Spatial Modeling with Spatially Varying Coefficient Processes

Σχετικά έγγραφα
Other Test Constructions: Likelihood Ratio & Bayes Tests

Bayesian modeling of inseparable space-time variation in disease risk

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Solution Series 9. i=1 x i and i=1 x i.

4.6 Autoregressive Moving Average Model ARMA(1,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

6.3 Forecasting ARMA processes

ST5224: Advanced Statistical Theory II

Statistical Inference I Locally most powerful tests

5.4 The Poisson Distribution.

The challenges of non-stable predicates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Numerical Analysis FMN011

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

6. MAXIMUM LIKELIHOOD ESTIMATION

2 Composition. Invertible Mappings

Solutions to Exercise Sheet 5

EE512: Error Control Coding

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Introduction to the ML Estimation of ARMA processes


Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Probability and Random Processes (Part II)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Homework 3 Solutions

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Approximation of distance between locations on earth given by latitude and longitude

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Durbin-Levinson recursive method

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

These derivations are not part of the official forthcoming version of Vasilaky and Leonard

Section 8.3 Trigonometric Equations

Reminders: linear functions

Assalamu `alaikum wr. wb.

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

The Simply Typed Lambda Calculus

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Every set of first-order formulas is equivalent to an independent set

Additional Results for the Pareto/NBD Model

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Problem Set 3: Solutions

C.S. 430 Assignment 6, Sample Solutions

Space-Time Symmetries

Lecture 7: Overdispersion in Poisson regression

An Inventory of Continuous Distributions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Supplementary figures

Finite Field Problems: Solutions

Jordan Form of a Square Matrix

Tutorial on Multinomial Logistic Regression

Areas and Lengths in Polar Coordinates

Generalized additive models in R

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Online Appendix To: Bayesian Doubly Adaptive Elastic-Net Lasso For VAR Shrinkage

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Matrices and Determinants

Congruence Classes of Invertible Matrices of Order 3 over F 2

[1] P Q. Fig. 3.1

Lifting Entry (continued)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

FORMULAS FOR STATISTICS 1

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Local Approximation with Kernels

Notes on the Open Economy

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Homework for 1/27 Due 2/5

Μηχανική Μάθηση Hypothesis Testing

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Areas and Lengths in Polar Coordinates

Example Sheet 3 Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Homework 8 Model Solution Section

Tridiagonal matrices. Gérard MEURANT. October, 2008

Higher Derivative Gravity Theories

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

The ε-pseudospectrum of a Matrix

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ


ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Transcript:

Spatial Modeling with Spatially Varying Coefficient Processes Alan E. Gelfand, Hyon-Jung Kim, C. F. Sirmans, Sudipto Banerjee Presenters: Halley Brantley and Chris Krut September 28, 2015

Introduction Want to model selling price of single family homes in Baton Rouge. Covariates Age See Figure 1. Pg. 392 Square feet of liv Square feet of ot # of bathrooms

Linear Model Y (s) = X(s)β + W (s) + ɛ β = (β 0, β 1, β 2, β 3, β 4 ) X(s) = (1, Age, LivingArea, OtherArea, Bathrooms) ɛ N(0, τ 2 ) independent error term Spatial Components 1. s i is the location of observation i 2. Spatial random effect W (s) N(0, σ 2 H) 3. (H) ij = ρ(s i s j φ) 4. cov(y (s i ), Y (s j ) β, τ 2, φ) = σ 2 ρ(s i s j φ)

Challenge: βs may not be constant across space Possibility 1: divide area into similar blocks. Must assume coefficient is constant on specified area. Arbitrary scale of resolution Can t interpolate the surface Possibility 2: Assume β is a polynomial or spline function of lat/lon. Arbitrary specification of polynomial could be too inflexible. Splines are more flexible, but need to specify number and location of knots.

Gaussian Process Definition Y (s) is a Gaussian process with mean function µ(s) and covariance function cov(y (s), Y (s )) = H(s, s ) if for every subset of locations s 1,..., s n the vector Ỹ = (Y (s 1),..., Y (s n )) T Ỹ MV N n ( µ, H) (1) where µ = (µ(s 1 ),..., µ(s n )) T and H is a matrix such that {H} ij = H(s i, s j ; φ). To be a valid covariance function H(s, s : φ) must be positive semidefinite in the sense that it generates covariance matrices H which are positive semi definite v T Hv 0[1, Pg. 80].

