαβάστε περισσότεραΑνασκόπηση-Μάθημα 24, 25 Διπλό ολοκλήρωμα
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 4, 5 Διπλό ολοκλήρωμα Στο μαθήματα 4 και 5 ( //8, 6 //8 ), μιλήσαμε για το διπλό ολοκλήρωμα.
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 8/4/8 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να εξετάσετε ως προς τα τοπικά ακρότατα τη συνάρτηση: f x x x (,
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος
3/4/6 Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Έστω το ολοκλήρωμα: I da {(, ) :, } 3 ( + 3 ) Να εκφράσετε το ολοκλήρωμα σε νέες συντεταγμένες, οι οποίες ορίζονται
Διαβάστε περισσότεραΜαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ
Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να
Διαβάστε περισσότεραΠαραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος
Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα Να υπολογισθεί το ολοκλήρωμα I = x e + z dv όπου = [, ] [,] [,] Η ολοκλήρωση, όπως φαίνεται από τα άκρα ολοκλήρωσης, γίνεται πάνω
Διαβάστε περισσότεραΛΥΣΕΙΣ 6. a2 x 2 y 2. = y
ΛΥΣΕΙΣ 6. Οι ασκήσεις από το βιβλίο των Marsden - romba. 7.5. Θεωρούμε την παραμετρικοποίηση rx, y = x, y, a 2 x 2 y 2, όπου το x, y διατρέχει τον δίσκο στο xy-επίπεδο που ορίζεται από την x 2 +y 2 a 2.
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος. Προσεγγίστε τo ολοκλήρωμα ( + ) I d d με αθροίσματα iemann χωρίζοντας το πεδίο ολοκλήρωσης σε ίσα ορθογώνια.
Διαβάστε περισσότεραΜαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ
Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :
Διαβάστε περισσότερα5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών
Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει
Διαβάστε περισσότεραΛύσεις στο Επαναληπτικό Διαγώνισμα 2
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Για τυχόν παρατηρήσεις, απορίες ή λάθη που θα βρείτε, στείλτε μου
Διαβάστε περισσότεραΚεφάλαιο 3 Πολλαπλά Ολοκληρώματα
Κεφάλαιο Πολλαπλά Ολοκληρώματα Διπλά Ολοκληρώματα. Έστω ότι η f ( είναι, ) ορισμένη σε ένα ορθογώνιο χωρίο : a b, c d d ΔA (, ) Δ c Δ a b Το οποίο διαμερίζουμε σε ορθογώνια υποχωρία (, ). Σχηματίζουμε
Διαβάστε περισσότεραΟλοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.
Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 9 εκδόσεις Καλό πήξιμο Τα πάντα για τα Ολοκληρώματα
Διαβάστε περισσότεραΟλοκληρώματα. ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ- Απειροστικός Λογισμός ΙΙ Ολοκληρώματα Εφαρμογές Ολοκληρωμάτων Υπολογισμός μήκους Υπολογισμός εμβαδού Υπολογισμός όγκου Χρήση σε Τύπους/Μετρικές Φυσική Πιθανότητες Γραφική Θέματα Αναγνώρισης προτύπων
Διαβάστε περισσότεραk ) 2 P = a2 x 2 P = 2a 2 x y 2 Q = b2 y 2 Q = 2b 2 y z 2 R = c2 z 2 R = 2c 2 z P x = 2a 2 Q y = 2b 2 R z = 2c 2 3 (a2 +b 2 +c 2 ) I = 64π
Γενικά Μαθηματικά ΙΙΙ Πέμπτο σετ ασκήσεων, Λύσεις Άσκηση 1 Το θεώρημα Gauss γενικά διατυπώνεται ως: F dv = ( F η)dσ (1) V Για την άσκηση όπου μας δίνεται η σφαίρα x + y + z 4 = Φ, το κάθετο διάνυσμα η,
Διαβάστε περισσότεραΟλοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.
Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 7 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78
Διαβάστε περισσότεραEPIKAMPULIA KAI EPIFANEIAKA OLOKLHRWMATA
Kefˆlaio 9 EPIKAMPULIA KAI EPIFANEIAKA OLOKLHRWMATA Σημειώσεις Γ. Γεωργίου, ΜΑΣ 1. 9.1 EpikampÔlia oloklhr mata Ορισμός Εστω f : R R βαθμωτό πεδίο συνεχές στη 1 καμπύλη σ : [a, b] R. ολοκλήρωμα α είδους
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διπλά Ολοκληρώματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Ορθογώνια Χωρία Ορισμός n f( x, y) da lim f( x, y ) = Α Α 0 k
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
Διαβάστε περισσότεραDIPLA KAI TRIPLA OLOKLHRWMATA
Kefˆlio 8 IPLA KAI TRIPLA OLOKLHRWMATA Σημειώσεις Γ. Γεωργίου, ΜΑΣ. 8. iplˆ oloklhr mt 8.. iplì olokl rwm se orjog nio Ορίζουμε πρώτα το διπλό ολοκλήρωμα (double integrl), R[,b]X[,d] d f(, ) da R πάνω
Διαβάστε περισσότεραΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο Ασκήσεις 1.
ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο -7 Ασκήσεις Αποδείξτε την ανισότητα Cuch-Schwr Για R Δείξτε ότι η ισότητα ισχύει αν και μόνο αν τα διανύσματα και είναι συγγραμμικά Αποδείξτε την τριγωνική ανισότητα
Διαβάστε περισσότεραΑριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 4. Ασκήσεις. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών Α.Π.Θ.
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 4 Ασκήσεις Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών Α.Π.Θ. Θεσσαλονίκη, Οκτώβριος 23 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΙόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής
Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Μαθηματικός Λογισμός Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΟΛΛΑΠΛΗ ΟΛΟΚΛΗΡΩΣΗ- ΠΑΡΑΔΕΙΓΜΑΤΑ Παναγιώτης Βλάμος Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΑνασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες Στο δωδέκατο μάθημα (24/10/2018)
Διαβάστε περισσότεραxsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy
ΔΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Εφαρμογή Να υολογιστεί το ολοκλήρωμα : cos sin dd Ολοκληρώνουμε ρώτα ως ρος θεωρώντας το σαν σταθερά (αρατηρούμε ότι το «εσωτερικό» ολοκλήρωμα είναι ως ρος, δηλαδή ρώτα εμφανίζεται το
Διαβάστε περισσότεραΑσκήσεις Διανυσματικής Ανάλυσης
Ασκήσεις Διανυσματικής Ανάλυσης ) Το ύψος h σε χιλιόμετρα ενός βουνού δίνεται από την σχέση h 4 == 4. α) Ένας πεζοπόρος βρίσκεται στο σημείο (,,) και κινείται προς την διεύθυνση της μεγίστης κατάβασης.
Διαβάστε περισσότεραΚεφάλαιο 5 Πολλαπλά Ολοκληρώματα
Κεφάλαιο 5 Πολλαπλά Ολοκληρώματα 5. Διπλά Ολοκληρώματα σε ορθογώνιο χωρίο. 5.. Εισαγωγή Έστω ότι η f (, ) είναι ορισμένη σε ένα ορθογώνιο χωρίο : a b, c d d (, ) A c a b Το οποίο διαμερίζουμε σε ορθογώνια
Διαβάστε περισσότεραΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 8: Αλλαγή μεταβλητών. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Αλλαγή μεταβλητών. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά
Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος
/4/05 Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Αν z z 0 δείξτε ότι: z z ( z ) Παραγωγίζουμε την z z 0 ως προς θεωρώντας ότι η z είναι συνάρτηση των και : z z z z z z 0 () z
Διαβάστε περισσότεραΛογισμός 4 Ενότητα 19
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Το Θεώρημα του Gauss. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΤΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. n S f x, y,z ΔV (1) n i i i i i 1
ΚΕΦΑΛΑΙΟ 5 ο ΤΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Τα τριπλά ολοκληρώματα ορίζονται με τρόπο ανάλογο με τα διπλά ολοκληρώματα. Ισχύουν ανάλογα θεωρήματα ολοκληρωσιμότητας και ανάλογες ιδιότητες. Θεωρούμε μια συνάρτηση f,,
Διαβάστε περισσότεραΑλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi
18 Αλλαγή µεταβλητής στο τριλό ολοκλήρωµα Υενθυµίζουµε ( Θεωρηµα ) το γενικό τύο αλλαγής µεταβλητής στο ολλαλό ολοκλήρωµα: f ( y) dy= f ( g( x) ) det J g( x) dx (1), Β= g Α Α n όου Α, Β R Jodan µετρήσιµα
Διαβάστε περισσότεραΜαθηματική Ανάλυση ΙI
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 8: Διπλά ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Διαβάστε περισσότεραΠαραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος
Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος Παράδειγμα Να υπολογισθεί με τρόπους το ολοκλήρωμα I d d 0 Η ολοκλήρωση, όπως φαίνεται από τα άκρα ολοκλήρωσης, γίνεται πάνω στο ορθογώνιο χωρίο R 0,,
