The Finite Element Method

Σχετικά έγγραφα
NONLINEAR FINITE ELEMENT ANALYSIS OF PLATE BENDING

Chapter 7 Transformations of Stress and Strain

General theorems of Optical Imaging systems

Chapter 6 BLM Answers

Areas and Lengths in Polar Coordinates

Solar Neutrinos: Fluxes


Durbin-Levinson recursive method

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά

Section 8.2 Graphs of Polar Equations

Section 7.6 Double and Half Angle Formulas

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

If we restrict the domain of y = sin x to [ π 2, π 2

MathCity.org Merging man and maths

Note: Please use the actual date you accessed this material in your citation.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1


Matrices and Determinants

Areas and Lengths in Polar Coordinates

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

Trigonometric Formula Sheet

4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x

[1, 2, 3, 4, 5, 6, 7, 8]

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

TÜV MANAGEMENT SERVICE ISO

ΠΛΗΡΗΣ ΑΝΑΛΥΣΗ Αλληλεπίδραση Εντατικού και Κινηματικού Πεδίου Καταστατικοί Νόμοι Συμπεριφοράς Πεδία Εφαρμογών

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

16 Electromagnetic induction


Section 8.3 Trigonometric Equations

CYLINDRICAL & SPHERICAL COORDINATES

Lecture 21: Scattering and FGR

Leaving Certificate Applied Maths Higher Level Answers

Numerical Analysis FMN011

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Ανώτερα Μαθηματικά ΙI

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

CRASH COURSE IN PRECALCULUS

Trigonometry 1.TRIGONOMETRIC RATIOS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ADVANCED STRUCTURAL MECHANICS

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Homework 8 Model Solution Section

1 String with massive end-points

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Second Order RLC Filters

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

D Alembert s Solution to the Wave Equation

Section 9.2 Polar Equations and Graphs

Example Sheet 3 Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

5-1. Industrial Vision. Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation

Multi-GPU numerical simulation of electromagnetic waves

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Curvilinear Systems of Coordinates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

derivation of the Laplacian from rectangular to spherical coordinates

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Pairs of Random Variables

Solution to Review Problems for Midterm III

Finite Field Problems: Solutions

Variational Wavefunction for the Helium Atom

Introduction to Time Series Analysis. Lecture 16.

Reminders: linear functions

Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009

High order interpolation function for surface contact problem

Tutorial Note - Week 09 - Solution

Uniform Convergence of Fourier Series Michael Taylor

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΗΟΝΗΧΝ ΝΖΧΝ «ΗΣΟΔΛΗΓΔ ΠΟΛΗΣΗΚΖ ΔΠΗΚΟΗΝΧΝΗΑ:ΜΔΛΔΣΖ ΚΑΣΑΚΔΤΖ ΔΡΓΑΛΔΗΟΤ ΑΞΗΟΛΟΓΖΖ» ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ ΔΤΑΓΓΔΛΗΑ ΣΔΓΟΤ

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Congruence Classes of Invertible Matrices of Order 3 over F 2

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Homework 3 Solutions

Exercises to Statistics of Material Fatigue No. 5

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

1. Ανασκόπηση μεθόδων δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων

Appendix A. Stability of the logistic semi-discrete model.

INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Solutions to Exercise Sheet 5

PARTIAL NOTES for 6.1 Trigonometric Identities

Inverse trigonometric functions & General Solution of Trigonometric Equations

ST5224: Advanced Statistical Theory II

Transcript:

Th Finit Elmnt Mthod Plan (D) Truss and Fram Elmnts Rad: Sctions 4.6 and 5.4 CONTENTS Rviw of bar finit lmnt in th local coordinats Plan truss lmnt Rviw of bam finit lmnt in th local coordinats Plan fram lmnt Numrical ampls JN Rdd

FINITE ELEMENT ANALYSIS OF PLANE TRUSSES AND FRAMES JN Rdd Trusss and Frams:

REVIEW OF THE BAR ELEMENT Linar bar lmnt in th lmnt coordinat sstm Ku F Q f Q f h Horizontal K EA fh Q F + h Q JN Rdd E A h 0 0 0 0 0 0 0 0 0 0 0 0 K D F ū v ū v F 0 F 0 v F u v h θ Inclind F u Trusss & Frams: 3

Bar Elmnt in Global Coordinats Bar lmnt in th lmnt coordinats E A h 0 0 0 0 0 0 0 0 0 0 0 0 K ū v ū v D F F 0 F 0 v h Transformation rlations btwn th two coordinat sstms cos θ + sin θ ȳ sin θ + cos θ cos θ sin θ ȳ sin θ cos θ F u v P θ ( ) ( ) θ F u JN Rdd Trusss & Frams: 4

