Iterative Monte Carlo analysis of spin-dependent parton distributions

Σχετικά έγγραφα
Hadronic Tau Decays at BaBar

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

AdS black disk model for small-x DIS

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Topics on QCD and Spin Physics

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Large β 0 corrections to the energy levels and wave function at N 3 LO

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Example Sheet 3 Solutions

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Approximation of distance between locations on earth given by latitude and longitude

Math 6 SL Probability Distributions Practice Test Mark Scheme

Homework 8 Model Solution Section

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Assalamu `alaikum wr. wb.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Ανελαστική Σκέδαση. Σπύρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Andreas Peters Regensburg Universtity

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

D Alembert s Solution to the Wave Equation

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

The ε-pseudospectrum of a Matrix

Kaon Weak Matrix Elements in 2+1 Flavor DWF QCD

CORDIC Background (4A)

Section 8.3 Trigonometric Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Homework 3 Solutions

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

Matrices and Determinants

Solution Series 9. i=1 x i and i=1 x i.

Statistical Inference I Locally most powerful tests

Moments of Structure Functions in Full QCD

Numerical Analysis FMN011

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Bayesian modeling of inseparable space-time variation in disease risk

Three coupled amplitudes for the πη, K K and πη channels without data

Srednicki Chapter 55

Ó³ Ÿ , º 6(148).. 865Ä873. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö

An Inventory of Continuous Distributions

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

2 Composition. Invertible Mappings

Wavelet based matrix compression for boundary integral equations on complex geometries

The challenges of non-stable predicates

Second Order Partial Differential Equations

Probability and Random Processes (Part II)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

GREECE BULGARIA 6 th JOINT MONITORING

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Reminders: linear functions

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

EE512: Error Control Coding

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

CORDIC Background (2A)

6.3 Forecasting ARMA processes

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

The Simply Typed Lambda Calculus

EPS On Behalf of Belle Collaboration. Takayoshi Ohshima Nagoya University, Japan

Other Test Constructions: Likelihood Ratio & Bayes Tests

Elements of Information Theory

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002

High order interpolation function for surface contact problem

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

6. MAXIMUM LIKELIHOOD ESTIMATION

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

CE 530 Molecular Simulation

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

High Energy Break-Up of Few-Nucleon Systems Misak Sargsian Florida International University

Prey-Taxis Holling-Tanner

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

TMA4115 Matematikk 3

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Discretization of Generalized Convection-Diffusion

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Areas and Lengths in Polar Coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

Transcript:

Iterative Monte Carlo analysis of spin-dependent parton distributions (arxiv:6.7782) Nobuo Sato In Collaboration with: W. Melnitchouk, S. E. Kuhn, J. J. Ethier, A. Accardi Next Generation Nuclear Physics with JLab2 and EIC, Feb 26 / 6

Motivations Spin structure of nucleons - Spin sum rule 2 = 2 Σ() + g () + L - The spin contribution from quarks: Σ () = u () + + d () + + s () + - From existing global analysis Σ () [ 3,] Higher twists - d 2 matrix element d 2 = 2g (3) (Q2 ) + 3g (3) 2 (Q2 ) - Color forces experienced by struck quarks F E = 2d 2 + f 2, FB = 4d 2 f 2 - Dedicated global QCD anlysis is required High x - SU(6) spin-flavor symmetry: u/u 2/3, d/d /3 - pqcd q/q.8.6.4.2 -.2 -.4 -.6 -.8 -.3, g() [.5,.2]. u + /u + d + /d +..2.3.4.5.6.7 x Q 2 = GeV 2 2 / 6

Global Analysis Data Polarized DIS u, d - Polarized SIDIS: d, ū, s - Inclusive Jets/π : g - W production d, ū Theory Target mass corrections Twist-3 and twist-4 contributions in polarized structure functions Nuclear corrections for 3 He and deuteron targets - Threshold resummation (α m S log( x)n ) Tools Numerical codes developed within python framework Development of DGLAP evolution equations in Mellin space Fast calculation of observables Mellin space techniques Q 2 EMC (npts = ) SMC (npts = 4) SLAC (npts = 835) HERMES (npts = 98) COMPASS (npts = 8) JLab (npts = 45) W 2 cut = 4GeV 2 W 2 cut = GeV 2...3.5.7 x 3 / 6

