Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Σχετικά έγγραφα
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Example Sheet 3 Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Section 8.3 Trigonometric Equations

Introductions to EllipticThetaPrime4

A summation formula ramified with hypergeometric function and involving recurrence relation

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

Inverse trigonometric functions & General Solution of Trigonometric Equations

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Trigonometric Formula Sheet

PARTIAL NOTES for 6.1 Trigonometric Identities

Matrices and Determinants

CRASH COURSE IN PRECALCULUS

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Reminders: linear functions

SPECIAL FUNCTIONS and POLYNOMIALS

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

MathCity.org Merging man and maths

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

2 Composition. Invertible Mappings

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Chapter 6 BLM Answers

1 Elementary Functions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

D Alembert s Solution to the Wave Equation

Approximation of distance between locations on earth given by latitude and longitude

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Other Test Constructions: Likelihood Ratio & Bayes Tests

Homework 3 Solutions

Every set of first-order formulas is equivalent to an independent set

RF series Ultra High Q & Low ESR capacitor series

Section 9.2 Polar Equations and Graphs

IIT JEE (2013) (Trigonomtery 1) Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Math221: HW# 1 solutions

Trigonometry Functions (5B) Young Won Lim 7/24/14

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Mellin transforms and asymptotics: Harmonic sums

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Areas and Lengths in Polar Coordinates

Uniform Convergence of Fourier Series Michael Taylor

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

EE512: Error Control Coding

F19MC2 Solutions 9 Complex Analysis

4.6 Autoregressive Moving Average Model ARMA(1,1)

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Differential equations

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Areas and Lengths in Polar Coordinates

Computing the Macdonald function for complex orders

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Συντακτικές λειτουργίες

C.S. 430 Assignment 6, Sample Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

The Simply Typed Lambda Calculus

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Instruction Execution Times

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Review Exercises for Chapter 7

Concrete Mathematics Exercises from 30 September 2016

An Inventory of Continuous Distributions

Solutions to Exercise Sheet 5

Commutative Monoids in Intuitionistic Fuzzy Sets

Fractional Colorings and Zykov Products of graphs

Partial Trace and Partial Transpose

derivation of the Laplacian from rectangular to spherical coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

COMPLEX NUMBERS. 1. A number of the form.

TABLES OF SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

On the k-bessel Functions

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

CORDIC Background (4A)

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Second Order Partial Differential Equations

Elements of Information Theory

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

TMA4115 Matematikk 3

Transcript:

PolyGamma Notations Traditional name Digamma function Traditional notation Ψz Mathematica StandardForm notation PolyGammaz Primary definition 06.4.02.000.0 Ψz k k k z Specific values Specialized values 06.4.03.000.0 n Ψn ; n k k 06.4.03.0002.0 Ψn ; n Ψ n 4 06.4.03.0003.0 n 4 4 k Π log8 ; n 2 06.4.03.0004.0 Ψ n 4 n 4 4 k 3 Π log8 ; n 2 06.4.03.0005.0 Ψ n n 3 3 3 k 9 log3 3 Π ; n 6

http://functions.wolfram.com 2 06.4.03.0006.0 Ψ n 3 n 3 3 k 2 9 log3 3 Π ; n 6 06.4.03.0007.0 n 2 n 2 Ψ n 2 k k log4 ; n k n k 06.4.03.0008.0 n 2 n 2 Ψ 2 n k k log4 ; n k n k 06.4.03.0009.0 Ψ n 2 n 3 3 3 k 2 3 Π 9log3 ; n 6 06.4.03.000.0 Ψ 2 n 3 n 3 3 k 3 Π log9 683 ; n 6 06.4.03.00.0 Ψ n 3 n 4 4 4 k 3 Π log8 ; n 2 06.4.03.002.0 Ψ 3 n 4 n 4 4 k Π log8 ; n 2 06.4.03.003.0 Ψ n p n p k 2 k 2 cos 2 Π p k log sin Π k Π 2 cot Π p log2 ; n p p 06.4.03.004.0 n Ψ p n k p 2 k 2 cos 2 Π p k log sin Π k Π 2 cot Π p log2 ; n p p 06.4.03.0033.0 Ψ p 2 k 2 cos 2 Π p k log sin Π k 2 Π cot Π p log2 ; p p Values at fixed points 06.4.03.005.0 Ψ3

