Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Σχετικά έγγραφα
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Derivation for Input of Factor Graph Representation

α & β spatial orbitals in

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

LECTURE 4 : ARMA PROCESSES

1 Complete Set of Grassmann States

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Constant Elasticity of Substitution in Applied General Equilibrium

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Estimators when the Correlation Coefficient. is Negative

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

ECON 381 SC ASSIGNMENT 2

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

C.S. 430 Assignment 6, Sample Solutions

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

2 Lagrangian and Green functions in d dimensions

A Class of Orthohomological Triangles

Statistical Inference I Locally most powerful tests

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Homework 3 Solutions

Tridiagonal matrices. Gérard MEURANT. October, 2008

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ST5224: Advanced Statistical Theory II

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Reminders: linear functions

Every set of first-order formulas is equivalent to an independent set

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Phasor Diagram of an RC Circuit V R

Other Test Constructions: Likelihood Ratio & Bayes Tests

Example Sheet 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

8.324 Relativistic Quantum Field Theory II

Math221: HW# 1 solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Second Order Partial Differential Equations

2 Composition. Invertible Mappings

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

EE512: Error Control Coding

Commutative Monoids in Intuitionistic Fuzzy Sets

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Approximation of distance between locations on earth given by latitude and longitude

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Solution Series 9. i=1 x i and i=1 x i.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Finite Field Problems: Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Mean-Variance Analysis

CRASH COURSE IN PRECALCULUS

Journal of Theoretics Vol.4-5

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Fractional Colorings and Zykov Products of graphs

Matrices and Determinants

Srednicki Chapter 55

The one-dimensional periodic Schrödinger equation

The Simply Typed Lambda Calculus

Congruence Classes of Invertible Matrices of Order 3 over F 2

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Strain gauge and rosettes

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

derivation of the Laplacian from rectangular to spherical coordinates

Section 8.3 Trigonometric Equations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

The challenges of non-stable predicates

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Solutions to Exercise Sheet 5

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

A Note on Intuitionistic Fuzzy. Equivalence Relation

Galatia SIL Keyboard Information

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Derivation of Optical-Bloch Equations

Notes on the Open Economy

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

The ε-pseudospectrum of a Matrix

w o = R 1 p. (1) R = p =. = 1

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Transcript:

Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007

Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret Statstcal Vsual Computng Lab Department of Electrcal and Computer Engneerng Unversty of Calforna, San Dego Aprl 007 Abstract Ths s the techncal report that accompanes the ICML 007 paper Drect Convex Relaxatons of Sparse SVM (Chan et al., 007). In ths report, we derve the dual problems for the SDP and QCQP relaxatons of the sparse SVM.

Author emal: abchan@ucsd.edu c Unversty of Calforna San Dego, 007 Ths work may not be coped or reproduced n whole or n part for any commercal purpose. Permsson to copy n whole or n part wthout payment of fee s granted for nonproft educatonal and research purposes provded that all such whole or partal copes nclude the followng: a notce that such copyng s by permsson of the Statstcal Vsual Computng Laboratory of the Unversty of Calforna, San Dego; an acknowledgment of the authors and ndvdual contrbutors to the work; and all applcable portons of the copyrght notce. Copyng, reproducng, or republshng for any other purpose shall requre a lcense wth payment of fee to the Unversty of Calforna, San Dego. All rghts reserved. SVCL Techncal reports are avalable on the SVCL s web page at http://www.svcl.ucsd.edu Unversty of Calforna, San Dego Statstcal Vsual Computng Laboratory 9500 Glman Drve, Mal code 0407 EBU, Room 55 La Jolla, CA 9093-0407