Polarized DIS Asymmetries Theory A = σ σ σ + σ = D(A + ηa 2 ) A = σ σ σ + σ = d(a 2 ξa ) A = (g γ 2 g 2 ) A 2 = γ (g + g 2 ) γ 2 = 4M 2 x 2 F F Q 2 g (x, Q 2 ) = g LT+TMC ( u +, d +, g,...) + g T3+TMC (D u, D d ) + g T4 (H p,n ) g 2 (x, Q 2 ) = g LT+TMC 2 ( u +, d +, g,...) + g T3+TMC 2 (D u, D d ) 4 / 6

Polarized DIS ξ = 2x +(+4µ 2 x 2 ) /2 µ 2 = M 2 /Q 2 Leading twist structure functions: g LT+TMC (x, Q 2 ) = x g LT (ξ) ξ ( + 4µ 2 x 2 ) 3/2 + 4µ2 x 2 x + ξ ξ( + 4µ 2 x 2 ) 2 g LT+TMC 2 (x, Q 2 ) = x ξ 4µ 2 x 2 2 4µ 2 x 2 2( + 4µ 2 x 2 ) 5/2 In the Bjorken limit (Q 2 ): ξ dz dz ξ z z z glt (z ) g LT (ξ) ( + 4µ 2 x 2 ) 3/2 + x ( 4µ 2 xξ) ξ ( + 4µ 2 x 2 ) 2 ξ + 3 4µ 2 x 2 dz dz 2 ( + 4µ 2 x 2 ) 5/2 ξ z z z glt (z ) g LT+TMC (x, Q 2 ) g LT (x), glt+tmc 2 (x, Q 2 ) g LT (x) + ξ dz z glt (z) dz z glt (z) dz z glt (z) Leading twist quark distributions: g LT (x) = e 2 q [ C qq q(x) + C qg g(x)] 2 q 5 / 6

Polarized DIS Twist-3 structure functions: g T3+TMC (x, Q 2 ) =4µ 2 x 2 D(ξ) ( + 4µ 2 x 2 ) 3/2 4µ2 x 2 3 ( + 4µ 2 x 2 ) 2 + 4µ 2 x 2 2 4µ 2 x 2 ( + 4µ 2 x 2 ) 5/2 g T3+TMC 2 (x, Q 2 D(ξ) ) = ( + 4µ 2 x 2 ) 3/2 8µ2 x 2 ( + 4µ 2 x 2 ) 2 2µ 2 x 2 dz ( + 4µ 2 x 2 ) 5/2 ξ z Bjorken limit(q 2 ): ξ dz z dz z ξ z dz z D(z ) z D(z ) dz z D(z) g T3+TMC (x, Q 2 ) g T3+TMC 2 (x, Q 2 dz ) D(x) ξ z D(z) Twist-3 quark distributions: D(x, Q 2 ) = 4 9 D u(x, Q 2 ) + 9 D d(x, Q 2 ) ξ dz z D(z) 6 / 6

Polarized DIS Twist-4 structure function: g T4(p,n) (x, Q 2 ) = H (p,n) (x)/q 2 Nuclear corrections: nuclear smearing functions gi A (x, Q 2 ) = dy y f ij N (y, γ)gj N (x/y, Q 2 ) N Curse of dimensionality Mellin trick (Stratmann, Vogelsang) dy ( ) I(x) = x y f(y) dz x y z g g(ξ) = dnξ N g N yz 2πi = [ dy ( ) ] dng N 2πi x y f(y) dz x N y z yz = dng N M N 2πi = ) wi k jk Im (e iφ g N M kj N Gaussian quadrature kj i,k time consuming part can be precalculated prior to the fit 7 / 6

Fitting strategy Parametrization - xf(x) = Nx a ( x) b ( + c x + dx) - LT quark distributions u +, d +, s +, g - T3 quark distributions D u, D d - T4 structure functions H p, H n Chi-squared minimization with correlated systematic uncertainties χ 2 = i ( Di T i ( k rk βi k/d i) ) 2 + (r k ) 2 α i k Issues - Stability in the moments (e.g. Σ () ) - Is the solution given by a single fit unique? False minima - Is over-fitting present in our fits? - Which parameters should be fixed and at which value? - Determination of uncertainty bands. Solution MC approach 8 / 6

Iterative Monte Carlo Analysis (IMC) Toy example fitting 2 model parameters α, β 2..5. I. Flat sampling Initial priors {(α, β)} β.5..5...5..5..5 2. α 9 / 6

Iterative Monte Carlo Analysis (IMC) Toy example fitting 2 model parameters α, β 2. β.5..5. I. Flat sampling Initial priors {(α, β)} II. First iteration priors {(α, β)} posteriors {(α, β)}.5...5..5..5 2. α 9 / 6

Iterative Monte Carlo Analysis (IMC) Toy example fitting 2 model parameters α, β 2. β.5..5..5...5..5..5 2. α I. Flat sampling Initial priors {(α, β)} II. First iteration priors {(α, β)} posteriors {(α, β)} III. Second iteration priors {(α, β)} posteriors {(α, β)}... until convergence 9 / 6

Iterative Monte Carlo Analysis (IMC) Each iteration - Generate pseudo data sets via data resampling - Radom data partition Training & Validation - Fit the training set - Validation data pseudo data T data V data fit { p (j) } validation a () 3. 2.8 2.6 training validation noncentral χ 2 dof pseudo data2 T data2 V data2 fit2 { p (j) } validation a (2) ensemble χ 2 dof 2.4 2.2 T datak fitk { p (j) } pseudo 2. datak V datak validation a (K).8 2 3 4 5 6 iterations priors new priors / 6

W 2 cut and Q 2 cut.4.35.3 Σ.2 G.8.4..4.3.2 Σ 2 G.2.8 d p 2.4. d n 2.8.4.4..4.4. d p 2.4 d n 2.4 h p..4.4..4 h n.8.4. h p.4..4 h n 3 4 5 6 W 2 cut (GeV 2 ) 3 4 5 6 W 2 cut (GeV 2 ) 2 3 4 Q 2 cut (GeV 2 ) 2 3 4 Q 2 cut (GeV 2 ) Wcut 2 (GeV 2 ) 3.5 4 5 6 8 # points 2868 255 88 427 943 854 χ 2 dof.2.7.3.2.99.97 Q 2 cut (GeV 2 ). 2. 4. # points 255 42 6 χ 2 dof.7.8.95 / 6

