Map Generation of Mobile Robot by Probabilistic Observation Model Considering Occlusion

Σχετικά έγγραφα
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ST5224: Advanced Statistical Theory II

Εξερεύνηση χώρου από κινούμενα ρομπότ

Other Test Constructions: Likelihood Ratio & Bayes Tests

Real time mobile robot control with a multiresolution map representation

Durbin-Levinson recursive method

SHENZHEN BRILLOOP LIGHTING CO.,LTD Page 1 Of 13. LED Floodlight 24W(COB)


EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Shenzhen XXX OPTO Co.,Ltd

Solution Series 9. i=1 x i and i=1 x i.

M p f(p, q) = (p + q) O(1)

180 Vol. 30 No. 2, pp , 2012 CPS-SLAM. Study on CPS-SLAM

Spherical and Flat Surface Motion Sensing using Laser Mouse Sensors

LUMINAIRE PHOTOMETRIC TEST REPORT

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

Probability and Random Processes (Part II)

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

EVERFINE GONIOPHOTOMETERS SYSTEM TEST REPORT Page 1 Of 14 LED LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

EVERFINE GONIOPHOTOMETERS SYSTEM TEST REPORT Page 1 Of 14 LED LUMINAIRE PHOTOMETRIC TEST REPORT

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Supplementary Appendix

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

P10. Specifications. True Spectrum /60Hz UL Standard Output Voltage-Less than 48V DC. Illumination (3feet):

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

LUMINAIRE PHOTOMETRIC TEST REPORT

EVERFINE GONIOPHOTOMETERS SYSTEM TEST REPORT Page 1 Of 13 ROYAL PACIFIC LTD. LUMINAIRE PHOTOMETRIC TEST REPORT TYPE:LED DIM.: SUR.

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Trimmable Thick Film Chip Resistor

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

w o = R 1 p. (1) R = p =. = 1

LED FLOODLIGHT BLP FL12W04 NW CRI>80. V(B) Range:-80-80DEG V(B) Interval: 5.0DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE

LMNQ. A Structural Analysis of Learning Motivation and Negative Learning Motivation Questionnaire (LMNQ) and a Trial of Standardization

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

These derivations are not part of the official forthcoming version of Vasilaky and Leonard

LUMINAIRE PHOTOMETRIC TEST REPORT

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

Stabilization of stock price prediction by cross entropy optimization

Final LUMINOUS INTENSITY DISTRIBUTION DIAGRAM

Final LUMINOUS INTENSITY DISTRIBUTION DIAGRAM

Statistical Inference I Locally most powerful tests

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ

EVERFINE GONIOPHOTOMETERS SYSTEM TEST REPORT Page 1 Of 12 LUMINAIRE PHOTOMETRIC TEST REPORT

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Computing the Gradient

Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά.

Χρήση συστημάτων πληροφορικής στην οδική υποδομή

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

!"#$%&'()"&*+",*,%-%,.%,()"&*./*01#(&*(&2*#(304&%*54'6%&%,'* 7460*'/&60%)3*(&2*&(61,(54')3*'$%%30*

Hydrologic Process in Wetland

; +302 ; +313; +320,.

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

Section 9.2 Polar Equations and Graphs

Ηλεκτρονικοί Υπολογιστές IV

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Figure 1 - Plan of the Location of the Piles and in Situ Tests

2013 Aymeric Bethencourt et al., licensee Versita Sp. z o. o.

LED Flood Light BLP FL48W01. V(B) Range:-80-80DEG V(B) Interval: 5.0DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V

LED Flood Light BLP FL16W01. V(B) Range:-80-80DEG V(B) Interval: 5.0DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V

LED Flood Light BLP FL36W01. V(B) Range:-80-80DEG V(B) Interval: 5.0DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

LED Floodlight BLP FL72W01(4500K) V(B) Range: DEG V(B) Interval: 0.5DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V

m4.3 Chris Parrish June 16, 2016


First Sensor Quad APD Data Sheet Part Description QA TO Order #

LUMINAIRE PHOTOMETRIC TEST REPORT

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

Transcript:

Map Generation of Mobile Robot by Probabilistic Observation Model Considering Occlusion *, **, **, * Kazuma HARAGUCHI Nobutaka SHIMADA Yoshiaki SHIRAI Jun MIURA *,{haraguti,jun}@cv.mech.eng.osaka-u.ac.jp **,{shimada,shirai}@ci.ritsumei.ac.jp :. observation distribution of obstacle 2: Result of update when the robot gets the observation of the obstacle of substantial margin of error [, 2, 3, 4] Occupancy Grid Map 2 2 2 2 Occuluded Area 2 2 A Obstacle : Occuluded Area

3.. 4 ( Marcov Chain ) 4: Lines Of View 4 j j + L l 2. j e l j = { Ej l, j} Ēl O l j ( 3) j + P (e l j, el j+ O) O o P (e l j, el j+ o, O) 3: Occupancy Grid Map m mathbfo P (e i O) l o l l n e n = {E n, Ēn} m l ( Ω l ) l E n Ē n O.,2 P (e l j, el j+ o, O) O P(e l j, e l j+ o, O) = α l P(o l e l j, e l j+, O)P(e l j, e l j+ O) (2) o P (e n o, O) α l = /P (o l O) (e i o, O) = α i P(o i e i, O)P(e i O) () P(e l j, el j+ O) P(ol e l j, el j+, O) P(o [2] l e l j, el j+, O) o i i α i = 3.2. /P (o i O). P(o l e l j, el j+, O) l 3. P(o l e l j, ej+,o) l = P(o l m l, e l j, ej+,o)p(m l l e l j,ej+,o) l (3) m l Ω l l j j + N l 2 N l

3.2.. j P (o l e l j, el j+, O) j j + P (o l Ej, l Ēl j+, O) = P(o l Fk)P(F l k E l j, l O) (9) P (o l E j l, El j+, O) P (o l Ej l, Ēl j+, O) P (ol Ēl j, El j+, O) P (ol Ēl j, Ēl j+, O) j P (o l Ej l, El j+, O) P (o l Ēl j, Ej+, l O) = P(o l Fk)P(F l k Ēl l j, O) + P(o l Fj+)P(F l j+ O) l (0) j P (o l Ēl j, Ēl j+, O) = P(o l Fk)P(F l k Ēl l j, O) 5: Occluded area behind the j-th grid (8) () P (o l Fk l j j + ) 5 j + P(Fk l j Ēl j, O) P(F k l El j, O) P(F k l O) O(2 N l ) j + P (o l e l j, el j+, O) P(o l Ej, l Ej+, l O) = P(o l Ej, l O) (4) O(N l ) j k { F k : 3.2.2. E0 (k = 0) P (Fk l F k = El j, O) P (F k l Ēl j, O) P (F k l O) Ē 0 Ē... Ēk E k (k > 0) P(o l Ej l, O) F k F 0, F,..., F k,... P (Fk l El j, O) P (F k l Ēl j, O) P (F k l O) P(F k E l j, l O) =P(Ēl 0 Ēl, O)P(Ēl Ēl 2, O)P(Ēl 2 Ēl 3, O) j P (o l Ej, l O) = P(o l Fk, l Ej, l O)P(Fk E l j, l... O) (5) P(Ēl k Ek, l O)P(Ek E l j, l O) (2) P(F k Ēl l j, O) =P(Ēl 0 Ēl, O)P(Ēl Ēl 2, O)P(Ēl 2 Ēl 3, O) P(o l Fk l, El j, O) F k l (... P(Ēl k Ek, l O)P(E k Ēl l j, O) (3) k P(F k O)P(Ēl l 0 Ēl, O)P(Ēl Ēl 2, O)P(Ēl 2 Ēl 3, O) 6 k... P(Ēl k Ek, l O)P(Ek O) l (4) P(o l Fk, l Ej, l O) = P(o l Fk, l O) (6) P(Ek l O) l k + P(e l k, el k+ O) P(Ek O) l = P(Ek, l Ek+ O) l + P(Ek, l Ēl k+ O) (5) 6: Occluded area behind the k-th grid P(Ēl k El k, O) P(Ēl q Ēl q+, O) (0 q < k ) P(o l Fk, l O) = P(o l Fk) l (7) P(Ēl k E k,o) l = P(Ēl k, El k O) P(Ek l, El k O) + P(Ēl k, El k O) (6) (4) (7) j P (o l Ej, l Ej+, l O) = P(o l Fk)P(F l k E l j, l O) (8) P(Ēl q Ēl q+,o) = P(Ek l Ēl j, O) k+ j P (o l Ej l, Ēl j+,o) P (ol Ēl j, El j+,o) e P (o l Ēl j, Ēl j+,o) P (ol Fk l k+,j l = { ek+ l ek+2 l... ej 2 l ej } l ( Φ l k+,j ) ) P(Ek l El j, O) + k=j+ P(o l F l k)p(f l k O) () P(Ēl q, Ēl q+ O) P(Ēl q, Ēl q+ O) + P (El q, Ēl q+ O) (7) P(Ek l El j, O)

P(Ek E l j,o) l P(Ek l =, El j O) P (Ej l, El j+ O) + P (El j, Ēl j+ O) = P(Ek l, el k+,j, El j O) P (E ek+,j l j l, El j+ O) + P (El j, Ēl j+ O) pixel True disparity 7: Probability of the Φl 0 k+,j 0 50 00 50 200 250 observation of the disparity 8: observation model k + j Q O(2 Q ) 3.3.2. P(Ek l Ēl j, O) () P(Ek l El j, O) P(El k Ēl j, O) [2, 3, 4] l e l q el q+ cl q,q+ k c l q,q+ = P (El q, Eq+ O) l P (Eq O)P l (Eq+ O) l o l k = o E P (Eq O)P l (Ēl q O)P (Eq+ l O)P (Ēl q+ O) o l k = oē P (o l k el k ) j P(Ek, l Ej O) l = P(Ek O)P(E l j O) l + α k,j cq,q+ l (8) P (o l k = o E Ek) l = P (o l Fk) l q=k P (o l k = o E Ēl k) = P ( T ) j P (o l P(Ek, l Ēl j O) = P(E k O)P(Ēl l j O) α k,j cq,q+ l k = o Ē Ek) l = P ( T ) (9) P (o l q=k k = o Ē Ēl k) = P (T ) { P (o l Fk, l T )} 3.3.3. α k,j = P(E k l O)P(Ēl k O)P(El j O)P(Ēl j O) 9 2 Q 0 Q 9(a) O(Q). P (o (2) (9) (8) l Ek l )/P (ol Ēl k ) 9(b) () (2) ( ) (+) 3.3. 0 30 40cm 8 3.3.. 40cm P (o l Fk l) 0 T T P (o l Fk) l = P (T )P (o l Fk, l T ) + P ( T )P (o l Fk, l T ) (20) P (T ) = 0.9,P ( T ) = 0. P (o l Fk l, T ) 0. 0 50 00 0 0 50 00 7 P (o l Fk l, T ) (a) Likelihood (b) Result of map update 60) 9: Result of map update of previous(+) and our( ) method when the robot get the observation of the P (o l Fk l) ol =, 3, 0, 25 8 obstacle in the uniformly-distributed probablity area. (cell) The gray curve in (b) represents prior probablity. 5cm (8) () P (o l e l j, el j+ ) (20) 3.3.4. P (o l Fk l) P (el j, el j+ O) 0 90 20 (80 20 ) 3 (+) 0. 0.87 likelihood ratio probability 25 0 3

m i P (e i ) = P (e i, E m ) + (e i, Ēm) ( ) 0(b) m 00 00 0 4. 4.. 0. 0 50 00 50 0 3.3. 0 50 00 50 0. (a) Likelihood (b) Result of map update 0.87 0: Result of map update of previous(+) and our( ) method when the robot get the observation 3.3.. 3.3.2. whose error is bigger than the distribution of obstacles. 4.2. The gray curve in (b) represents prior probablity. 3.3.5. ( ) 90% (20) 2 (+) ( 200 560 ) 0 200 200 A B C D E 00 3 4 (a) D (376 ) ( ) (b) E (59 ) 5% 70% 0 X D 3(a) ( ) ( ) 0. 0 00 200 300 0 0 00 200 300 D E 3(b) X (a) Likelihood (b) Result of map update : Result of map update of previous(+) and 0 our( ) method when the robot get the observation in th occuluded area. The gray curve in (b) represents 4(a) prior probablity. 4(b) 3.4. Y D D D E 3(b) likelihood ratio likelihood ratio probability probability

C E C E B B A D A D (b) At E 2: Truth Of Obstacle Map (b) At E 3: Result of map update without considering occlusion D (b) B D 7(a) A D B 7(b) A D 8(a) A B 8(b) A (b) At B (b) At E 7: Result of map update without considering 4: Result of map update considering occlusion occlusion Y 4(a) Y 4(b) (b) At B 4.3. 8: Result of map update considering occlusion A 5 B C D B 5. A C D B 5: Rough map of obstacles [] S. Thrun, Robotic Mapping: A Survey, in Exploring Artificial Intelligence in the New Millenium (G. Lakemeyer and B. Nebel, eds.), Morgan Kaufmann, 2002. (a) View from A in 5 (b) View from D in 5 6: Robot s view [2] J. Miura, Y. Negishi, and Y. Shirai, Mobile Robot Map Generation by Integrationg Omnidirectional Stereo and Laser Range Finder, in IROS, pp. 250 255, 2002. 6 [3] S. Thrun, Learning occupancy grids with forward 6(a) A sensor models, in Autonomous Robots, 2002. 6(b) B [4] H. P. Moravec, Sensor fusion in certainty grids for 7 mobile robots, in AI Magazine, Summer, pp. 6 8 (a) 74, 988.