Dual of the QCQP Sparse SVM The prmal problem for the QCQP relaxaton of the sparse SVM s Problem mn w,ξ,b,t N t + C ξ s.t. y (x T w + b) ξ, =,..., N, ξ 0, w rt, w t. The QCQP prmal (Problem ) can be transformed nto an equvalent problem by settng t = s and w = u v, for u, v R d +, Problem mn u,v,ξ,b,s s + C ξ s.t. y (x T (u v) + b) ξ, =,..., N, ξ 0, T (u + v) rs, u v s, u 0, v 0. Note that there s an mplct constrant that s 0. Introducng the Lagrangan multplers (α, γ) R N +, (µ, η) R +, and (λ, θ) R d +, the Langrangan s L(u, v, ξ, b, s, α, µ, γ, η, λ, θ) = s + C ξ + α ( ξ y x T (u v) y b ) γ ξ + µ ( T u + T v rs ) + η ( (u v) T (u v) s ) λ T u θ T v = η s rµs + ξ (C α γ ) + α b α y α y x T (u v) + µ ( T u + T v ) + η (u v)t (u v) λ T u θ T v. To mnmze L wth respect to (u, v, ξ, b, s), we take the partal dervatves and set them to zero. For s we have s = ( η)s µ r = 0 s = µ r η, η

DUAL OF THE QCQP SPARSE SVM where the constrant on η follows from the mplct non-negatve constrant on s. For b and ξ we have b = α y = 0 α y = 0 and ξ = C α γ = 0 α + γ = C α C. The partal dervatves wth respect to the hyperplane parameters u and v are u v = α y x + µ + η(u v) λ = 0, = α y x + µ η(u v) θ = 0. Addng the two partal dervatves gves a constrant on λ and θ, u + v = µ λ θ = 0 λ + θ = µ λ µ θ µ, and subtractng the two partal dervatves gves the equaton for the hyperplane w = u v, u v = α y x + η(u v) λ + θ = 0 ( (u v) = η u = η q + v α y x + (λ θ) ) = η q where q = α y x + (λ θ).

3 Substtutng these condtons back nto L, we obtan the g objectve functon of the dual g(α, µ, γ, η, λ, θ) = = mn v rµ = = = = mn L(u, v, ξ, b, s, α, µ, γ, η, λ, θ) u,v,ξ,b,s α α y x T q η ( η) rµ η + ( ) ) η + µ ( T q + v + T v rµ ( η) + α η ( ) η q + v θ T v + η η qt q λ T ( q ) T (λ θ) q + µ η T q + η qt q η λt q + mn(µ T v λ T v θ T v) v rµ ( η) + α η qt q + η λ η θ + µ η T q η λt q + mn(µ λ θ) T v v rµ ( η) + rµ ( η) + α η qt q + η α η qt q, (µ λ θ) + mn (µ λ v θ)t v wth the constrants α y = 0, λ + θ = µ, 0 η, 0 α C, 0 θ µ, 0 λ µ, 0 µ. The second constrant and the non-negatve constrant on θ and λ mples that µ (λ θ) µ. Hence, we defne ν = (λ θ) whch leads to the dual problem of the QCQP-SSVM, Problem 3 max α,η,µ,ν α η α y x + ν rµ ( η)

4 DUAL OF THE QCQP SPARSE SVM s.t. α y = 0, 0 α C, =,..., N, µ ν j µ, j =,..., d, µ 0, 0 η.. Dual of QCQP-SSVM n RQC form The dual can be rewrtten as a rotated-quadratc-cone (RQC) program by boundng each of the quadratc terms, t α η y x + ν tη α y x + ν and s s( η) µ µ ( η) Hence, Problem 4 mn α,η,µ,ν,s,t s.t. t + r N s α α y = 0, 0 α C, =,..., N, tη α y x + ν s( η) µ µ ν j µ, j =,..., d, µ 0, 0 η.. Dual of QCQP-SSVM n SDP form Problem 3 can be rewrtten nto an SDP by boundng each of the two quadratc terms and usng the Schur complement lemma: ( t N ) T ( N ) α y x + ν α y x + ν 0 η

5 [ ηi q q T t ] 0 where q = α y x + ν, and s µ ( η) [ ] ( η) µ µ s 0 0 The dual QCQP-SSVM can then be wrtten as an SDP, Problem 5 mn α,η,µ,ν,s,t,q s.t. t + r N s α α y x + ν, α y = 0, q = [ ] [ ] ηi q ( η) µ q T 0, 0, t µ s 0 α C, =,..., N, µ ν j µ, j =,..., d, µ 0, 0 η. Dual of the SDP sparse SVM The prmal problem for the SDP relaxaton of the sparse SVM s Problem 6 mn W,w,b,ξ N tr(w ) + C s.t. y (x T w + b) ξ, =,..., N, ξ 0, ξ T W rtr(w ), W ww T 0 By ntroducng two matrces (U, V ) R d d + (d d matrces wth non-negatve entres) such that W = U V, the SDP-SSVM prmal (Problem 6) s equvalent to Problem 7 mn U,V,w,b,ξ N tr(u V ) + C ξ