Data vs. Theory.2 A p.2.4.6 Ã p.2.2.6 A p 2.2.2 JAM5 no HT E55 Q 2 [3.7,.6] syst(+) syst( )..3 x E55x Q 2 [5.4, 7.].2.5 x HERMES Q 2 [.4, 6.8].2.4.6 x.5 A p E43 Q2 [.2, 4.5].5.5.3..3 x.6 A p E55 Q2 [7.6, 24.8].2.2.3 Ã p...6 A p 2.2.2.4.6 x E55x Q 2 [., 2.3].3. x HERMES Q 2 [.8,.3].2.2.4.6 x.2 A p E43 Q2 [2.9, 9.5]...3 x.3 Ã p E55x Q2 [.,.8]...2.5. x.6 Ã p E55x Q 2 [6., 2.4].2.2.2.5 x.2 A p E55 Q2 [., 3.3]..8 Ã p.4.8.6 A p 2.2.2.3. x E55x Q 2 [2.3, 6.]..3 x HERMES Q 2 [., 2.8]..3 x.2..2.5.5.4.2.4 E54 Q 2 [.2, 5.8] JAM5 no HT syst(+) syst( ).3..3 x E6-4 Q 2 [2., 3.4].3.4.5 x E99-7 Q 2 [2.7, 4.8].4.5 x..5..2..2.5.5.4.2.4 E42 Q 2 [., 5.5].3..3 x E54 Q 2 [4., 5.]..3 x E6-4 Q 2 [2.6, 5.2].3.4.5.6 x E99-7 Q 2 [2.7, 4.8].4.5 x.2 2..2.6.2.2.4.3...2 E42 Q 2 [., 5.5].3..3 x E54 Q 2 [.2, 5.8].3. x E6-4 Q 2 [2., 3.4].3.4.5 x.6.2.2.4.3...2 Q 2 [4., 5.] E54..3 x E6-4 Q 2 [2.6, 5.2].3.4.5.6 x.4.35.3.25.2.25.2.5..5.4.35.3.25.2.6.55.5.45.4.3 A p.35 JAM5 E = 4.8 Q 2 [.,.] E = 4.8 Q 2 [.,.2].25.3 no HT.2.25 syst(+).5.2 syst( ) eg-dvcs..5.5.2 x.2.25 x.45.5 E = 4.8 Q 2 [.6,.7] E = 4.8 E = 4.8.4.45.25.3 x E = 6. Q 2 [.,.].2.4 x E = 6. Q 2 [.9, 2.].25.3.35 x E = 6. Q 2 [3.9, 4.].45.5.55 x.35.3.25.25.2.5..5.45.4.35.3.25.8.7.6.5.4 Q 2 [.98, 2.4].3.35 x E = 6. Q 2 [.2,.3].5.2 x E = 6. Q 2 [2.3, 2.4].3.35.4 x E = 6. Q 2 [4.6, 4.7].54.56.58 x.4.35.3.3.25.2.5 Q 2 [2.3, 2.4].35.4 x E = 6. Q 2 [.3,.6]..5.2.25.3 x.5 E = 6. Q 2 [2.7, 2.9].45.4.35.3.3.35.4.45 x.35 E = 4.8 Q 2 [.3,.4].3.25.2.5.2.25.3x.55 E = 4.8.5.45.4 Q 2 [2.7, 2.8].35.42.44.46 x.35 E = 6. Q 2 [.6,.7].3.25.2.5.2.25.3 x.55 E = 6. Q 2 [3.2, 3.5].5.45.4.35.4.45.5 x Signal of HT? - A p marginally visible at large x - Not visible in 3 He data - Significant contribution in eg-dvcs A p 2 / 6

Results (a).4 (c). - Significant constraints to large x s+ and g.3.5.2.....4.3.2 3 + 2 x u x d+ x s+ x g..3.5.7 (b) 3..5. xdu xdd xhp xhn 2..3.5.7 (d) - T4 contribution to g consistent with zero... - Non zero T3 quark distributions.5 3 2.5..3.5.7 x 3 2..3.5.7 x.5.4.3.2..2 JAM5 JAM3 DSSV9 NNPDF4 BB AAC9 LSS x u+..2 x s+.4 3 2..3.5.7 3 2..3.5.7 3 2..3.5.7.2.6 - Negative s+ (see Talk by J. Ethier) - JAM5 g compatible with resent DSSV fits....4.2. x d+ 3 2 x g...3.5.7 x x 3 / 6

Impact of JLab data.5.4.5 JAM5 no JLab x u+.5.2....3.5.7.5..5..5..5..4 x d+ 2..3.5.7..2 2..3.5.7 - Large uncertainties in s+, g removed by JLab data - Non vanishing T3 quark distributions..3.5.7 - T4 distributions consistent with zero..2 x s+ 2.2..3.5.7.5..6 x g.4 xhp 2..3.5.7 xhn.2.... 2 xd d.5..4 - Constraints on small x from large x weak baryon decay constraints.5 2.5 - JLab data. < x <.7 xdu..3.2 2..3.5.7 x.4 2..3.5.7 x 4 / 6

d 2 matrix element - d 2 (Q 2 ) dxx2 [ 2g T3 (x, Q2 ) + 3g T3 2 (x, Q2 ) ] - d 2 is related to color polarizability or the transverse color force acting on quarks. - Existing measurements of d 2 are in the resonance region (contains TMC T4 and beyond.) - Agreement with data indicates quark-hadron duality d 2.8.6.4.2 (a) JAM5 p JAM5 n lattice (b) E55x RSS E 2 E6 4 JAM5..2 2 3 4 5 Q 2 (GeV 2 ) 2 3 4 5 Q 2 (GeV 2 ) 5 / 6