Spatial Intercept Model: Process Model Y (s) = β 0 + x(s)β 1 + β 0 (s) + ε(s) E(ε(s)) = 0 cov(ε(s), ε(s )) = τ 2 I(s = s ) β 0 (s) Gaussian Process(0,H(s, s ; φ, σ 2 )) H(s, s ; φ, σ 2 ) = σ 2 ρ(s s ; φ). β 0 (s) = β 0 + β 0 (s) Assign Prior distributions to remaining parameters (β 0, β 1, σ 2 0, τ 2, φ 0 )

Spatial Intercept Model: Discretized Model Observe Y (s), x(s), over set of locations s 1,..., s n. Y (s i ) = β 0 + x(s i )β 1 + β 0 (s i ) + ε(s i ) ε(s i ) N(0, τ 2 ) (Y (s i ) β 0, β 1, β 0 (s i )) N(β 0 + x(s i )β 1 + β 0 (s i ), τ 2 ) β 0 = (β 0 (s 1 ),..., β 0 (s n )) β 0 MV N(0, σ 2 0H 0 (φ 0 )) Assign Prior distributions to remaining parameters (β 0, β 1, σ 2 0, τ 2, φ 0 )

Spatial Slope Model: Process Model Y (s) = β 0 + x(s)β 1 + x(s)β 1 (s) + ε(s) E(ε(s)) = 0 cov(ε(s), ε(s )) = τ 2 I(s = s ) β 0 (s) Gaussian Process(0,H(s, s ; φ, σ 2 )) H(s, s ; φ, σ 2 ) = σ 2 ρ(s s ; φ)). β 1 (s) = β 1 + β 1 (s) Assign Prior distributions to remaining parameters (β 0, β 1, σ 2 0, τ 2, φ 0 ) The process Y (s) ends up being heterogeneous and non-stationary. var(y (s) β0, β 1, τ 2, σ 2 1, φ 1 ) = x 2 (s)σ 2 1 + τ 2 cov(y (s), Y (s ) β 0, β 1, τ 2, σ 2 1, φ 1 ) = x(s)x(s )σ 2 1ρ 1 (s s ; φ 1 )

Spatial Slope Model: Discretized Model Observe Y (s), x(s), over set of locations s 1,..., s n. Y (s i ) = β 0 + x(s i )β 1 + x(s i )β 1 (s i ) + ε(s) ε(s i ) N(0, τ 2 ) (Y (s i ) β 0, β 1, β 1 (s i )) N(β 0 + x(s i )β 1 + x(s i )β 1 (s i ), τ 2 ) β 1 = (β 1 (s 1 ),..., β 1 (s n )) β 1 MV N(0, σ 2 1H 1 (φ 1 )) Assign Prior distributions to remaining parameters (β 0, β 1, σ 2 0, τ 2, φ 0 )

Spatial Varying Coefficients Model Y (s) = β 0 + x(s)β 1 + β 0 (s) + x(s)β 1 (s) + ε(s) Y (s i ) = β 0 + x(s i )β 1 + β 0 (s i ) + x(s i )β 1 (s i ) + ε(s i ) Vector of spatial random effects at observed locations: β = (β 0 (s 1 ), β 1 (s 1 ),..., β 0 (s n ), β 1 (s n )) T β MV N(0, H(φ) T ) ( ) T11 T Positive definite matrix: T = 12 T 21 T 22 cov(β 0 (s i ), β 0 (s j )) = ρ(s i s j : φ)t 11 cov(β 1 (s i ), β 1 (s j )) = ρ(s i s j : φ)t 22 cov(β 0 (s i ), β 1 (s j )) = ρ(s i s j : φ)t 12

Multiple Regression with Spatially Varying coefficients Y (s) = X T (s) β(s) + ε(s) Y (s) = X T (s)µ β + X T (s)β(s) + ε(s) X T (s) = (1, x 1 (s),..., x p (s)) β(s) = µ β + β(s) µ β = (β 0, β 1,..., β p ) β(s) = (β 0 (s), β 1 (s),..., β p (s))

Multiple Regression with Spatially Varying coefficients y = X(1 µ β ) + Xβ + ε y = (Y (s 1 ),..., Y (s n )) T X(s 1 ) X(s 2 ) X =... X(s) µ β = (β 0, β 1,..., β p ) T β = (β 0 (s 1 ),..., β p (s 1 ),..., β 0 (s n ),..., β p (s n )) T β MV N(0, H(φ) T ) T is a p + 1 p + 1 positive definite matrix. cov(β i (s), β j (s )) = ρ(s s : φ)t i+1j+1

Marginalized Likelihood L(µ β, T, τ 2, φ y) = f(y X, µ β, β, T, φ, τ 2 )π(β)dβ L(µ β, T, τ 2, φ y) = (X(H(φ) T )X T + τ 2 I) 1/2 exp( 1 2 (y X(1 µ β)) T (X(H(φ) T )X T + τ 2 I) 1 (y X(1 µ β )))

Slice Sampling Want to sample from posterior f(µ β, T, τ 2, φ y) Introduce an auxiliary variable U unif(0, L(µ β, T, τ 2, φ y)) and use the fact f(µ β, T, τ 2, φ, U y) = I(U < L(µ β, T, τ 2, φ y))π(µ β, T, τ 2, φ) Sample U from unif(0, L(µ β, T, τ 2, φ y)). Sample µ β, T, τ 2, φ from π(µ β, T, τ 2, φ) subject to I(U < L(µ β, T, τ 2, φ y)).