Διαβάστε περισσότεραx y z η οποία ορίζεται στο χωρίο V
HY 111, Απειροστικός Λογισμός Εαρινό Εξάμηνο 011 01 Διδάσκων: Κώστας Παναγιωτάκης 8 ο Φροντιστήριο (18/5/01) Τριπλά Ολοκληρώματα Συνοπτική Θεωρία Έστω ένα στερεό, το οποίο φράσσεται από τις επιφάνειες
Διαβάστε περισσότεραΑλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi
8 λλαγή µεταβλητής στο τριλό ολοκλήρωµα Υενθυµίζουµε ( Θεωρηµα ) το γενικό τύο αλλαγής µεταβλητής στο ολλαλό ολοκλήρωµα: f ( y) dy= f ( g( x) ) det J g( x) dx (), Β= g n όου, Β Jodan µετρήσιµα υοσύνολα
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Θεώρημα Green Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Επικαμπύλιο Ολοκλήρωμα
Διαβάστε περισσότεραds ds ds = τ b k t (3)
Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k
Διαβάστε περισσότεραΑσκήσεις στα Ολοκληρώματα, Αόριστο Ολοκλήρωμα, Ορισμένο Ολοκλήρωμα, Πολλαπλά Ολοκηρώματα για τα Γενικά Μαθηματικά ΙΙ, Τμήματος Χημείας Διδάσκων: Μιχάλης Ξένος, email : menos@cc.uoi.gr Μαρτίου. Να υπολογιστούν
Διαβάστε περισσότεραΑπειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη
Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη Διδάσκοντες: Δάλλα - Αλικάκος 6 Ιουλίου 204 Θέμα (α) Από την γνωστή ανισότητα a 2 + b 2 2 ab, όταν (x, y) (0, 0), τότε ισχύει: f(x, y) f(0, 0) x 2 y 2x
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Θεώρημα Green Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Επικαμπύλιο Ολοκλήρωμα
Διαβάστε περισσότερα0.8 Επικαµπύλια ολοκληρώµατα
0.8 Επικαµπύλια ολοκληρώµατα. Έστω η καµπύλη = ( r = r( t) = ( t, t,ln t), t > 0). Να ευρεθεί το µήκος της µεταξύ των σηµείων A = (,, 0) και B = (4,4,ln ). Έχουµε r () t = (,, t ) ( t > 0). Άρα το µήκος
Διαβάστε περισσότερα13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ
ETION 1 13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 13.1 Ορισµοί Μεγέθη Μια ποσότητα που εκφράζεται από ένα µόνο πραγµατικό αριθµό καλείται βαθµωτό µέγεθος. Μια ποσότητα που εκφράζεται από περισσότερους από έναν πραγµατικούς
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1
ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 1.1 Εισαγωγή... 1 1.2 Λύση ΔΕ, αντίστροφο πρόβλημα αυτής... 3 Ασκήσεις... 10 1.3 ΔΕ πρώτης τάξης χωριζομένων μεταβλητών... 12 Ασκήσεις... 15 1.4 Ομογενείς
Διαβάστε περισσότεραΑνασκόπηση-Μάθημα 14 Όρια και Συνέχεια συναρτήσεων στο R 2
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 14 Όρια και Συνέχεια συναρτήσεων στο R 2 Στο δέκατο τέταρτο μάθημα (30/10/2018), ασχοληθήκαμε
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Θεώρημα Green Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Επικαμπύλιο Ολοκλήρωμα
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/ Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: 0 2 xx, που ισχύει.
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: Ν : = + + + Ν : = + + + Ν : = ma 3 για κάθε = ( ) Να αποδείξετε ότι για κάθε = ( ) ισχύει: Ν ( ) Ν ( ) Ν ( ) Ν (
Διαβάστε περισσότεραr (t) dt f ds r (t) = (x (t)) 2 + (y (t)) 2 + (z (t)) 2.
ΑΝΑΛΥΣΗ ΙΙ Μήκος καμπύλης και Μέση τιμή συνάρτησης κατά μήκος καμπύλης Ορισμός : Εστω r μία απλή και λεία παραμετρική καμπύλη του R που ορίζεται από την απλή και λεία παραμέτρηση r : [a, b] R R. Ως μήκος
Διαβάστε περισσότεραΠεριεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
Διαβάστε περισσότερασ (9) = i + j + 3 k, σ (9) = 1 6 k.
Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις
Διαβάστε περισσότεραΛογισμός 4 Ενότητα 14
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Το θεώρημα του Green. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 ΚΕΦΑΛΑΙΟ 2: ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΣΤΑΘΜΙΚΕΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ 35
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 1. Γενικά.. 15 Επιφάνεια 15 Ευθειογενεί επιφάνειε. 15 Επιφάνειε δευτέρου βαθμού.. 16 2. Μερικέ επιφάνειε δευτέρου
Διαβάστε περισσότερα8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.
1 8. ΜΑΓΝΗΤΙΣΜΟΣ Πρόβλημα 8.6. Το σύρμα του παρακάτω σχήματος έχει άπειρο μήκος και διαρρέεται από ρεύμα I. Υπολογίστε με τη βοήθεια του νόμου του Biot-Savart με ολοκλήρωση το μέτρο και την κατεύθυνση
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: : : : ma 3 για κάθε Να αποδείξετε ότι για κάθε ισχύει: 3 3 Τι συμπεραίνετε για τις παραπάνω νόρμες του Αν θεωρήσουμε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5 TΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. R = x,y,z : a x b, a y b, a z b.
ΚΕΦΑΛΑΙΟ 5 TΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 5.. Ορισμοί-Ιδιότητες Έστω f : R είναι φραγμένη συνάρτηση πάνω σε κλειστό ορθογώνιο παραλληλεπίπεδο Εστω x, y, z R = x,y,z : a x b, a y b, a z b. είναι μια διαμέριση του
Διαβάστε περισσότεραΚλασικη ιαφορικη Γεωµετρια
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία
Διαβάστε περισσότεραΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5
Διαβάστε περισσότεραΠεριεχόµενα. 1 Ολοκληρώµατα ιπλό Ολοκλήρωµα... 1
Περιεχόµενα Ολοκληρώµατα. ιπλό Ολοκλήρωµα...................... i Κεφάλαιο Ολοκληρώµατα. ιπλό Ολοκλήρωµα Ι. Πάνω σε ορθογώνιο Εστω f : R α, β] γ, δ] R µία ϕραγµένη συνάρτηση στο ορθογώνιο R. Ορίζουµε
Διαβάστε περισσότεραΠεριεχόμενα. Λίγα λόγια για τους συγγραφείς
Περιεχόμενα Λίγα λόγια για τους συγγραφείς xii Εισαγωγή xiii 1 Συναρτήσεις 1 1.1 Ανασκόπηση των συναρτήσεων 1 1.2 Παράσταση συναρτήσεων 12 1.3 Τριγωνομετρικές συναρτήσεις 26 Ασκήσεις επανάληψης 34 2 Όρια
Διαβάστε περισσότερα9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού
1 2 Τα θεωρήματα του Green, Stokes και Gauss 211 9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού Ήδη στην παράγραφο 5.7 ασχοληθήκαμε με την ύπαρξη συνάρτησης
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Εισαγωγικές Ένvοιες ΙI Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΕργαστήριο Ανώτερης Γεωδαισίας Μάθημα 7ου Εξαμήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας»
Εργαστήριο Ανώτερης Γεωδαισίας Μάθημα 7ου Εξαμήνου (Ακαδ. Έτος 018 19 «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας» ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Ημερομηνία Παράδοσης : 6/11/018 ΑΣΚΗΣΗ 3 Σκοπός: Η παρούσα εργασία
Διαβάστε περισσότεραΠεριεχόμενα. Λίγα λόγια για τους συγγραφείς
Περιεχόμενα Λίγα λόγια για τους συγγραφείς xii Εισαγωγή xiii 1 Συναρτήσεις 1 1.1 Ανασκόπηση των συναρτήσεων 1 1.2 Παράσταση συναρτήσεων 12 1.3 Τριγωνομετρικές συναρτήσεις 26 Ασκήσεις επανάληψης 34 2 Όρια
Διαβάστε περισσότεραΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ
ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η
Διαβάστε περισσότερα2 η ΕΡΓΑΣΙΑ Παράδοση
η ΕΡΓΑΣΙΑ Παράδοση --8 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση η Υπολογίστε τα κάτωθι όρια: cos α) β) γ) δ) ε) sin 5 α) Εφαρμόζουμε τον κανόνα L Hospital μια φορά (απροσδιοριστία της μορφής /)
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα
ΠΑΡΑΡΤΗΜΑ Γ Επικαμπύλια και Επιφανειακά Ολοκληρώματα Η αναγκαιότητα για τον ορισμό και την περιγραφή των ολοκληρωμάτων που θα περιγράψουμε στο Παράρτημα αυτό προκύπτει από το γεγονός ότι τα μεγέθη που
Διαβάστε περισσότεραΕργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες
Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε
Διαβάστε περισσότεραΥπολογισµός τριπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση
00 Υπολογισµός τριπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Στην παράγραφο αυτή θα δούµε πως µπορεί να χρησιµοποιηθεί το θεώρηµα Fubini για τον υπολογισµό τριπλών ολοκληρωµάτων. Ξεκινούµε µε την διατύπωση
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,
Διαβάστε περισσότεραΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ
1 ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ.. Αν δοκιµαστικό φορτίο q βρεθεί κοντά σε αγωγό που διαρρέεται από ρεύµα, υφίσταται δύναµη κάθετη προς την διεύθυνση της ταχύτητάς του και µε µέτρο ανάλογο της ταχύτητάς του, F qυ Β (νόµος
Διαβάστε περισσότερα1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων
3 1.1 Διανύσματα 1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων ΑΣΚΗΣΗ 1.1 Να βρεθεί η γωνία που σχηματίζουν τα διανύσματα î + ĵ + ˆk και î + ĵ ˆk. z k i j y x Τα δύο διανύσματα που προκύπτουν από
Διαβάστε περισσότερα14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ
SECTION 4 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ 4. Γενικοί Ορισµοί Η θέση ενός σηµείου P στον τρισδιάστατο Ευκλείδειο χώρο µπορεί να καθορισθεί µε ορθογώνιες καρτεσιανές συντεταγµένες (x y οι οποίες µετριώνται
Διαβάστε περισσότεραΛογισμός 4 Ενότητα 18
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Το Θεώρημα του Stokes. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι
Διαβάστε περισσότεραΤα θεωρήματα Green, Stokes και Gauss
Τα θεωρήματα των Green, Stokes και Guss Αντώνης Τσολομύτης Σάμος, 2012 curl F div S F Επειδή αναϕέρθηκε στο μάθημα... Ενεργητική ϕωνή Ενεστώτας παράγω παρέχω Ενεστώτας-υποτακτική να παράγω να παρέχω Ενεστώτας-προστακτική
Διαβάστε περισσότερα2x 2 y. f(y) = f(x, y) = (xy, x + y)
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Εστω f : R R η συνάρτηση με τύπο y + x sin 1, για y 0, f(x, y) = y 0, για y = 0. (α) Να αποδειχθεί οτι lim f(x, y) = 0. (x,y) (0,0) (β) Να αποδειχθεί οτι το lim(lim f(x, y)) δεν
Διαβάστε περισσότεραHomework#13 Trigonometry Honors Study Guide for Final Test#3
Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή ( ο Μέρος) Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση
Διαβάστε περισσότεραΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφείο 102, Στρόβολος 2003, Λευκωσία Τηλέφωνο: 357 22378101 Φαξ: 357 22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
Διαβάστε περισσότεραΑσκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9 Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : Η καµπύλη y = /x µε x >, περιστρέφεται γύρω από τον άξονα Ox και δηµιουργεί ένα στερεό µε επιφάνεια S και όγκο V. είξτε
Διαβάστε περισσότεραΗλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Νόμος Gauss Ο νόµος του Gauss εκφράζει τη σχέση μεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από μια κλειστή επιφάνεια και του φορτίου
Διαβάστε περισσότερα( y) ( x) ( 0) ( ) ( 0) ( y) ( ) ( ) ( ) Παραδείγµατα και εφαρµογές. 1)Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα 1
76 Παραδείγµατα και εφαρµογές )Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα C ) καµπύλη Αποδείξτε ότι το εµβαδόν Α ( D) του D δίνεται από τους τύπους Α D = d = d Απόδειξη (Ι)
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ
ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1. ΕΙΣΑΓΩΓΗ Γράφημα μιας πραγματικής συνάρτησης : ή ( )/ σύνολο: f Οι θέσεις του κινητού σημείου G ( x, y)/ y f( x), xa. f A y f x A είναι το M x, y, ώστε
Διαβάστε περισσότερα5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
SECTIN 1 5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ 5.1 Σε δύο ιαστάσεις Συστήµατα συντεταγµένων Για να καθοριστεί η θέση, το σχήµα και η κίνηση των σωµάτων στο χώρο (που θεωρείται Ευκλείδειος, δηλαδή µε θετική απόσταση µεταξύ
Διαβάστε περισσότεραΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Λογισμός ΙΙ Χρήστος Θ. Αναστασίου Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Διαβάστε περισσότεραΓιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.
ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin
Διαβάστε περισσότερα