JAM: Outlook JAM New JAM5 analysis to study impact of all JLab 6 GeV inclusive DIS data at low W and high x New extraction of LT & HT distributions - Upcoming JAM6 analysis to study polarization of sea quarks & gluons. - SIDIS for flavor separation. - polarized pp cross sections (inclusive jet & π production) for g - W boson asymmetries - Threshold resummation impacts on large x - Combined analysis of all inclusive (un)polarized DIS data - Fits to helicity distributions Q 2 EMC (npts = ) SMC (npts = 4) SLAC (npts = 835) JLab 2 HERMES (npts = 98) COMPASS (npts = 8) JLab (npts = 45) - Measurements at high-x q/q - Wider coverage in Q 2 Wcut 2 = 4GeV 2 Wcut g 2 = GeV 2 JLab 2GeV - Determination of pure twist-3 d 2 in DIS...3.5.7 x 6 / 6

Backup 7 / 6

Data vs. Theory: proton.4 A p.2. JAM5 no HT syst(+) syst( ) E8/E3 Q 2 [3.3, 5.4].2.3.4.5 x.2 A p E43..5 Q 2 [.2, 4.5].3..3 x A p E55 Q 2 [., 34.7].6.4.2.2.4.6 x A p COMPASS.6 Q 2 [., 62.].4.2.. x.8 A p.4.2 EMC Q 2 [3.5, 29.5].3.5. x A p.3.2 E8/E3. Q 2 [5.3, 9.9].2.4.3.4.5 x A p E43 Q 2 [2.9, 9.5].2. A p..5..5 x HERMES Q 2 [., 3.].3..3 x A p COMPASS.6 Q 2 [., 29.8].4.2.. x.8 A p.4.2.2 A p.8.6.4..5 SMC 98 Q 2 [.3, 58.].. x E43 Q 2 [.,.4]..2 x.2 A p E55 Q 2 [., 5.9].4.3. x A p HERMES Q 2 [.2, 9.6].2..3..3 x A p COMPASS.6 Q 2 [., 53.].4.2.. x.6 A p.2.2 A p..5.2. SMC 99 Q 2 [., 23.]..3 x E43 Q 2 [., 3.]..3 x.4 A p E55 Q 2 [4., 6.]..3 x.8 A p HERMES Q 2 [2.6, 4.3].4.2..3 x A p COMPASS.6 Q 2 [.2, 96.].4.2.. x 8 / 6

Data vs. Theory: proton.2 A p JAM5 no HT syst(+) syst( ).2 E55 Q 2 [3.7,.6].4..3 x.6 à p E55x Q 2 [5.4, 7.].2.2.2.5 x.6 A p HERMES 2 Q 2 [.4, 6.8].2.2.2.4.6 x.5 A p E43 Q2 [.2, 4.5].5.5.3. x.6 A p HERMES 2 Q 2 [.8,.3].2.2 A p E43 Q2 [2.9, 9.5]..3..3 x.6.3..3 x A p E55 Q2 [7.6, 24.8] à p E55x Q2 [.,.8].2...2.2.2.4.6 x.3.6.5. x à p E55x à p E55x Q 2 [., 2.3] Q 2 [6., 2.4]..2..2.2.4.6 x.2.2.5 x.2 A p E55 Q2 [., 3.3]..3. x.8 à p E55x Q 2 [2.3, 6.].4.8..3 x.6 A p HERMES 2 Q 2 [., 2.8].2.2..3 x 9 / 6

Data vs. Theory: proton DVCS.4.35.3.25.2.25.2.5..5.4.35.3.25.2.6.55.5.45.4.3 A p.35 JAM5 E = 4.8 Q 2 [.,.].25.3 no HT E = 4.8 Q 2 [.,.2] syst(+) syst( ).2.5.25.2 eg-dvcs..5.5.2 x.45.5.2.25 x E = 4.8 Q 2 [.6,.7].4 E = 4.8.45 E = 4.8.25.3 x E = 6. Q 2 [.,.].2.4 x E = 6. Q 2 [.9, 2.].25.3.35 x E = 6. Q 2 [3.9, 4.].45.5.55 x.35.3.5. Q 2 [.98, 2.4].25.25.3.35 x E = 6..2 Q 2 [.2,.3].5.45.5.2 x.4 E = 6. Q 2 [2.3, 2.4].35.3.25.3.35.4 x.8 E = 6. Q 2 [4.6, 4.7].7.6.5.4.54.56.58 x.4.35.2.5 Q 2 [2.3, 2.4].3.3.35.4 x E = 6..25 Q 2 [.3,.6]..5.2.25.3 x.5 E = 6. Q 2 [2.7, 2.9].45.4.35.3.3.35.4.45 x.35.3.25.2.5.55.5.45.4.25.2 E = 4.8 Q 2 [.3,.4].2.25.3x E = 4.8 Q 2 [2.7, 2.8].35.42.44.46 x.35 E = 6. Q 2 [.6,.7].3.5.2.25.3 x.55 E = 6. Q 2 [3.2, 3.5].5.45.4.35.4.45.5 x Signal of HT contribution. 2 / 6

Data vs. Theory: proton EGb JAM5 no HT syst(+).5 E = 4.2.4.3.2 Q 2 [.6,.7]..25.3 x.4 E = 5.7 Q 2 [.,.].3.2..5.2 x.8 E = 5.7 Q 2 [.9, 2.].6.4.2.25.3.35 x.5 E = 5.7 Q 2 [3.8, 4.].5 A p.4 E = 4.2 Q 2 [.,.].3.4.3.2..2 syst( ). E = 4.2 Q 2 [.,.2] egb.6.8.2.22 x.2.25 x.8 E = 4.2 Q 2 [.9, 2.].8 E = 4.2 Q 2 [2.3, 2.4].45.5.55 x.6.4.2.3.35 x.4 E = 5.7 Q 2 [.,.2].3.2..5.2.25 x.8 E = 5.7 Q 2 [2.2, 2.4].6.4.2 2.3.35.4 x E = 5.7 Q 2 [4.56, 4.63].56.57.58 x.6.4.2.35.4.4 x.3.2. E = 5.7 Q 2 [.3,.4].5.2.25 x Q 2 [2.7, 2.9].8.6.4.2.35.4.45 x.4.3.2. 2.4.3.2. E = 4.2 Q 2 [.3,.4].25.3x E = 4.2 Q 2 [2.69, 2.73].44.45.46 x E = 5.7 Q 2 [.6,.7].2.25.3 x E = 5.7 Q 2 [3.2, 3.4].8.6.4.2.4.45.5 x 2 / 6

Data vs. Theory: deuteron.4 A d.2...4 A d.2. E43 Q 2 [., 3] JAM5 no HT syst(+) syst( )..3 x..6.3 x A d HERMES Q 2 [2.6, 4.3].2 E55 Q 2 [4, 6]..3 x.6 A d.2 SMC 98 Q 2 [.3, 54.8]..2. x A d E43 Q. [.2, 4.5].5.3..3 x.6 A d E55 Q 2 [, 34.8].2.2.8.5 x A d COMPASS Q 2 [., 55.3].4.2.. x.3 A d SMC 99 Q. 2 [., 22.9]..2 A d..5.. x E43 Q 2 [2.9, 9.5]..5.3 x A d HERMES Q 2 [.2, 3.].5..3 x.2 A d E43 Q. 2 [,.4].5..2.2 x A d E55 Q. [, 6].5.3..3 x.3 A d HERMES Q 2 [., 9.6]..3..3 x 22 / 6

Data vs. Theory: deuteron.. JAM5 no HT syst(+) syst( ).3 A d E55 Q2 [3.7,.6]..3 x.4 à d E55x.2.4 Q 2 [5.4, 6.5].2.5 x.2 A d..2 E43 Q 2 [.2, 4.5].3 A d.. E43 Q 2 [2.9, 9.5].3..3 x.6.4..3 x A d E55 à d E55x.2 Q 2 Q2 [.,.8] [7.6, 24.9].2.2.4.2.5 x.4.2.5..2 x à d E55x Q2 [., 2.3] à d E55x Q 2 [2.5, 7.5].4.2.4.4.5..2 x.8..3 x.2 A d E55 Q2 [., 3.3]..8 à d.4.8.6 à d.2.2.4.3..3 x E55x Q 2 [2.3, 6.]..3 x E55x Q 2 [6., 2.4].2.5 x 23 / 6