6 DUAL OF THE SDP SPARSE SVM s.t. y (x T w + b) ξ, =,..., N, ξ 0, T (U + V ) r tr(u V ), (U V ) wwt 0 U j,k 0, V j,k 0, j, k =,..., d. Introducng the Lagrangan multplers (α, γ) R N +, µ R +, the matrx Λ R d d 0, and the matrces (η, θ) R d d +, the Lagrangan s L(U, V, w, b, ξ, α, γ, η, θ, µ, Λ) = tr(u V ) + C ξ + α ( ξ y x T w y b) γ ξ tr(ηu) tr(θv ) tr(λ(u V wwt )) + µ ( T (U + V ) rtr(u V ) ) = tr ((I Λ µri)(u V )) tr(ηu) tr(θv ) + µ tr((u + V ) T ) + ξ (C α γ ) + α α y x T w + wt Λw α y b The Lagrangan s mnmzed wth respect to (U, V, w, b, ξ) by takng the partal dervatves and settng them to zero. For b, ξ, and w we have b = α y = 0 α y = 0 ξ = C α γ = 0 α + γ = C α C w = α y x + Λw = 0 w = Λ α y x. The partal dervatves wth respect to the matrces U and V are U = (I Λ µri) η + µ T = 0 V = (I Λ µri) θ + µ T = 0

7 Addng the partal dervatves yelds a constrant on θ and η, U + V = η θ + µ T = 0 η + θ = µ T Subtractng the partal dervatves yelds a formula for the weght matrx, U V = (I Λ µri) η + θ = 0 Λ = ( µr)i η + θ The dual objectve functon s obtaned by substtutng these condtons nto L, g(α, γ, η, θ, µ, Λ) = mn L(U, V, w, b, ξ, α, γ, η, θ, µ, Λ) U,V,w,b,ξ = mn U,V tr ((η θ)(u V )) tr(ηu) tr(θv ) + tr((u + V )(η + θ)) + α α α j y y j x T Λ x j + α α j y y j x T Λ x j,j,j = α α α j y y j x T Λ x j,j + mn U,V tr (ηu θu ηv + θv ηu θv ) + tr((u + V )(η + θ)) = α α α j y y j x T Λ x j,j wth constrants α y = 0, η + θ = µ T, Λ = ( µr)i η + θ 0, 0 α C, =,..., N, 0 µ, 0 η j,k, 0 θ j,k, j, k =,..., d. The second constrant and the non-negatve constrants on η and θ mples that µ θ j,k η j,k µ, j, k =,..., d. Fnally, defnng ν = θ η, the dual problem of the SDP-SSVM s Problem 8 max α,λ,ν,µ α α α j y y j x T Λ x j j=

8 REFERENCES s.t. α y = 0, Λ = ( µr)i + ν 0, 0 α C, =,..., N, µ ν j,k µ, j, k =,..., d, µ 0.. Dual n SDP form The dual can be wrtten nto SDP form by boundng the quadratc term by t, and usng the Schur complement lemma (Boyd & Vandenberghe, 004). t,j α α j y y j x T Λ x j ( ) T ( ) t α y x Λ α y x [ ] Λ q q T t 0 0 where q = α y x. The dual can then be wrtten as an SDP, Problem 9 mn α,µ,λ,ν,q s.t. N t α α y = 0, q = α y x, Λ = ( µr)i + ν, [ ] Λ q q T 0, t 0 α C, =,..., N, µ ν j,k µ, j, k =,..., d, µ 0. References Boyd, S., & Vandenberghe, L. (004). Convex optmzaton. Cambrdge Unversty Press. Chan, A. B., Vasconcelos, N., & Lanckret, G. R. G. (007). Drect convex relaxatons of sparse SVM. Internatonal Conference on Machne Learnng.

SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan