Parallel displacements of directions on the Grassmann-like manifold of centered planes

Σχετικά έγγραφα
Reminders: linear functions

A summation formula ramified with hypergeometric function and involving recurrence relation

Homework 8 Model Solution Section

Congruence Classes of Invertible Matrices of Order 3 over F 2

On a four-dimensional hyperbolic manifold with finite volume

2 Composition. Invertible Mappings

Homomorphism in Intuitionistic Fuzzy Automata

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Second Order Partial Differential Equations

Commutative Monoids in Intuitionistic Fuzzy Sets

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

Minimal Surfaces PDE as a Monge Ampère Type Equation

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Matrices and Determinants

Strain gauge and rosettes

The Simply Typed Lambda Calculus

Example Sheet 3 Solutions

D Alembert s Solution to the Wave Equation

On the Galois Group of Linear Difference-Differential Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

SPECIAL FUNCTIONS and POLYNOMIALS

Approximation of distance between locations on earth given by latitude and longitude

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

( y) Partial Differential Equations

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Other Test Constructions: Likelihood Ratio & Bayes Tests

Concrete Mathematics Exercises from 30 September 2016

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Homework 3 Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Spherical Coordinates

EE512: Error Control Coding

Parametrized Surfaces

TMA4115 Matematikk 3

Section 8.3 Trigonometric Equations

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

A Class of Orthohomological Triangles

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

C.S. 430 Assignment 6, Sample Solutions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

On the conformal change of five-dimensional Finsler spaces

Derivation of Optical-Bloch Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Section 9.2 Polar Equations and Graphs

Every set of first-order formulas is equivalent to an independent set

Generating Set of the Complete Semigroups of Binary Relations

A Note on Intuitionistic Fuzzy. Equivalence Relation

Homomorphism of Intuitionistic Fuzzy Groups

Fractional Colorings and Zykov Products of graphs

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ADVANCED STRUCTURAL MECHANICS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Space-Time Symmetries

THE BIGRADED RUMIN COMPLEX. 1. Introduction

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Local Approximation with Kernels

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Finite Field Problems: Solutions

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Higher Derivative Gravity Theories

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

CRASH COURSE IN PRECALCULUS

Abstract Storage Devices

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

3.4 Αζηίεξ ημζκςκζηήξ ακζζυηδηαξ ζημ ζπμθείμ Πανάβμκηεξ πνμέθεοζδξ ηδξ ημζκςκζηήξ ακζζυηδηαξ οιαμθή ηςκ εηπαζδεοηζηχκ ζηδκ

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

About these lecture notes. Simply Typed λ-calculus. Types

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Trigonometry 1.TRIGONOMETRIC RATIOS

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

On a five dimensional Finsler space with vanishing v-connection vectors

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

ST5224: Advanced Statistical Theory II

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

4.6 Autoregressive Moving Average Model ARMA(1,1)

MA 342N Assignment 1 Due 24 February 2016

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Transcript:

Parallel displacements of directions on the Grassmann-like manifold of centered planes Olga Belova Abstract. The Grassmann-like manifold Gr (m, n) of centered m-planes L m (it has the same dimension as the space of m-planes) is considered in projective space. The analog of the strong Norden normalization of the Grassmann-like manifold is realized and induced connections are considered. Parallel displacements of directions on this manifold are studied. M.S.C. 2: 53A2, 53B15, 53B25. Key words: projective space; Grassmann-like manifold; connection; covariant differential; parallel displacement. 1 Introduction Extensive theory of Grassmann submanifolds has been developed by school of Baltic geometers, basically, works of Yu.G. Lumiste [1], V.I. Bliznikas [2], I.V. Bliznikene [3], etc., but here essentially new results are obtained and approaches to researches differ from earlier used. The object of research of the present paper are connections in the fiberings associated with Grassmann-like manifold of centered planes. The work concerns to researches in the area of differential geometry. The research is based on an application of the G.F. Laptev s method [4] of defining a connection in a principal fiber bundle and his method of continuations and scopes, which generalizes the moving frame method and Cartan exterior forms method. The research depends on calculation of exterior differential forms. Grassmann manifold and the space of centered planes in the projective space were already studied by autor in this direction [5]. This paper is devoted to studies of parallel displacements of directions in connections along lines on Grassmann-like manifold of centered planes. BSG Proceedings 21. The International Conference Differential Geometry - Dynamical Systems DGDS-23, October 1-13, 23, Bucharest-Romania, pp. 9-13. c Balkan Society of Geometers, Geometry Balkan Press 24.

