New Oscillation Criteria for Second-Order Neutral Delay Dynamic Equations

Σχετικά έγγραφα
Congruence Classes of Invertible Matrices of Order 3 over F 2

Oscillation of nonlinear second-order neutral delay differential equations

2 Composition. Invertible Mappings

Research Article Oscillation for Second-Order Nonlinear Delay Dynamic Equations on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

ST5224: Advanced Statistical Theory II

Example Sheet 3 Solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Every set of first-order formulas is equivalent to an independent set

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SOME PROPERTIES OF FUZZY REAL NUMBERS

Homomorphism in Intuitionistic Fuzzy Automata

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Statistical Inference I Locally most powerful tests

A Note on Intuitionistic Fuzzy. Equivalence Relation

4.6 Autoregressive Moving Average Model ARMA(1,1)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

C.S. 430 Assignment 6, Sample Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Uniform Convergence of Fourier Series Michael Taylor

derivation of the Laplacian from rectangular to spherical coordinates

The k-α-exponential Function

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 3 Solutions

A General Note on δ-quasi Monotone and Increasing Sequence

D Alembert s Solution to the Wave Equation

Fuzzifying Tritopological Spaces

Commutative Monoids in Intuitionistic Fuzzy Sets

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Matrices and Determinants

Second Order Partial Differential Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

EE512: Error Control Coding

Homework 8 Model Solution Section

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Bounding Nonsplitting Enumeration Degrees

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Section 8.3 Trigonometric Equations

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Math221: HW# 1 solutions

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Lecture 34 Bootstrap confidence intervals

Approximation of distance between locations on earth given by latitude and longitude

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Finite Field Problems: Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

5. Choice under Uncertainty

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

1. Introduction and Preliminaries.

Homomorphism of Intuitionistic Fuzzy Groups

Section 7.6 Double and Half Angle Formulas

On a four-dimensional hyperbolic manifold with finite volume

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

Problem Set 3: Solutions

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

F A S C I C U L I M A T H E M A T I C I

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Fractional Colorings and Zykov Products of graphs

A summation formula ramified with hypergeometric function and involving recurrence relation

The Simply Typed Lambda Calculus

( y) Partial Differential Equations

Generating Set of the Complete Semigroups of Binary Relations

CRASH COURSE IN PRECALCULUS

Mean-Variance Analysis

Areas and Lengths in Polar Coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Reminders: linear functions

On Numerical Radius of Some Matrices

Second Order RLC Filters

Strain gauge and rosettes

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Areas and Lengths in Polar Coordinates

Tridiagonal matrices. Gérard MEURANT. October, 2008

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Concrete Mathematics Exercises from 30 September 2016

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Lecture 21: Properties and robustness of LSE

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

12. Radon-Nikodym Theorem

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

6.3 Forecasting ARMA processes

Transcript:

International Journal of Mathematical Analysis Vol. 11, 2017, no. 19, 945-954 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.79127 New Oscillation Criteria for Second-Order Neutral Delay Dynamic Equations M. M. A. El-sheikh Department of Mathematics, Faculty of Science Minoufiya University, Shebeen EL-Koom, Egypt A. A. Soliman Department of Mathematics, Faculty of Science Benha University, Benha-Kalubia, Egypt M. H. Abdalla Department of Mathematics, Faculty of Science Benha University, Benha-Kalubia, Egypt A. M. Hassan Department of Mathematics, Faculty of Science Benha University, Benha-Kalubia, Egypt Copyright c 2017 M. M. A. El-sheikh, A. A. Soliman,M. H. Abdalla and A. M. Hassan. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract We establish some new oscillation criteria for a class of second-order nonlinear neutral delay dynamic equations using a couple of Riccati substitutions. Our main results not only complement those related results in the literature, but also improve some known results for second-order delay dynamic equations without neutral terms. Mathematics Subject Classification: 34C10, 34K11