http://functions.wolfram.com 3 Ψ 5 2 06.4.03.006.0 46 log4 5 06.4.03.007.0 Ψ2 06.4.03.008.0 Ψ 3 2 8 log4 3 06.4.03.009.0 Ψ 06.4.03.0020.0 Ψ 2 2 log4 06.4.03.002.0 Ψ0 06.4.03.0022.0 Ψ 2 log4 06.4.03.0023.0 Ψ 06.4.03.0024.0 Ψ 3 2 2log4 06.4.03.0025.0 Ψ2 06.4.03.0026.0 Ψ 5 2 8 3 log4 Ψ3 3 2 06.4.03.0027.0 Values at infinities 06.4.03.0028.0 Ψ 06.4.03.0029.0 Ψ 06.4.03.0030.0 Ψ 06.4.03.003.0 Ψ 06.4.03.0032.0 Ψ

http://functions.wolfram.com 4 General characteristics Domain and analyticity Ψz is an analytical function of z which is defined over the whole complex z-plane with the exception of countably many points z k ; k. 06.4.04.000.0 zψz Symmetries and periodicities Mirror symmetry 06.4.04.0002.0 Ψz Ψz Periodicity No periodicity Poles and essential singularities The function Ψz has an infinite set of singular points: a) z k ; k, are the simple poles with residues ; b) z is the point of convergence of poles, which is an essential singular point. 06.4.04.0003.0 ing z Ψz k, ; k,, 06.4.04.0004.0 res z Ψzk ; k Branch points The function Ψz does not have branch points. 06.4.04.0005.0 z Ψz Branch cuts The function Ψz does not have branch cuts. 06.4.04.0006.0 z Ψz Series representations Generalized power series

http://functions.wolfram.com 5 Expansions at z 0 For the function itself 06.4.06.0002.02 Ψz z Π2 z 6 Ζ3 Π4 z3 z2 ; z 0 90 06.4.06.007.0 Ψz z Π2 z 6 Ζ3 z2 06.4.06.0003.0 Π4 z3 90 Oz4 Ψz z j Ζj 2 z j ; z j 0 06.4.06.000.0 Ψz z j z j ; z j2 j 0 k 06.4.06.0004.02 Ψz Oz z Expansions at z z 0 ; z 0 n For the function itself 06.4.06.0006.02 Ψz Ψz 0 Ζ2, z 0 z z 0 Ζ3, z 0 z z 0 2 ; z z 0 z 0 z 0 0 06.4.06.008.0 Ψz Ψz 0 Ζ2, z 0 z z 0 Ζ3, z 0 z z 0 2 Oz z 0 3 ; z 0 z 0 0 06.4.06.0007.02 Ψz Ψz 0 j Ζj 2, z 0 z z 0 j ; z 0 z 0 0 j 0 06.4.06.0005.02 j z z 0 j Ψz Ψz 0 j 0 k z 0 j2 ; z 0 z 0 0 06.4.06.0008.02 Ψz Ψz 0 Ζ2, z 0 z z 0 Oz z 0 ; z 0 z 0 0 Expansions at z n For the function itself

http://functions.wolfram.com 6 06.4.06.0009.02 Ψz Π2 Ψn z n 3 Ζ2, n z n Ζ3, n z n2 Π4 45 Ζ4, n z n3 ; z n n 06.4.06.009.0 Ψz Π2 Ψn z n 3 Ζ2, n z n Ζ3, n z n2 Π4 45 Ζ4, n z n3 Oz n 4 ; n 06.4.06.000.02 Ψz z n Ψn k Ψ k Ζk Ζk, n z n k ; n k 06.4.06.00.02 Ψz Ψn Oz n ; n z n Expansions of Ψz Ε at Ε 0 ; z n For the function itself 06.4.06.0020.0 Ψz Ε Ψz Ζ2, z Ε Ζ3, z Ε 2 ; Ε 0 z z 0 06.4.06.002.0 Ψz Ε Ψz Ζ2, z Ε Ζ3, z Ε 2 OΕ 3 ; z z 0 06.4.06.0022.0 Ψz Ε Ψz j Ζj 2, z Ε j ; z z 0 j 0 06.4.06.0023.0 Ψz Ε Ψz OΕ ; z z 0 Expansions of Ψn Ε at Ε 0 For the function itself 06.4.06.0024.0 Ψn Ε Π2 Ψn Ε 3 Ζ2, n Ε 2 Ψ2 n Ε 2 ; Ε 0 n 06.4.06.0025.0 Ψn Ε Π2 Ψn Ε 3 Ζ2, n Ε 2 Ψ2 n Ε 2 OΕ 3 ; n 06.4.06.0026.0 Ψn Ε Ε Ψn k Ψ k Ζk Ζk, n Ε k ; Ε 0 n k 06.4.06.0027.0 Ψn Ε OΕ ; n Ε

http://functions.wolfram.com 7 Asymptotic series expansions 06.4.06.002.0 Ψz logz 2 z k B 2 k ; argz Π z 2 k 2 k z 06.4.06.0028.0 Ψz logz 2 z k B 2 k Π cotπ z argz 2 k z 2 k Π ; z z 0 z 06.4.06.003.0 Ψz logz 2 z 2 z 2 O z 2 ; argz Π z 06.4.06.0029.0 Ψz logz 2 z Residue representations 2 z 2 O z 2 Π cotπ z argz Π ; z z 0 z 06.4.06.004.0 Ψz z res s j 0 s 2 2 s z s s j 2 s 2 Other series representations 06.4.06.005.0 Ψz z z z 2 z 2 3 z 3 06.4.06.006.0 Ψz z z k k z Integral representations On the real axis Of the direct function 06.4.07.000.0 t z Ψz t ; Rez 0 0 t 06.4.07.0002.0 t t z Ψz 0 t t t ; Rez 0 06.4.07.0003.0 Ψz 0 t z t t t ; Rez 0

http://functions.wolfram.com 8 06.4.07.0004.0 Ψn P n t 2 t ; n t Ψz 0 A. Radovi 06.4.07.0007.0 x z x logx x ; Rez 0 Contour integral representations 06.4.07.0005.0 Ψz 2 Π z s s s 2 z s s s 2 s 2 s 06.4.07.0006.0 Γ Ψz 2 Π z s s s 2 z s s s ; 0 Γ Γ 2 s 2 s Limit representations Ψz lim n 06.4.09.000.0 n logn z k 06.4.09.0002.0 Ψz lim Ζs, z s s Generating functions 06.4..000.0 t log t Ψn t n t ; n Transformations Transformations and argument simplifications Argument involving basic arithmetic operations 06.4.6.000.0 Ψ z Π cotπ z Ψz 06.4.6.0002.0 Ψz Ψz Π cotπ z z 06.4.6.0003.0 Ψz Ψz z

http://functions.wolfram.com 9 06.4.6.0004.0 Ψz Ψz z 06.4.6.0005.0 n Ψz n Ψz ; n z k 06.4.6.0006.0 n Ψz n Ψz ; n z k Multiple arguments Argument involving numeric multiples of variable 06.4.6.0007.0 Ψ2 z log2 2 Ψ z 2 Ψz 06.4.6.000.0 Ψ3 z 3 Ψz Ψ z 3 Ψ z 2 3 log3 Argument involving symbolic multiples of variable 06.4.6.0008.0 Ψm z logm m m Ψ z k m ; m Products, sums, and powers of the direct function Sums of the direct function 06.4.6.0009.0 Ψz Ψ z 2 2 Ψ2 z 2 log2 Identities Recurrence identities Consecutive neighbors 06.4.7.000.0 Ψz Ψz z 06.4.7.0002.0 Ψz Ψz z Distant neighbors

http://functions.wolfram.com 0 06.4.7.0003.0 n Ψz Ψz n ; n z k 06.4.7.0004.0 n Ψz Ψz n ; n k z k Functional identities Relations of special kind 06.4.7.0005.0 Ψz Ψz Π cotπ z z Complex characteristics Real part 06.4.9.000.0 Ψ 0 x 2 x y 2 ReΨx y RootSum x 2 2 x y 2 2 &, & x 2 4 2 x y 2 3 2 06.4.9.0002.0 ReΨx y Ψx y Ψx y 2 Imaginary part 06.4.9.0003.0 ImΨx y Ψx y Ψx y 2 Differentiation Low-order differentiation 06.4.20.000.0 Ψz Ψ z z 06.4.20.0002.0 2 Ψz Ψ 2 z z 2 Symbolic differentiation 06.4.20.0003.02 n Ψz Ψ n z ; n z n

http://functions.wolfram.com Fractional integro-differentiation 06.4.20.0004.0 Α Ψz Ψ Α z z Α Α Ψz z Α 06.4.20.0005.0 ΝΑ exp z, z Α zα Α zα k k 2 2 F, 2; 2 Α; z k Integration Indefinite integration Involving only one direct function 06.4.2.000.0 Ψz z logz Involving one direct function and elementary functions Involving power function 06.4.2.0002.0 z Α Ψz z zα Α zα Α zα Α 06.4.2.0003.0 n z n Ψz z j n j j z nj Ψ j z ; n j 0 z 3F 2, 2, Α ; 2, Α 2; k 2 k Definite integration Involving the direct function 06.4.2.0004.0 n 0 zψt z t n t n Ψ n z k n k k z kn j j k j Ψ j ; n j 0 Summation Finite summation 06.4.23.000.0 n Ψk n Ψn ; n k

http://functions.wolfram.com 2 k 06.4.23.0002.0 Ψ k 2 Π p k 2 Π p log ; p p m i 0 06.4.23.0003.0 p m i k a k i i n i k b k i Ψi Ψi n Ψm i p n m k n a k k m p k n b k pmn z n m b k n k a k k m m b k n k m a k k p m n m k n n j 0 m Ψ i a k Ψ i b k Ψi a k k m a k k m m b k n k n pmn z mn p2f 2,, m a,, m a p ; m n 2, m 2, m b,, m b ; z n j m k j n b k n k j n a k p jm n j k n n j a k k m j n b k m b i b i n i m k b i b k k i p i m b i k n mnp z j b i b k n k a k b i b i a k k m b i b k k m Ψi b k z i mnp z nb i p2f 2, m b i, a b i,, a p b i ; n b i 2, 2 b i, b b i,, b b i ; z log pmn z p F m, a,, a p ; n, b,, b ; z n p n m k n k a k k m m b k n k a k b k G m2,n p,2 pmn z a,, a n, m, a n,, a p 0, n, b,, b m, b m,, b ; n m j,k,j,k j k j m k m b j b k

