Chapter 4 : Linear Wire Antenna

Σχετικά έγγραφα
Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009

Lecture 31. Wire Antennas. Generation of radiation by real wire antennas

Transmission Line Theory

Accelerator Physics Synchrotron Radiation. A. Bogacz, G. A. Krafft, and T. Zolkin Jefferson Lab Colorado State University Lecture 8

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

2/2/2018. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 105

ECE 222b Applied Electromagnetics Notes Set 3a

Homework 8 Model Solution Section

Lossy Medium EE142. Dr. Ray Kwok

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Second Order RLC Filters

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

Areas and Lengths in Polar Coordinates

Example 1: THE ELECTRIC DIPOLE

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Areas and Lengths in Polar Coordinates

Laplace s Equation in Spherical Polar Coördinates

ST5224: Advanced Statistical Theory II

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

Spherical Coordinates

Strain gauge and rosettes

Partial Differential Equations in Biology The boundary element method. March 26, 2013

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

LAPLACE TRANSFORM TABLE

Pairs of Random Variables

Tutorial Note - Week 09 - Solution

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

EE101: Resonance in RLC circuits

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Analytical Expression for Hessian

Solutions to Exercise Sheet 5

Trigonometry 1.TRIGONOMETRIC RATIOS

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Statistical Inference I Locally most powerful tests

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Bit Error Rate in Digital Photoreceivers

Section 8.3 Trigonometric Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM


10.7 Performance of Second-Order System (Unit Step Response)

The ε-pseudospectrum of a Matrix

The Neutrix Product of the Distributions r. x λ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Differential equations

1. For each of the following power series, find the interval of convergence and the radius of convergence:

2 Composition. Invertible Mappings

ΕΝΙΣΧΥΣΗ ΠΛΑΚΩΝ ΚΑΙ ΔΟΚΩΝ ΣΕ ΚΑΜΨΗ ΜΕ ΜΑΝΔΥΕΣ Η ΕΛΑΣΜΑΤΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ.

Inverse trigonometric functions & General Solution of Trigonometric Equations

ECE 222b Applied Electromagnetics Notes Set 3b

Solution Series 9. i=1 x i and i=1 x i.

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

EE434 ASIC & Digital Systems Arithmetic Circuits

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Math 6 SL Probability Distributions Practice Test Mark Scheme

5. Γραμμές μεταφοράς, κυματοδηγοί και κεραίες (Transmission lines, waveguides and antennas)

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics


SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Reflection & Transmission

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Answer sheet: Third Midterm for Math 2339

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Lifting Entry (continued)

physicsandmathstutor.com

Example Sheet 3 Solutions

Instruction Execution Times

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Κλασσική Θεωρία Ελέγχου

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

CRASH COURSE IN PRECALCULUS

Graded Refractive-Index

Additional Results for the Pareto/NBD Model

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Section 7.6 Double and Half Angle Formulas

Electromagnetic Engineering MAPTele

1 String with massive end-points

ANTENNAS and WAVE PROPAGATION. Solution Manual

Homework for 1/27 Due 2/5

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Matrices and Determinants

ECE 468: Digital Image Processing. Lecture 8

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Τίτλος Μαθήματος: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Ενότητα: Μαθηματικές εκφράσεις στον κειμενογράφο

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Transcript:

Chapt 4 : Lina Wi Antnna nfinitsima Dipo Sma Dipo Finit Lngth Dipo Haf-Wavngth Dipo Lina mnts na o on nfinit Pfct Conductos

nfinitsima Dipo Lngth << Usd to psnt capacito-pat top-hatoadd antnnas Capacitiv oading to maintain th unifom cunt

Radiatd Fid Th cunt on th infinitsima dipo is assumd to b constant, i.., ' ˆ Rca that jkr µ A x, y, J x', y', ' d' 4 C R Sinc th dipo is infinitsima, th foowing appoximations hod: d ' d' x' y' ' R ' constant

4 Radiatd Fid jk jk d y x µ µ 4 ˆ ' 4 ˆ,, / / A ; ; A A A A A, ˆ ˆ ˆ A A A A A A A Thus Sinc A has ony componnt, and µ A A ˆ H Th magntic fid bcoms:

5 Radiatd Fid jk jk k j H H H 4 4 k jk k j jk jk jk Thfo, Likwis, th ctic fid can b found to b

6 Pow Dnsity and Radiation Rsistanc Poynting vcto ˆ ˆ ˆ ˆ ˆ * * * * H H H H W 6 8 k k j W k j W ˆ ˆ ˆ k j d d W d d W W d P S s W Outgoing Pow Componnts of Poynting Vcto

7 Pow Dnsity and Radiation Rsistanc ~ ~ k W W m ω ~ ~ m ad W W j P P ω diction A in adia activ pow; tim - avag imaginay ~ ~ tim - avag ctic ngy ~ tim - avag magntic ngy ~ tim - avag adiatd pow pow m m ad W W W W P P ω 8 R Radiation Rsistanc Compx Pow ad R P Ractiv Pow

Fa Fid k >> Fo k >>, th fids can b appoximatd as H k j 4 k j 4 H H jk k jk >> TM Wav 8 Z w Ratio of and H: wav impdanc Z w H intinsic impdanc Ω fo f -spac

Tim-avag pow dnsity: Wav R H Radiation intnsity: Dictivity k U Wav * k ˆ ˆ 4 Maximum adiation intnsity: Maximum dictivity: 4,, k U max 4 D U max 4 P ad Maximum ffctiv aa: A m D 4 8 9

Sma Dipo Lngth /5 < < /

Radiatd Fid Th cunt on th sma dipo is assumd to b a tiangua function, i.., ' / ', ˆ / ' ', ˆ ' / / ' ' ' ' 4 ˆ,, jkr jkr d R d R y x µ A wh is a constant. Vcto potntia bcoms: Appoximating R ~ yids th maximum phas o k/ / fo /.

Radiatd Fid 8 8 >> k H H k j H k j jk jk jk A y x µ 4 ˆ ˆ,, A Ug R~: Th fa-fid can b givn by which is on-haf of that fo th infinitsima dipo. P R ad Radiation sistanc:

Fid Spaation Fo a vy thin dipo, x y, thus ' ' ' ' ' ' ' ' y x y x y y x x R ; wh y x

4

Fid Spaation 5 Rca aso th Tayo xpansion: f f '' x f f ' x x! which yids th sam sut: Rca that ' Lt x ' / x x x 8, thn L x R ' ' ' ' R ' L L 6

Fa Fid 6 By taining ony th fist two tms, i.., R ' Th most significant ngctd tm has th maximum vau ' ' whn max A maximum tota phas o of /8 is accptab, thus ' k 8 Fa-fid appoximation whn D / ' / R fo ampitud tm R ' ˆ ' fo phas tm

Radiating Na Fid By taining ony th fist th tms, i.., ' R ' Th most significant ngctd tm is th fouth tm. n od to find its maximum vau, on can diffntiat th fouth tm with spct to, and th sut is st to, i.., yids ' ' [ ] [ ] tan ± 7

8 Radiating Na Fid 8 8 ' tan / ' k.6 which ducs to o f th maximum tota phas o is aowd to b /8, Na-fid gion.6 D D

Lngth > / Finit Lngth Dipo Cunt on th finit ngth dipo assuming th wi is vy thin ˆ ' ˆ k k ', ', ' / / ' wh is a constant. This distibution assums that th antnna is cnt-fd and th cunt vanishs at th nd points. 9

d dh d Radiatd Fid Th ctic and magntic fid componnts in th fa fid fo th infinitsima dipo d a givn by k ' j 4R k ' j 4R d dh dh jkr jkr d' d' Ug th fa-fid appoximation yids d k j ' 4 jk jk' d'

Radiatd Fid Th tota ctic fid can b obtaind by summing up contibutions fom a infinitsima dipos, i.., / / jk k / jk' j ' ' d / 44 4 4 4 444 444 d mnt facto spac facto tota fid mnt facto spac facto Thus, th ctic fid of th finit ngth dipo can b givn by jk k jk' j k ' / / 4 k ' jk' d' d'

Radiatd Fid k k j jk ] [ γ β β γ β α β α γ β α α x x dx x x x Ug Likwis, th magntic fid can b givn by yids k k j H jk