1 Olga Belova 2 Grassmann-like manifold and parallel displacements In n-dimensional projective space P n we consider the moving frame {A, A I } (I, = 1, n) with derivation formulas da = θa + ω I A I, da I = θa I + ω J I A J + ω I A, where the form θ plays the role of a proportionality factor and the structure forms ω I, ω I J, ω I of the projective group GP (n), which acts effectively on P n, satisfy the Cartan equations Dω I = ω J ω I J, Dω I J = ω K J ω I K + δ I Jω K ω K + ω J ω I, Dω I = ω J I ω J. The Grassmann-like manifold Gr (m, n) of the centered m-planes L m is considered in P n. Let s produce a specialization of the moving frame {A, A a, A α } (a, = 1, m; α, = m + 1, n) putting the tops A and A a on the plane L m = [A, A a ] and fixing the center A. The Grassmann-like manifold Gr (m, n) [6] is given by the equations where Λ a α, Λ ab α ω a = Λ a αω α + Λ ab α ω α b, are functions; ω α, ω α a are basic forms of this manifold, dimgr (m, n) = (n m)(m + 1). The components of the fundamental object Λ = {Λ a α, Λ ab α } satisfy the differential comparisons modulo the basic forms ω α, ω α a : Λ a α + Λ ab α ω b + ω a α, Λ ab α. The principal fiber bundle G (Gr (m, n)) is constructed over the manifold Gr (m, n) and the stationarity subgroup G of the centered plane L m is the typical fiber. In the principal fiber bundle the fundamental-group connection is given in G. F. Laptev s method: ω a b = ω a b Γ a bαω α L ac bαω α c, ω α β = ω α β Γ α βγω γ L αa βγω γ a, ω a α = ω a α Γ a αβω β L ab αβω β b, ω a = ω a L aα ω α Π b aαω α b, ω α = ω α L αβ ω β Π a αβω β a. The connection in the associative fibering G (Gr (m, n)) is defined by the field of the connection object Γ = {Γ a bα, Lac bα, Γα βγ, Lαa βγ, L aα, Π b aα, Γ a αβ, Lab αβ, L αβ, Π a αβ } on the base Gr (m, n): Γ a bα + L ac bαω c ωbα a, L ac bα ωbα ac, Γ α βγ + L αa βγω a ω α βγ, Γ a αβ + L ab αβω b Γ a bβω b α + Γ γ αβ ωa γ ω a αβ, L aα + (Π b aα + Γ b aα)ω b, L αa βγ ω αa βγ, L ab αβ + L γb αβ ωa γ L ab cβω c α ω ab αβ, Π b aα + L cb aαω c + δ b aω α

Parallel displacements of directions on the Grassmann-like manifold 11 L αβ +(Π a αβ +Γ a αβ)ω a L aβ ω a α +Γ γ αβ ω γ, where Π a αβ Π a bβω b α +L ba αβω b +L γa αβ ω γ, ω a bα = Λ a αω b + δ a b Λ c αω c + δ a b ω α, ω α βγ = δ α β Λ a γω a + δ α β ω γ + δ α γ ω β, ω a αβ = Λ a βω α, ω ac bα = Λ ac α ω b + δ a b Λ ec α ω e δ c bω a α, ω αa βγ = δ α γ ω a β + δ α β Λ ba γ ω b. ω ab αβ = Λ ab β ω α. An analog of the strong Norden normalization [7] for this manifold is carried out. It consists of the fields of the planes C n m 1 and N m 1 : L m C n m 1 =, A / N m 1 L m. The planes C n m 1 and N m 1 we shall set by the points B α = A α + λ a αa a + λ α A and B a = A a + λ a A, respectively. The differential equations for the components of the clothing quasitensor λ = {λ a α, λ α, λ a } are of the form [8]: λ a + ω a = λ aα ω α + λ b aαω α b, We have (see [6]) λ a α + ω a α = λ a αβω β + λ ab αβω β b, λ α + λ a αω a + ω α = λ αβ ω β + χ a αβω β a. Γ a bα = δ a b λ α + µ a αλ b + δ a b µ c αλ c, L ac bα = δ c bλ a α (δ a b Λ ec α + δ e bλ ac α )λ e, Γ α βγ = δ α γ λ β δ α β λ γ + δ α β µ a γλ a, Γ a αβ = Λ a βλ α µ a βλ b λ b α, L aα = µ b αλ a λ b, L αβ = λ α λ β + λ a λ α µ a β λ a λ b λ b αµ a β, L αa βγ = δ α γ λ a β δ α β Λ ba γ λ b, L ab αβ = Λ ab β λ α + Λ ab β λ c αλ c λ a βλ b α, Π b aα = δ b aλ α Λ cb α λ a λ c, Π a αβ = Λ ba β λ b λ α λ β λ a α + Λ ba β λ c αλ b λ c. Theorem 2.1. The analog of the strong Norden normalization of the Grassmann-like manifold Gr (m, n) induces a connection in the associated fibering. We ll consider the straight line in the plane L m and passing through a point A. It crosses an analogue of a normal of the 2nd type N m 1 in the point B = µ a B a = µ a (A a + λ a A). We have db = [θ + ( λ α + µ b αλ b )ω α Λ cb α λ c ω α b ]B+ + µ a B a + µ a [λ a ω α + ω α a ]B α + +µ a [(λ aα + λ a λ b µ b α λ a λ α )ω α + (λ b aα λ a λ c Λ cb α δ b aµ α )ω α b ]A, where µ a α = λ a α Λ a α, µ α = λ α λ a λ a α and µ a = dµ a + µ b ω a b. If the covariant differential of the geometrical object µ vanishes we get parallel displacement and we have

12 Olga Belova Theorem 2.2. The straight line AB L m determined by a point B N m 1 (A / N m 1 L m) is parallel displaced in the plane linear connection Γ 1 = {Γ a bα, Lac bα } iff the point B is displaced in a plane P n m+1 = N n m + B, where N n m is an analogue of a normal of the 1st type (N n m = A + C n m 1 ). We consider a normal straight line AC intersecting an analog of the Cartan plane C n m 1 N n m in the point C = µ α B α = µ α (A α + λ a αa a + λ α A). We find the differential of the point C dc = [θ (Λ a βλ a + µ β )ω β Λ ba β λ b ω β a ]C + µ α B α + +µ α [(λ a αβ λ α µ a β)ω β + (λ ab αβ + λ α Λ ab β λ a βλ b α)ω β b ]B a+ +µ α [(λ αβ λ a λ a αβ + λ a λ α µ a β λ α λ β )ω β + (χαβ a λ b λ ba αβ λ b λ α Λ ba β λ a αµ β )ωa β ]A, where µ α = dµ α + µ β ω α β. Theorem 2.3. The straight line AC N n m determined by a point C C n m 1 (C n m 1 is an analogue of the Cartan plane) is parallel displaced in the normal linear connection Γ 2 = {Γ α βγ, Lαa βγ } iff the point C is displaced in a plane P m+1 = L m + C. We consider general parallel displacements. We consider the point M L n 1 = N m 1 + C n m 1. M = η a B a + η α B α. We find the differential of the point M dm = θm + [ η a + ( η a λ α + η a µ b αλ b + η β λ a βα η β λ β µ a α)ω α + +(η c λ c Λ ab α + η β λ ab βα + η β λ β Λ ab α η β λ a αλ b β η a Λ cb α λ c η c Λ ab α λ c )ωb α ]B a + +[ η α + (δ α β η a λ a η α λ β + η α µ a βλ a )ω β + (δ α β η a η α Λ ba β λ b )ω β a ]B α + +[(η a λ aα + η a λ a λ b µ b α η a λ a λ α η β λ a λ a βα + η β λ βα η β λ a λ β Λ a α η β λ β µ α )ω α + +(η a λ b aα η a λ a λ c Λ cb α η b µ α η β λ a λ ab βα + η β χ b βα η β λ a λ β Λ ab α η β λ b βµ α )ωb α ]A, where η a = dη a + η b ω a b, ηα = dη α + η β ω α β. Theorem 2.4. The straight line AM is parallely displaced in the compound connection Γ 1 Γ 2 by any displacement of the point M, i.e. parallel displacement in this connection is degenerated. References [1] Yu. G. Lumiste, Induced connection in the embeded projective and affine fiberings (in Russian), Acad. Proc. of Tartu University, Tartu, 177 (1965) 6 42. [2] V. I. Bliznikas, Some questions of geometry of hypercomplexes of lines (in Russian), The Proc. of the Geom. Seminar, Moscow, 6 (1974) 43 111. [3] I. V. Bliznikene, About geometry of hemiholonomic congruence of the first kind, The Proc. of the Geom. Seminar, Moscow, 3 (1971) 125 148.

Parallel displacements of directions on the Grassmann-like manifold 13 [4] G. F. Laptev, Differential geometry of the embeded manifolds (in Russian), The Proc. of Moscow Math. Society, Moscow, 2 (1953) 275 383. [5] O. O. Belova, Connections in fiberings associated with the Grassman manifold and the space of centered planes, J. Math. Sci, Springer, 162, 5 (29), 65 632. [6] O. O. Belova, The connection in the fibering associated with Grassmann-like manifold of centered planes (in Russian), Vestnik CHGPU Cheboksary 68 (26), 18 2. [7] A. P. Norden, Spaces with an Affine Connection (in Russian), Nauka, Moscow 1976. [8] O. O. Belova, Connections of the 2nd type in the fibering associated with Grassmann-like manifold of centered planes (in Russian), Diff. Geom. of Figure Manifolds, Kaliningrad. 38 (27), 6 12. Author s address: Olga Belova Institute of Applied Mathematics and Information Technologies, Immanuel Kant Baltic Federal University, A. Nevsky Street, 23641, Kaliningrad, Russia. E-mail: olgaobelova@mail.ru