Data vs. Theory: deuteron DVCS.2.5.5 A d.5 JAM5 Q 2 [.,.].. no HT Q 2 [.2,.3] syst(+) syst( ).5.5 eg-dvcs.5.5.2.4.6 x.25.3.5.2 x Q 2 [.98, 2.5] Q 2 [2.3, 2.4].2.25.2.5..5.35.3 Q 2 [.4,.5].2.25.3 x Q 2 [2.8, 2.9]..5.2.25.5.5.4 Q 2 [.6,.7].2.25.3 x Q 2 [3.3, 3.4]..5.5.4.25.3.35 x.5..3.35.4 x.2.5.35.4.45 x.3.3.2..4.45.5 x.2 Q 2 [3.9, 4.]..45.5.55x 24 / 6

Data vs. Theory: deuteron EGb.6.4.2 A d..4 JAM5 E = 4.2 Q 2 [.,.].3 E = 4.2 Q 2 [.,.2] no HT syst(+) syst( ).5.2. egb.6.8.2.22 x.6.6.2.25 x E = 4.2 Q 2 [.6,.7] E = 4.2 Q 2 [2., 2.3] E = 4.2 Q 2 [2.3, 2.4].4.4.25.3 x.3 E = 5.7 Q 2 [.,.2].2..5.2.25 x.4 E = 5.7 Q.3 2 [2.3, 2.4].2..3.35.4 x.2.32.34.36.38 x.3 E = 5.7 Q 2 [.36,.44].2..5.2.25.3 x.6 E = 5.7 Q 2 [2.7, 2.9].4.2.35.4 x.2.36.38.4.42 x.3 E = 5.7 Q 2 [.6,.7].2..8.6.4.2.2.25.3 x E = 5.7 Q 2 [3.2, 3.4].4.45.5 x.4.3.2. E = 4.2 Q 2 [.36,.43].2.25.3 x.3 E = 5.7 Q 2 [.,.].2..5.2 x.4 E = 5.7 Q.3 2 [.9, 2.].2..8.6.4.2.25.3.35 x E = 5.7 Q 2 [3.8, 4.].45.5.55x 25 / 6

Data vs. Theory: 3 He.2..2.5 E54 Q 2 [.2, 5.8] JAM5 no HT syst(+) syst( ).3..3 x E6-4 Q 2 [2., 3.4].5.4.3.4.5 x E99-7 Q 2 [2.7, 4.8]. E42 Q 2 [., 5.5].2 2 E42..5.2 Q 2 [., 5.5]..3..3 x.3.2.6..3 x E54 E54 Q 2 [.2, 5.8] Q 2 [4., 5.].2..2.2.4..3 x.5.3.3. x E6-4 Q 2 [2.6, 5.2] E6-4 Q 2 [2., 3.4]...5.2.3.4.5.6 x.4.3.4.5 x E99-7.6.2.2.4..2 E54 Q 2 [4., 5.]..3.3 x E6-4 Q 2 [2.6, 5.2]..3.4.5.6 x.2.4.4.5 x.2.4 Q 2 [2.7, 4.8].4.5 x 26 / 6

JAM: moments # fits # fits # fits 25 2 5 5 3 25 2 5 5.7.8.9 u +().2.5..5. s +() 25 2 5 5..2.3.4.5 Σ () # fits # fits 3 25 2 5 5.5.45.4.35.3 d +() 2 5 5 2 g () # fits # fits # fits 2 5 5....2.3 D u (3) 6 5 4 3 2..5..5. H p (3) 25 2 5 5.5..5 d p 2..5 # fits # fits # fits 2 5 5.2... D (3) d 35 3 25 2 5 5..5..5. H n (3) 35 3 25 2 5 5.5..5..5 d n 2 - New extraction of Σ () =.3 ±.3 (Only truncated moments are shown x [ 3,.8]) - First extraction of d 2 matrix element in global QCD analysis - JAM6: reduction of gluon uncertainties (jet data) 27 / 6