Cunt Distibutions and Radiation Pattn

4 Radiation Pattn fo.5

5 Pow Dnsity and Radiation ntnsity * * 8 ˆ ˆ ˆ ˆ R R k k H av H W Tim-avag pow dnsity: Radiation intnsity: 8 k k W U av

6 P ad Ω 4 Radiatd Pow Radiatd pow can b obtaind by UdΩ which can b givn by Pad C n k C 4 wh k[ C i k n k / C U dd k k i k[ S k C i k S i k] C.57756649 u's constant i d k]

Radiatd Pow C i S x i x x x y y dy y dy y x y 5 y dy Co intga Sin intga C i x is atd to C in x by 4 C in x wh C C n x C in x x i x y y dy C i x S i x 4 C in x 5 5 5 5 5 4 45 5 7

R Radiation Rsistanc and Radiation sistanc bcoms P ad nput Rsistanc C n k C k k[ S k[ C n k / Ci k C Sinc in Rin R assuming oss-ss nput sistanc can b givn by Rin R k in Fo a dipo of ngth, nput Rsistanc R in in R k i i i k S k] i k] 8

9 Dictivity Q F P U D ad max max 4 ] / n [ ] [ n k C k C k C k k S k S k k C k C Q i i i i i Dictivity is givn by and wh k k F

Radiation sistanc, input sistanc and dictivity

Haf-wavngth Dipo j jk j H jk 8 8 W av Lt /, thn 8 8 W U av Pow dnsity Radiation ntnsity

Radiatd Pow P wh Haf-wavngth Dipo ad C Dictivity 4 4 in Radiation Rsistanc nput mpdanc d y y dy C 8 C n C D R U Z in 7 j4.5 i 4.45 max 4 P ad Pad C in 4 in.45.64 7

Wi antnnas na o on infinit pfct conducto

mag Thoy tan nˆ on PC H tan nˆ H on PMC 4 NOT: Th fids obtaind a vaid ony in th top haf-pan.

5 Vtica ctic Dipo 4 k j jk d 4 4 k j k jr jk jk v Dict Componnt Rfctd Componnt

Vtica ctic Dipo n fa fid: Paa ay appoximation [ h h ] h [ h h ] h Phas tm Ampitud tm 6

Vtica ctic Dipo Tota ctic Fid k j 4 jk [ ] < h numb of obs 7

Pow Dnsity Radiation ntnsity Vtica ctic Dipo 4 * W R ˆ av H Maximum Radiation ntnsity Radiatd Pow U P ad / ˆ U max U dd / U d 8

9 Vtica ctic Dipo 5 max 4 P U D ad P R ad Dictivity Radiation Rsistanc

/4 Monopo Z in Zindipo 7 j4.5 6.5 j.5 4

4 Fids du to y-dictd dipo Vcto Potntia A A A A y µ 4 ˆ jk jk µ Ay 4 jk µ Ay 4 j jωa A ωµε Rca that Fa-fid ctic Fid jωa jωa µ jω 4 µ jω 4 jk jk

Fids du to y-dictd dipo ntoduc a nw sphica coodinat systm,ψ,ζ such that ˆ ˆ ψ ζ ψˆ ˆ ψ ζ ˆ ζ ˆ ψ xˆ ψ xˆ ψ ζ yˆ ψ xˆ ψ ζ yˆ ψ This can b obtaind by tting x,y,->,x,y and ψ,ζ->, thn Fa-fid ctic Fid Fa-fid Magntic Fid H ψ ζ µ jω 4 ωµ j 4 jk jk ψ ψ 4

4 Hoionta ctic Dipo ψ ψ 4 k j jk d ψ ψ ψ 4 4 k j k jr jk jk h Dict Componnt Rfctd Componnt

Hoionta ctic Dipo n fa fid: [ h h ] h [ h h ] h Ampitud tm ψ yˆ ˆ Phas tm 44

Hoionta ctic Dipo Tota ctic Fid ψ jk k j [ j ] 4 numb of obs h 45

46 Hoionta ctic Dipo 4 ˆ av W U / / d U d d U P ad Pow Dnsity Radiation ntnsity Radiatd Pow P R ad Radiation Rsistanc

47 Hoionta ctic Dipo 5 > / 4 / 4 R R D 5 5 8 h h R Dictivity Fo sma Maximum Radiation ntnsity > and, /, / max max U

Hoionta ctic Dipo 6 wh R Fo sma 8 D 4 7.5 5 48