946 M. M. A. El-sheikh, A. A. Soliman, M. H. Abdalla and A. M. Hassan Keywords: Oscillation, second order, Nonlinear dynamic equations, Riccati technique 1 Introduction In this paper, we introduce new sufficient conditions for the oscillation of solutions of the neutral dynamic equation rt)ϕ z t)) ] + qt)fϕ xδt))) = 0 for t, ) T 1) where zt) := xt) + pt)xτt)), ϕ γ λ) := sgnλ) λ γ for λ R and γ R +,, R +. We assume the following conditions. H 1 ) r C 1 rd, ) T, R), r 1/ s =. H 2 ) τ, δ C 1 rd, ) T, T), τt) t, δt) t, τ δ = δ τ, lim t τt) =, lim t δt) =, τ t), and δ t) > 0 where is a constant. H 3 ) p, q C rd, ) T, R), 0 pt) p 0 <, qt) 0 and qt) is not identically zero for large t. H 4 ) f CT, T), and there exists a positive constant k such that fx) K x for all x 0. The theory of time scales was introduced by Hilger see 5]) in 1988 in order to unify continuous and discrete analysis. A time scale, which inherits the standard topology on R, is a nonempty closed subset of reals. Here, and later throughout this paper, a time scale will be denoted by the symbol T, and the intervals with a subscript T are used to denote the intersection of the usual interval with T. For t T, the forward jump operator σ : T T is defined by σt) := inft, ) T, while the backward jump operator ρ : T T is defined by ρt) := sup, t) T, and the graininess function µ : T R + is defined to be µt) := σt) t. A point t T is called right-dense if σt) = t and/or equivalently µt) = 0 holds; otherwise, it is called right-scattered, and similarly left-dense and left-scattered points are defined with respect to the backward jump operator. The set of all such rd-continuous functions is denoted by C rd T, R). The set of functions f : T R which are differentiable and whose derivative is an rd-continuous function is denoted by Crd 1 T, R). For some concepts related to the notion of time scales, see 4]. By a solution of 1) we mean a nontrivial function x C rd T x, ) T, R), where T x, ) T, which has the property that rt)ϕ x+p x τ) t)) ] C 1 rd T x, ) T, R) and satisfies 1) identically on T x, ) T. A solution x of 1) is said to be oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is nonoscillatory. Equation 1) is called oscillatory if all its solutions oscillate.

New oscillation criteria for second-order neutral delay dynamic equations 947 In recent years there has been much research activities concerning the oscillation of solutions of several classes of neutral dynamic equations, see 7,9,10,12] Several papers are devoted to study the cases in which 0 < pt) < 1 and 0 < pt) p 0 <, for instance, in case of T = R Baculíková and Džurina 2] studied the second order neutral differential equation ] rt)xt) + pt)xτt))) + qt)fxδt))) = 0. They presented new oscillation criteria, where they replaced the traditional restriction 0 pt) < 1 by 0 < pt) p 0 < and δt) τt) < t. They use new comparison theorems, that enable them to reduce the problem of the oscillation of the second order equation to the oscillation of the first order equation. In 13] Zhang et al. introduce new oscillation criteria for the class of second order dynamic equations of the type, rt)xt) + pt)xτt))) ] + qt)fxδt))) = 0. s <. In rs) 3] Baculíková and Džurina studied the oscillation of the second-order neutral differential equations of the form )] rt) xt) + pt)xτt))) + qt)x δt)) = 0. Under the conditions 0 < pt) p 0 <, s = and rs) where, are the ratios of two positive odd integers, 0 pt) <, τt) t, δt) τt) t, but they did not consider the case τt) δt) t. Our aim in this paper is to obtain some new sufficient conditions for 1) and improve the results of 1, 3, 13, 14]. Now, we present some known results, which needed in the proof of our main results. Theorem 1.1. 4] Assume that v : T R is strictly increasing and T := vt) is a time scale. Let y : T R. If y vt)] and v t) exist for t T k, then yvt)]) = y vt)]v t). Lemma 1.2. 11] If X 0, Y 0, and 0 < λ 1, then X λ + Y λ X + Y ) λ. Lemma 1.3. 3] If X 0, Y 0, and λ 1, then X λ + Y λ 2 1 λ X + Y ) λ. Lemma 1.4. 6] If B > 0, A > 0, and > 0, then Au Bu +1 + 1) +1 A +1 B.

948 M. M. A. El-sheikh, A. A. Soliman, M. H. Abdalla and A. M. Hassan 2 Main results For convenience, we define K 0 = { K 0 < 1, 2 1 K, > 1., ρ +t) = max{0, ρ t)}. The following theorem introduces a new oscillation criterion when δt) τt) Theorem 2.1. Assume that H 1 )-H 4 ) and δt) τt) are satisfied. If there exists a function ρ Crd 1 T, R) such that for all constants λ 1, λ 2 > 0,we have t ) ) lim sup K 0 ρζ)qζ) 1+ p 0 /) ρ +ζ)) +1 rτζ)) ζ t + 1) +1 τ0 λ 1 ρ 1 ζ) 2) or t ) lim sup K 0 ρζ)qζ) 1 + p 0 ρ + ζ)) +1 ) λ 2 r / τζ)) ζ >, t + 1) +1 τ 0 ρ ζ) 3) where Qt) = min{qt), qτt))}, then Eq. 1) is oscillatory. Proof. Let xt) be a nonoscillatory solution of 1) with xt) > 0 on, ) T, then there exists t 1 such that xt) > 0, xτt)) > 0, xδt)) > 0, for all t, ) T. By the definition of zt), we have z > 0 and zt) xt), t t 1. From 1), we have rt)ϕ z t))] Kqt)x δt)) 0. 4) From H 1 ) and 4), one can easily obtain z t) > 0. then 4) becomes rt)z t)) ] Kqt)x δt)) 0. 5) It follows from Theorem 1.1 that rτt))z τt))) ] = rt)z t)) ] τ t), that there exists a t 2 T such that rτt))z τt))) ] τ t) Kqτt))x δτt))). But since τ t) > 0, we get for, t t 2, 1 rτt))z n 1 τt))) ] Kqτt))x δτt))). 6)

New oscillation criteria for second-order neutral delay dynamic equations 949 Combining 5) and 6), we obtain rt)z t)) ] + p 0 rτt))z n 1 τt))) ] + Kqt)x δt)) + p 0Kqτt))x δτt))) 0 7) Assume tha < 1. Since δ τ = τ δ and Lemma 1.2, we get rt)z t)) ] + p 0 rτt))z τt))) ] Kqt)x δt)) p 0 Kqτt))x δτt))) Now, if > 1. Similarly, in view of Lemma 1.3, we have KQt)x δt)) + x δτt)))] KQt)xδt)) + xδτt)))] KQt)z δt)). 8) rt)z t)) ] + p 0 rτt))z τt))) ] KQt)x δt)) + x δτt)))] It follows from 8) and 9) that 2 1 KQt)xδt)) + xδτt)))] 2 1 KQt)z δt)). 9) rt)z t)) ] + p 0 rτt))z τt))) ] K0 Qt)z δt)) 10) Now, we define a Riccati substitution ωt) := ρt) rt)z t)) z τt)) It is clear that ω > 0 for all t t 1, and ω t) = ρt) ] ρt) z τt)) rt)z t)) ] + rt)z t)) ] σ z τt)) =ρt) rt)z t)) ] z τt)) + ρ t) ρσt)) ωσt)) τ ρt) t) ρσt)) for allt t 1, ) T 11) z τt)) ωσt)). 12) zτt)) Since rt)z t)) decreasing, then rt)z t)) rτt))z τt))), i.e., ) rt) 1/ z τt)) z t). 13) rτt)) This with 12) leads to ω t) ρt) rt)z t)) ] z τt)) + ρ t) ρσt)) ωσt)) ρt) ρσt)) rt) rτt)) ) 1/ z t) zτt)) ωσt)) 14)

950 M. M. A. El-sheikh, A. A. Soliman, M. H. Abdalla and A. M. Hassan Since, and z t) > 0, then there exists a constant λ 1 > 0 such that zt) zτt)) λ 1. Using 13) and 14), we get ω t) ρt) rt)z t)) ] z + ρ t) τt)) Applying Lemma 1.4, we obtain ρσt)) ωσt)) ρ +1 ρt)λ 1 σt))r 1 τt)) ω+1)/ σt)) 15) ω t) ρt) rt)z t)) ] z τt)) Similarly, define another Riccati substitution + + 1) +1 ρ t)) +1 rτt)) τ 0 λ 1 ρ 1 t) 16) νt) := ρt) rτt))z τt))) z τt)) for allt t 1, ) T. 17) Then we have νt) > 0. Differentiating 17), by rτt))z τt))) ] rτt))z τt))) ] σ > 0 and zτ σ t)) λ 1 ν t) = ρt) ] ρt) z τt)) rτt))z τt))) ] + rτt))z τt))) ] σ z τt)) =ρt) rτt))z τt))) ] z τt)) Applying Lemma 1.4, we get ν t) ρt) rτt))z τt))) ] z τt)) Combining 16) and 18), we conclude that ω t) + p 0 ν t) Recalling 10), implies ρt) z τt)) ) + 1 + p 0 + ρ t) ρσt)) νσt)) ρt)λ1 ρ +1 σt))r 1 τt)) ν +1 + rt)z t)) ] + p 0 + 1) +1 ρ t)) +1 rτt)) τ 0 λ 1 ρ 1 t) + 1) +1 ρ t)) +1 rτt)) τ 0 λ 1 ρ 1 t) ) rτt))z τt))) ] σt)) ) ω t) + p 0 ν t) K 0 ρt)qt) z δt)) z τt)) + 1 + p 0 ρ t)) +1 rτt)) + 1) +1 τ0 λ 1 ρ 1 t). 20) Since δt) τt) and z t) > 0, then zδt)) zτt)). This leads to ) ω t) + p 0 ν t) K 0 ρt)qt) + 1 + p 0 ρ t)) +1 rτt)) + 1) +1 τ0 λ 1 ρ 1 t). 21) 18) 19)

New oscillation criteria for second-order neutral delay dynamic equations 951 Integrating 21) from t 1 to t, we see that t ) K 0 ρζ)qζ) 1 + p 0 /) ρ ζ)) +1 rτζ)) t 1 + 1) +1 τ0 λ 1 ρ 1 ζ) ) ζ ωt 1 ) + p 0 νt 1 ), 22) which contradicts 2). Caseii): >. Define the function ω by 11). Then 14) holds. Since z > 0, there exists a constant λ 2 > 0 such that rt)z t)) rτt))z τt))) λ 2, hence from 11), and 14), we obtain z t)) ω t) ρt) rt)z t)) ] z + ρ t) τt)) This with 23) leads to ω t) ρt) rt)z t)) ] z + ρ t) τt)) Applying Lemma 1.4, we conclude rt) λ 2 ) ρσt)) ωσt)) τ 0ρt)r ρσt)) ωσt)) ω t) ρt) rt)z t)) ] z τt)) ρ +1 t)r 1/ τt)) σt))z t)) 23) ω +1 σt)) 24) ρt)λ2 ω +1 ρ +1 σt)) 25) σt))r 1/ τt)) + ρ t)) +1 λ 2 r / τt)) + 1) +1 τ 0 ρ t) On the other hand, define ν as in 17). Similarly, we have ν t) ρt) rt)z t)) ] z τt)) + ρ t)) +1 By virtue of 10), 26), and 27), we deduce that rt)z t)) ] + p 0 ω t) + p 0 ν t) + ρt) z τt)) 1 + p 0 ) ρ t)) +1 λ 2 r / τt)) + 1) +1 τ 0 ρ t) ) rτt))z τt))) ] λ 2 r / τt)) + 1) +1 τ 0 ρ t) 1 + p 0 K 0 ρt)qt) z δt)) z τt)) + ) ρ t)) +1 26) 27) λ 2 r / τt)) + 1) +1 τ 0 ρ t) 28) Since δt) τt) and z t) > 0, then we obtain ω t) + p 0 ν t) K 0 ρt)qt) + 1 + p 0 ) ρ t)) +1 λ 2 r / τt)) + 1) +1 τ 0 ρ t) 29)

952 M. M. A. El-sheikh, A. A. Soliman, M. H. Abdalla and A. M. Hassan Consequently, t t 1 K 0 ρζ)qζ) 1 + p 0 λ ) 2 r / τζ)) + 1) +1 τ 0 ρ ζ) ) ρ ζ)) +1 this contradicts 3). The proof is complete. ζ ωt 1 ) + p 0 νt 1 ) Example 2.2. Consider the second-order neutral differential equation 30) 1 xt) + 2 xt 1)) γ + xt) = 0 for t 1. 31) t2 where γ > 0 is a constant, rt) = 1, p 0 = 1 2, τt) = t 1, = 1, Qt) = γ t 2 and δt) = t.clearly, = = 1 and τt) δt). Choose ρt) = t, then by 2) lim sup t t K 0 ρζ)qζ) = lim sup t t K 0 γ ζ 1 + p 0 3 8 ) 1 ζ ) ) /) ρ ζ)) +1 rτζ)) ζ + 1) +1 τ0 λ 1 ρ 1 ζ) ) dζ = 32) provided that γ > 3 8K 0. Hence, 31) is oscillatory if γ > 3 8K 0. For any K 0 > 1 our result is better than results obtained in 13]. Example 2.3. Consider the second order neutral differential equation t 1/2 xt) + p 0 xγt)) ] a + xµt) = 0 33) t3/2 where 0 < γ <, 0 < µ < 1 and a > 0. Here rt) = t 1/2, 0 < p 0 <, τt) = γt, = γ, qt) = Qt) = a and δt) = µt. Here = = 1. t 3/2 In 3], the authors studied this example in some cases for γ,, but they didn t get results in case of τt) < δt) < t, to obtain this case choose 0 < γ < µ < 1 and ρt) = t. Application of 2), then we get lim sup t t K 0 ρζ)qζ) = lim sup t t 1 + p 0 a ζ 3/2 ζ 1 4 Hence, 33) is oscillatory if a > 1 4 ) ) /) ρ ζ)) +1 rτζ)) ζ + 1) +1 τ0 λ 1 ρ 1 ζ) ) 1 )dζ = γ ζ 1 + p 0 γ ) 1 + p 0 γ 1 γ. 34)

New oscillation criteria for second-order neutral delay dynamic equations 953 References 1] R.P. Agarwal, D. O Regan and S. H. Saker, Oscillation criteria for secondorder nonlinear neutral delay dynamic equations, Journal of Mathematical Analysis and Applications, 300 2004), no. 1, 203 217. https://doi.org/10.1016/j.jmaa.2004.06.041 2] B. Baculíková and J. Džurina, Oscillation theorems for second order neutral differential equations, Computers & Mathematics with Applications, 61 2011), no. 1, 94 99. https://doi.org/10.1016/j.camwa.2010.10.035 3] B. Baculíková and J. Džurina, Oscillation theorems for second-order nonlinear neutral differential equations, Computers & Mathematics with Applications, 62 2011), no. 12, 4472 4478. https://doi.org/10.1016/j.camwa.2011.10.024 4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhäuser Boston, Inc., Boston, MA, 2001. https://doi.org/10.1007/978-1-4612-0201-1 5] S. Hilger, Analysis on measure chainsa unified approach to continuous and discrete calculus, Results Math., 18 1990), no. 1-2, 18 56. https://doi.org/10.1007/bf03323153 6] T. Li and Y. V. Rogovchenko, Oscillatory behavior of second-order nonlinear neutral differential equations, Abstract and Applied Analysis, 2014 2014), 1-8. https://doi.org/10.1155/2014/143614 7] S.H. Saker and D. ORegan, New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution, Communications in Nonlinear Science and Numerical Simulation, 16 2011), no. 1, 423 434. https://doi.org/10.1016/j.cnsns.2009.11.032 8] A.A. Soliman, R.A. Sallam, A.M. Hassan, Oscillation criteria of second order nonlinear neutral differential equations, International Journal of Applied Mathematical Research, 1 2012), no. 3, 314 322. https://doi.org/10.14419/ijamr.v1i3.128 9] Y.B. Sun, Z. Han, S. Sun and C. Zhang, Oscillation criteria for even order nonlinear neutral differential equations, Elec. J. Qual. Diff. Eqn., 2012), no. 30, 1 12. https://doi.org/10.14232/ejqtde.2012.1.30 10] J. Wang, M.M.A. El-Sheikh, R.A. Sallam, D.I. Elimy and T. Li, Oscillation results for nonlinear second-order damped dynamic equations, J. Nonlinear Sci. Appl., 8 2015), 877 883.

954 M. M. A. El-sheikh, A. A. Soliman, M. H. Abdalla and A. M. Hassan 11] R. Xu and F. Meng, New Kamenev-type oscillation criteria for second order neutral nonlinear differential equations, Applied Mathematics and Computation, 188 2007), no. 2, 1364 1370. https://doi.org/10.1016/j.amc.2006.11.004 12] A. Zafer, Oscillation criteria for even order neutral differential equations, Applied Mathematics Letters, 11 1998), no. 3, 21 25. https://doi.org/10.1016/s0893-965998)00028-7 13] C. Zhang, R. P. Agarwal, M. Bohner and T. Li, New oscillation results for second-order neutral delay dynamic equations, Advances in Difference Equations, 2012 2012), no. 1, 227. https://doi.org/10.1186/1687-1847-2012-227 14] J. Zhong, Z. Ouyang and S. Zou, An oscillation theorem for a class of second-order forced neutral delay differential equations with mixed nonlinearities, Applied Mathematics Letters, 24 2011), no. 8, 1449 1454. https://doi.org/10.1016/j.aml.2011.03.030 Received: October 17, 2017; Published: November 1, 2017