http://functions.wolfram.com 3 {k, n +, p}] + Sum[PolyGamma[ b[[k]] + i], {k, m +, }] + PolyGamma[n + i + ] + PolyGamma[i + ] - PolyGamma[m + - i]), {i, 0, m}]/ ((((-)^n*n!*m!*product[gamma[ - a[[k]]], {k, n +, p}]*product[gamma[b[[k]]], {k, m +, }])/ (Product[Gamma[ - b[[k]]], {k,, m}]* Product[Gamma[a[[k]]], {k,, n}]))* MeijerG[{Table[ - a[[r]], {r,, n}], Join[{m + }, Table[ - a[[r]], {r, + n, p}]]}, {Join[{0, -n}, Table[ - b[[r]], {r,, m}]], Table[ - b[[r]], {r, + m, }]}, (-)^(p - n - m + )*z] - (((n!*m!*product[gamma[ - a[[k]]], {k, n +, p}]*product[gamma[b[[k]]], {k, m +, }])/(Product[ Gamma[ - b[[k]]], {k,, m}]* Product[Gamma[a[[k]]], {k,, n}]))* (Sum[Gamma[- + b[[i]]]*gamma[-n - + b[[ i]]]*((product[gamma[-b[[k]] + b[[i]]], {k,, i - }]*Product[ Gamma[-b[[k]] + b[[i]]], {k, i +, m}]*product[gamma[ + a[[k]] - b[[i]]], {k,, n}])/(gamma[ m + b[[i]]]*product[gamma[-a[[k]] + b[[i]]], {k, n +, p}]*product[ Gamma[ + b[[k]] - b[[i]]], {k, m +, }]))*((-)^(p - n - m + )*z)^( + n - b[[i]])* HypergeometricPFQ[Join[{, - m - b[[i]]}, Table[ + a[[r]] - b[[i]], {r,, p}]], Join[{2 + n - b[[i]], 2 - b[[i]]}, Table[ + b[[r]] - b[[i]], {r,, }]], z], {i,, m}] + Sum[(((n - j - )!*Product[ Gamma[ + n - b[[k]] - j], {k,, m}]* Product[Gamma[-n + a[[k]] + j], {k,, n}])/((n + m - j)!*product[ Gamma[ + n - a[[k]] - j], {k, n +, p}]*product[gamma[-n + b[[k]] + j], {k, m +, }]))*(((-)^(p - n - m)* z)^j/j!), {j, 0, n - }] + ((Product[Gamma[-b[[k]] - m], {k,, m}]* Product[Gamma[ + a[[k]] + m], {k,,

http://functions.wolfram.com 4 n}])/(product[gamma[-a[[k]] - m], {k, n +, p}]*product[gamma[ + b[[k]] + m], {k, m +, }]))* (((-)^n*((-)^(p - n - m - )*z)^(n + m + ))/((n + m + )!*(m + )!))* HypergeometricPFQ[Join[{, }, Table[ + m + a[[r]], {r,, p}]], Join[{2 + n + m, 2 + m}, Table[ + m + b[[r]], {r,, }]], z]))/ ((-)^(p - n - m)*z)^n + Log[(-)^(p - n - m - )*z]* HypergeometricPFQ[Join[{-m}, Table[a[[r]], {r,, p}]], Join[{n + }, Table[b[[r]], {r,, }]], z])} /. {z -> Random[]*Exp[Pi*I*(ii/4)]}, {n, 0, 3}, {m, 0, 3}, {ii, 0, 7}]] Infinite summation 06.4.23.0004.0 p k a k p m n i Ψi Ψi n Ψ i a k Ψ i b k Ψi a k Ψi b k z i i 0 i n i k b k i k n k k k m n log pmn z b k p F 2, a,, a p ;, n, b,, b ; z k G m2,n p,2 pmn z a,, a n, a n,, a p n, 0, b,, b m, b m,, b n p n k n k n p n k n a k k m m b k n k a k k pmn z n n n j m k j n b k n k j n a k mnp z j p j 0 j k n j n a k k m j n b k b k a k k m b k m b k n k a k m csc 2 Π b i n k a k b i i m n Π m k cscπ b i b k k i cscπ b i b k pmn z bi p i k n b i a k pf 2, a b i,, a p b i ; n b i 2, 2 b i, b b i,, b b i ; z ; n j,k,j,k j k j m k m b j b k

http://functions.wolfram.com 5 (i!*pochhammer[n +, i]*product[ Pochhammer[bb[[k]], i], {k,, }]))*z^i* (Sum[PolyGamma[ - bb[[k]] - i], {k,, m}] - Sum[PolyGamma[aa[[k]] + i], {k,, n}] - Sum[PolyGamma[ - aa[[k]] - i], {k, n +, p}] + Sum[PolyGamma[bb[[k]] + i], {k, m +, }] + PolyGamma[n + i + ] + PolyGamma[i + ]), {i, 0, 00}]/ ((((-)^n*n!*product[gamma[ - aa[[k]]], {k, n +, p}]*product[gamma[bb[[k]]], {k, m +, }])/ (Product[Gamma[ - bb[[k]]], {k,, m}]* Product[Gamma[aa[[k]]], {k,, n}]))* MeijerG[{Table[ - aa[[r]], {r,, n}], Table[ - aa[[r]], {r, + n, p}]}, {Join[{-n, 0}, Table[ - bb[[r]], {r,, m}]], Table[ - bb[[r]], {r, + m, }]}, (-)^(p - n - m)*z] - (((-)^n*n!*product[gamma[ - aa[[k]]], {k, n +, p}]*product[gamma[bb[[k]]], {k, m +, }])/ (Product[Gamma[ - bb[[k]]], {k,, m}]* Product[Gamma[aa[[k]]], {k,, n}]))* ((-)^n*pi^(m + )* Sum[(Product[Gamma[ + aa[[k]] - bb[[i]]], { k,, n}]/product[gamma[-aa[[k]] + bb[[i]]], {k, n +, p}])* Csc[Pi*bb[[i]]]^2*Product[Csc[Pi* (-bb[[k]] + bb[[i]])], {k,, i - }]* Product[Csc[Pi*(-bb[[k]] + bb[[i]])], {k, i +, m}]*((-)^(p - n - m)*z)^ ( - bb[[i]])* HypergeometricPFQRegularized[Join[{}, Table[ + aa[[r]] - bb[[i]], {r,, p}]], Join[{n + 2 - bb[[i]], 2 - bb[[i]]}, Table[ + bb[[r]] - bb[[i]], {r,, }]], z], {i,, m}] + Sum[(((n - j - )!*Product[Gamma[ - bb[[k]] + n - j], {k,, m}]* Product[Gamma[aa[[k]] - n + j], {k,, n}])/(product[gamma[ - aa[[k]] + n - j], {k, n +, p}]* Product[Gamma[bb[[k]] - n + j], {k, m +, }]))*

http://functions.wolfram.com 6 (((-)^(p - n - m - )*z)^j/j!), {j, 0, n - }]/((-)^(p - n - m)*z)^n) + Log[(-)^(p - n - m)*z]*n!* Product[Gamma[bb[[k]]], {k,, }]* HypergeometricPFQRegularized[Join[{}, Table[aa[[r]], {r,, p}]], Join[{n +, }, Table[bb[[r]], {r,, }]], z])} /. {z -> Random[]*Exp[Pi*I*(ii/4)]}, {n, 0, 3}, {ii, 0, 7}]] Representations through more general functions Through hypergeometric functions Involving p F 06.4.26.000.0 Ψz z 3 F 2,, 2 z; 2, 2; Through Meijer G Classical cases for the direct function itself 06.4.26.0002.0 Ψz z G,3 3,3 0, 0, z 0,, Through other functions Involving some hypergeometric-type functions 06.4.26.0003.0 Ψz Ψ 0 z Representations through euivalent functions With related functions 06.4.27.000.0 Ψz z z z 06.4.27.0002.0 Ψz logz z 06.4.27.0003.0 Ψz H z Zeros

http://functions.wolfram.com 7 06.4.30.000.0 Ψz k 0 ;.4 z 0.5 0.6 z 0.5.6 z 2.5 2.7 z 3 2.6 3.7 z 4 3.6 4.7 z 5 4.6 5.7 z 6 5.6 6.7 z 7 6.6 k History J. Stirling (730) A.-M. Legendre (809) S. Poisson (8) C. F. Gauss (80) M.A. Stern (847) proved convergence of the Stirling series for digamma function

http://functions.wolfram.com 8 Copyright This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/notations/. Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example: http://functions.wolfram.com/constants/e/ To refer to a particular formula, cite functions.wolfram.com followed by the citation number. e.g.: http://functions.wolfram.com/0.03.03.000.0 This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com. 200-2008, Wolfram Research, Inc.