Sampling β(s) 1. We can obtain the Marginal Posterior f( β, y) = f( β µ β, T, φ, τ 2, y) f(µ β, T, φ, τ 2 y) 2. Full Conditional is of a known form f( β µ β, T, φ, τ 2, y) = N(Bb, B) B = (X T X/τ 2 + H 1 (φ) T 1 ) 1 b = X T y/τ 2 + (H 1 (φ) T 1 )(1 µ β ) 3. We can generate from f( β, y) using the samples from f(µ β, T, φ, τ 2 y) and the full conditional distribution in 2.

Sampling β(s n+1 ) for a new location s n+1 1. We can obtain the Marginal Posterior f( β(s n+1 ), y) = f( β(s n+1 ) β, µ β, T, φ, τ 2 )f( β, µ β, T, φ, τ 2 y) 2. Conditional distribution has a known form f( β(s n+1 ) β, µ β, T, φ, τ 2 ) = N(µ, σ) µ = µ β + (h T new(φ)h 1 (φ) I)( β 1 n 1 µ β ) σ = (I h T new(φ)h 1 (φ)h new (φ))t h new (φ) = (ρ(s n+1 s 1 ; φ),..., ρ(s n+1 s 1 ; φ)) T 3. Similar to before we can use posterior samples to generate β(s n+1 )

Predict y(s n+1 ) from predictive posterior 1. The Predictive Posterior is given by f(y(s n+1 ) y) = f(y(s n+1 ) β(s n+1 ), τ 2 ) f( β(s n+1 ) β, µ β, T, φ) f( β, µ β, T, φ, τ 2 y) 2. Can sample from f(y(s n+1 ) y) by iteratively generating from f( β, µ β, T, φ, τ 2 y), f( β(s n+1 ) β, µ β, T, φ), f(y(s n+1 ) β(s n+1 ), τ 2 ).

Application to housing prices Compared 4 different models: 1. Allow all βs to vary spatially (multivariate). 2. Allow 3 of the βs to vary spatially. 3. Allow 2 of the βs to vary spatially. 4. Allow all βs to vary spatially (independently). Model comparison was based on the goodness-of-fit and penalty for model complexity. D = (Y obs (s, t) µ(s, t)) 2 + k σ 2 (s, t) (s,t) (s,t)

Spatial Results See Table 3, Pg. 392

Spatial Results See Figure 4, Pg. 393

Space-Time Regression with Varying Coefficients Y (s) = X T (s, t) β(s, t) + ε(s, t) β(s, t) = µ β + β(s, t) 1. β(s, t) = β(s) 2. β(s, t) = β(s) + α(t) 2.a α k (t) = I(t = 1)α k1 +... + I(t = M)α km 2.b α(t) = (α 0 (t),..., α P (t)) T cov(α(t), α(t )) = ρ (2) (t t ; γ)t 3. β(s, t) = β t (s)(independent processes nested in t) (cov(β t (s), β t (s )) = ρ(s s ; φ (t) )T t 4. Separable covariance cov(β(s, t), β(s, t )) = ρ 1 (s s ; φ) ρ 2 (t t : γ)t

Spatio-Temporal Results Model prices over 4 years. Model 1: β(s, t) = β(s) Model 2: β(s, t) = β(s) + α(t) Model 2a: α(t) as 4 iid time dummies Model 2b: α(t) as multivariate temporal process Model 3: β(s, t) = β (t) (s)(independent process at each t) Model 3a: common µ b across t. Model 3b: µ (t) b Model 4: Separable spatio-temporal model.

See Table 6 Pg. 395

See Table 7 Pg. 395

Generalized Linear Model f(y(s i ) θ(s i )) = h(y(s i )) exp(θ(s i )y(s i ) b(θ(s i ))) L( β y) ( = exp y(si )X T (s i ) β(s i ) b(x T (s i ) β(s ) i )) θ(s i ) = X T (s i ) β(s i ) β N(1 n 1 µ β, H(φ) T ) Constructing a satisfactory sampler is quite challenging. More work needs to be done on model fitting side.

Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.