Bar Elmnt in Global Coordinats Transformation rlations btwn th displacmnts of th two coordinat sstms u cosθ sinθu sin cos v θ θ v u cosθ sinθu sin cos v θ θ v v u F F v v h F u F θ v u F F u ū v ū v cos θ sin θ 0 0 sin θ cos θ 0 0 0 0 cosθ sin θ 0 0 sin θ cos θ u v u v 0 0 { } [T ]{ } { F } [ T ]{ F } JN Rdd Trusss & Frams: 5

Bar Elmnt in Global Coordinats: Truss K D [ K ][T ]{ } [T ]{F } [T ] [T ] T [T ] T [ K ][T ]{ } {F } or [K ]{ } {F } [K ] EA h {F } [K ][T ] T [ K ][T ] {F } [T ] T { F } F F F 3 F 4 F cos θ sin θ cos θ sin θ sin θ sin θ sin θ sin θ cos θ sin θ cos θ sin θ sin θ sin θ sin θ sin θ P cos θ f P cos θ sin θ P cos θ + f sin θ f P cos θ sin θ f sin θ JN Rdd Trusss & Frams: 6

EXAMPLE Givn truss C P 00 kn P 00 kn L A B L F ( ) F Finit lmnt discrtization P 00 kn 45 3(56) (34) F F P 00 kn 90 Elmnt Global Gom. Matr. Orint. numbr nods prop. prop. 3 A h L E θ 90 3 A h L E θ 45 JN Rdd Trusss & Frams: 7

EXAMPLE (continud) Th lmnt stiffnss matrics ar [/( ) 0.3536] P 00 kn [K ] EA [ K ] L 0 0 0 0 0 0 0 0 0 0 0 0 F ( ) F 45 3(56) (34) F F P 00 kn 90 [[K K 3 ]] EA L 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 JN Rdd Trusss & Frams: 8

EXAMPLE (continud) Connctivit arra for DoF pr nod truss [B] () () 3 4 é3 4 5 6ù ê 5 6ú ë û F ( ) () 34 () P 00 kn 45 () 356 () P 00 kn 34 () 90 34 () F Assmbld stiffnss cofficints K K K K K 0 () () 3 () () 4 5 3 6 4 () 3 0 4 0 () () 5 3 6 4 K 0 K K K K K K K K K K K K F K K K K K K () () () 33 34 34 () () () 35 3 36 4 34 () () () 35 3 36 4 44 () () () () 45 3 46 4 55 33 + 33 () () () () 56 34 + 34 66 44 + 44. K K K K K K K K K K K K K K K K K K K F K K K K K K JN Rdd Trusss & Frams: 9

EA L EXAMPLE (continud) Assmbld sstm of uations of th truss 0..3536 0.3536.0 00. 0.0 0.3536 0.3536 0.3536 0.0 0.0 0.3536 0.3536 00.0. 0.0 0.0 0.0.0 0.0.0 smm. 0.3536 0.3536.3536 Th displacmnt continuit conditions ar u u 3 U v v 3 V u u U v v V u u 3 U 3 v v 3 V 3 ìu ü ìïf üï V F U F ï í ï V ý ï í ï F ý ï ï ï ï ï U ï ïf ï 3 3 V F ïî 3 ïþ ï 3ï î þ JN Rdd Trusss & Frams: 0

EXAMPLE (continud) whr th global forcs and displacmnts ar JN Rdd F + F 3 F F 3 + F F F3 + F3 3 F 3 U V U { } {F } V U 3 V 3 Boundar conditions F + F 3 F F 4 + F F F4 + F4 3 F 3 F + F 3 F + F 3 F3 + F F4 + F F3 + F3 3 F4 + F4 3 F F F F F 3 F 3 U V U V 0 F 3 P F 3 P U F () F V 3 45 00 kn 3(56) (34) F U V F V 00 kn U 3 90 Trusss & Frams:

EXAMPLE (continud) Solution EA 0.3536 0.3536 L 0.3536.3536 F F F EA L F U 3 (3+ ) PL EA U3 V 3 0.3536 0.3536 0.3536 0.3536 0.0 0.0 0.0.0 5.88 PL EA P P U 3 V 3 V 3 3PL EA U (m) F () F U 3 45 00 kn 3(56) (34) F V V F U 00 kn U 3 90 (P 0 5 N EA 0 8 N) F P F P F F ( ) - F ( ) 3P; F ( ) - 0.0 F ( ) -F 3P P (N) JN Rdd Trusss & Frams:

EXAMPLE (continud) Post-computation of mmbr displacmnts and strsss P ū v ū v P σ P P A A A E h ū ū cos θ sin θ 0 0 sin θ cos θ 0 0 0 0 cosθ sin θ 0 0 sin θ cos θ U u v u v F () F U 3 45 00 kn 3(56) (34) F V V F U 00 kn U 3 90 W hav PL 3PL u v u v 0; u u U3 ( 3+ ) v v V3 - AE AE JN Rdd Trusss & Frams: 3

EXAMPLE (continud) Post-computation of mmbr displacmnts and strsss 3PL u U3cos+ V3sin V3 - A u U cos + V sin U + V ( ) 3 3 3 3 P - P 3P P - P - P s 3P P - s A A ( ) ( ) JN Rdd Trusss & Frams: 4

PLANE FRAME STRUCTURES Displ. dgrs of frdom in th lmnt coordinats Forc dgrs of frdom in th lmnt coordinats u w S w h S u F3 Q3 + F Q + f F Q + h F5 Q5 + 3 F6 Q6 + 4 F4 Q4 + f u z w z α S S w u u S w z α w S u Displ. dgrs of frdom in th local coordinats Displ. dgrs of frdom in th global coordinats JN Rdd Trusss & Frams: 5

Fram Elmnt in Global Coordinats u cosα sinα 0u u cosα sinα 0u w sinα cos α 0 sin cos 0 w w α α w 0 0 0 0 θ θ θ θ u u cosα sinα 0 w sinα cosα 0 0 w θ 0 0 θ cos sin 0 u α α u 0 sin cos 0 w α α w 0 0 θ θ D T D [ K ][T ]{ } [T ]{F } [T ] [T ] T [T ] T [ K ][T ]{ } {F } or [K ]{ } {F } JN Rdd [K ][T ] T [ K ][T ] {F } [T ] T { F } Trusss & Frams: 6

Fram Elmnt in Global Coordinats (th Eulr-Brnoulli bam fram lmnt) JN Rdd Trusss & Frams: 7

AN EXAMPLE OF A FRAME STRUCTURE A B a b C F Givn structur P A (456) B (3) (456) a (3) (3) z P C 3(789) (456) F Finit lmnt discrtization b Connctivit arra for 3 DoF pr nod [B] () () 3 4 5 6 é 3 4 5 6ù ê4 5 6 7 8 9ú ë û JN Rdd a 0 a 90 or 70 0 0 0

ASSEMBLY OF ELEMENT MATRICES Global stiffnss cofficints in trms of lmnt stiffnss cofficints K K K K... K K () () () 6 6 () () () 3 3... 6 6 K K K K K K K K K K K K K K () () () () 33 33 34 34 35 35 36 36 () () () () 44 44 + 45 45 + K K K K K K K K + K K K + K () () () () 46 46 3 55 55 K K + K K K + K () () () () 56 56 3 66 66 33 K K K K K K () () () 47 4 48 5 49 6 K K K K K K () () () 57 4 58 5 59 6 K K K K K K () () () 67 4 68 35 69 K K K K K K () () () 77 44 78 45 79 46 K K K K K K. 6 (3) (3) [B] () () () 88 55 89 56 99 66 JN Rdd -D Problms: 9 () () a b F (456) (456) (3) P (789) (456) 3 4 5 6 é 3 4 5 6ù ê4 5 6 7 8 9ú ë û

P 7 lb/in. P a 90 z a EXAMPLE (from th ttbook) 4P 7 in. B a 3 4 3 44 in. a tan Th -ais is into th plan of th papr and is masurd countrclockwis from -ais to -ais A 0 in. I 0 in. 4 E 30 0 6 psi 08 in. 44 in. ( ) 3 4 (456) (3) (456) Q + z 5 3 Q + Q + 4 f Q + f Q + 6 4 Q + 3 Q Q 3 JN Rdd 6 6 3 0 Q P 4P z Q 5 Q 6 Q 4 K K + K K K + K () () () () 44 44 45 45 () () () () 46 46 + 3 55 55 + () () () () 56 56 + 3 66 66 + 33 () () 4 4 + () () 5 5 () () K K K K K K K K K K K K F F F P F F + F (- P) + (- P) -4P F F + F 4P- 7P -48P a K K K U F 44 45 46 4 4 K54 K55 K 56 U5 F5 K64 K65 K66 U6 F6 Th rst of th calculations can b found on pp. 78-8 of th Book.

SUMMARY In this lctur w hav covrd th following topics: Plan truss lmnt in th local and global coordinats Transformation of lmnt uations from lmnt coordinats to global coordinats Eampls illustrating assmbl application of boundar conditions and calculation of lmnt forcs and strsss Plan fram lmnt in th local and global coordinats Transformation of lmnt uations from lmnt coordinats to global coordinats JN Rdd Trusss & Frams: