arxiv: v1 [math.ca] 6 Dec 2012

Σχετικά έγγραφα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

A General Note on δ-quasi Monotone and Increasing Sequence

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Every set of first-order formulas is equivalent to an independent set

2 Composition. Invertible Mappings

C.S. 430 Assignment 6, Sample Solutions

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Example Sheet 3 Solutions

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Other Test Constructions: Likelihood Ratio & Bayes Tests

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Finite Field Problems: Solutions

Homomorphism in Intuitionistic Fuzzy Automata

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

A Class of Orthohomological Triangles

ST5224: Advanced Statistical Theory II

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Statistical Inference I Locally most powerful tests

Uniform Convergence of Fourier Series Michael Taylor

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Tridiagonal matrices. Gérard MEURANT. October, 2008

α & β spatial orbitals in

4.6 Autoregressive Moving Average Model ARMA(1,1)

A Note on Intuitionistic Fuzzy. Equivalence Relation

EE512: Error Control Coding

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Congruence Classes of Invertible Matrices of Order 3 over F 2

The one-dimensional periodic Schrödinger equation

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Approximation of distance between locations on earth given by latitude and longitude

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Math221: HW# 1 solutions

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

New bounds for spherical two-distance sets and equiangular lines

8.324 Relativistic Quantum Field Theory II

Matrices and Determinants

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Lecture 34 Bootstrap confidence intervals

Lecture 15 - Root System Axiomatics

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

1 Complete Set of Grassmann States

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Fractional Colorings and Zykov Products of graphs

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

F19MC2 Solutions 9 Complex Analysis

Homework 3 Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Section 8.3 Trigonometric Equations

SOME PROPERTIES OF FUZZY REAL NUMBERS

1. Introduction and Preliminaries.

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Concrete Mathematics Exercises from 30 September 2016

Homework 8 Model Solution Section

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Heisenberg Uniqueness pairs

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Homomorphism of Intuitionistic Fuzzy Groups

Inverse trigonometric functions & General Solution of Trigonometric Equations

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

The Simply Typed Lambda Calculus

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Reminders: linear functions

LECTURE 4 : ARMA PROCESSES

Solution Series 9. i=1 x i and i=1 x i.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Notes on the Open Economy

Intuitionistic Fuzzy Ideals of Near Rings

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Estimators when the Correlation Coefficient. is Negative

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

SOLVING CUBICS AND QUARTICS BY RADICALS

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Second Order RLC Filters

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

6.3 Forecasting ARMA processes

Theorem 8 Let φ be the most powerful size α test of H

w o = R 1 p. (1) R = p =. = 1

8.323 Relativistic Quantum Field Theory I

CRASH COURSE IN PRECALCULUS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

EQUATIONS OF DEGREE 3 AND 4.

Differentiation exercise show differential equation

u i t=0 = u i0 (x) 0, (1.2)

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Transcript:

arxv:.v [math.ca] 6 Dec Pontwse strong approxmaton of almost perodc functons n S W lodzmerz Lensk and Bogdan Szal Unversty of Zelona Góra Faculty of Mathematcs, Computer Scence and Econometrcs 65-56 Zelona Góra, ul. Szafrana a, Poland W.Lensk@wme.uz.zgora.pl, B.Szal @wme.uz.zgora.pl Abstract We consder the class GM β n pontwse estmate of the devatons n strong mean of S almost perodc functons from matrx means of partal sums of ther Fourer seres. Key words: Almost perodc functons; Rate of strong approxmaton; Summablty of Fourer seres Mathematcs Subject Classfcaton: A Introducton Let S p p be the class of all almost perodc functons n the sense of Stepanov wth the norm u /p sup u ft } p when p < f S p : u sup fu when p. u Suppose that the Fourer seres of f S p has the form Sf x ν wth the partal sums A ν fe λνx, where A ν f lm L L S γk f x λ ν γ k A ν fe λνx L fte λνt, and that λ < λ ν < λ ν f ν N,,3...}, lm v λ ν, λ ν λ ν, A ν A ν >. Let Ω α,p, wth some fxed postve α, be the set of functons

of class S p bounded on U, whose Fourer exponents satsfy the conon λ ν λ ν α ν N. In case f Ω α,p where S λk f x Ψ λ,η t f xtf x t}ψ λk,λ k αt, η λt sn sn ηλt η λt < λ < η, t >. Let A : be an nfnte matrx of real nonnegatve numbers such that, where n,,,.... k Let us consder the strong mean } /q H q n,a,γ f x S γk f x f x q k q >. As measures of approxmaton by the quantty, we use the best approxmaton of f by entre functons g σ of exponental type σ bounded on the real axs, shortly g σ B σ and the modul of contnuty of f defned by the formulas and G x f δ s,p : E σ f S p nf g σ f g σ S p, ωf δ S p sup f t f S p, t δ w x fδ p : [/αδ] k k δ /p δ ϕ x t } p, δ kδ kδ ϕ x t p s/p /s, s >, where ϕ x t : f xtf x t f x, respectvely. Recently, L. Lendler [] defned a new class of sequences named as sequences of rest bounded varaton, brefly denoted by RBV S,.e. } RBVS a : a n C : a k a k Ka a m for all m N, 3 km where here and throughout the paper Ka always ndcates a constant dependng only on a.

Denote by M S the class of nonnegatve and nonncreasng sequences. The class of general monotone coeffcents, GM, wll be defned as follows see []: } GM It s obvous that a : a n C : m km a k a k Ka a m for all m N MS RBVS GM.. In [5,,, 3] was defned the class of β general monotone sequences as follows: Defnton Let β : β n be a nonnegatve sequence. The sequence of complex numbers a : a n s sad to be β general monotone, or a GM β, f the relaton holds for all m. m km a k a k Kaβ m 5 In the paper [3] Tkhonov consdered, among others, the followng examples of the sequences β n : β n a n, β n [cn] k[n/c] a k k for some c >. It s clear that GM β GM and see [3, Remark.] GM β β GM β. Moreover, we assume that the sequence Kα n n s bounded, that s, that there exsts a constant K such that Kα n K holds for all n, where Kα n denote the sequence of constants appearng n the nequaltes 3-5 for the sequences α n : k. Now we can gve the conons to be used later on. We assume that for all n m km K [cm] k[m/c] k holds f α n k belongs to GM β, for n,,... We have shown n [7] the followng theorem: Theorem If f Ω α,p p >, p q, α >, k GM β for all n, and lm n a n, hold, then H q n,a,γ f S } /q ω q f, p k S p k for n,,,..., where γ γ k s a sequence wth γ k αk. 3 6

In ths paper we consder the class GM β n pontwse estmate of the quantty H q n,a,γ f for f S. Thus we present some analog of the followng result of P. Pych-Taberska see [, Theorem 5]: Theorem 3 If f Ω α, and q, then H q n,a,γ f S n k [ ] } q /q ωf f S k S /q, for n,,,..., where γ γ k s a sequence wth γ k αk, when k n and otherwse. We shall wrte I I f there exsts a postve constant K, sometmes depended on some parameters, such that I KI. Statement of the results Let us consder a functon w x of modulus of contnuty type on the nterval [,,.e. a nondecreasng contnuous functon havng the followng propertes: w x, w x δ δ w x δ w x δ for any δ,δ wth x such that the set Ω α,p,s w x f Ω α,p : s nonempty. We start wth proposton [ /p δ ϕ x t ϕ x t±γ ] p w x γ δ } and G x f δ s,p w x δ, where γ,δ > Proposton If f Ω α,, w x, α > and < q, then n for n,,,... Sαk } /q f x f x q Our man results are followng w x E αn/ f S, Theorem 5 If f Ω α,, w x, α >, < q, k GM β for all n, and lm n a n, hold, then H q n,a,γ f x ] } q /q [w x E αk f k S [c] k for some c > and n,,,..., where γ γ k s a sequence wth γ k αk.

Theorem 6 If f Ω α,, w x, α >, < q, k MS for all n, and lm n a n, hold, then H q n,a,γ f x [w x k Eαk k f S for n,,,..., where γ γ k s a sequence wth γ k αk. Remark Snce, by the Jackson type theorem E σ f S p ωf σ S p ] q } /q and [ δ δ ϕ t ϕ t±γ ] S p G f δ,p S p ωf δ S p, ωf γ S p, the analyss of the proof of Proposton shows that, the estmate from Theorem 5 mples the estmate from Theorem wth p and < q. Thus, takng when k n and otherwse, n the case p [, ] we obtan the better estmate than ths one from Theorem 3 wth q []. 3 Proofs of the results 3. Proof of Proposton In the proof we wll use the followng functon Φ x f δ,ν δ wth δ δ n and ts estmate from [6, Lemma, p. 8] νδ ϕ ν x udu, Φ x f ζ,δ w x ζ w x ζ 7 for f Ω α,, w x and any ζ,ζ >. We can also note that by monotoncty n q,] n Sαk } /q f x f x q n Sαk } / f x f x. Moreover, for n our estmate s evdent, therefore we gve the estmate of the quantty H q n,a,γf x wth q and n >, only. Denote by Sk f the sums of the form Sαkf x A ν fe λνx λ ν αk 5

αk such that the nterval, αk does not contan any λ ν. Applyng Lemma.. of [8] we easly verfy that S kf x f x where Ψ k t Ψ αk t,.e.,αk Ψ k t sn αt ϕ x tψ k t, sn αkt αt see also [], p.. Evdently, f the nterval exponent λ ν, then αk, αk contans a Fourer Sαkf x Skf x A ν fe λνx A ν fe λνx. Analyzng the proof of Proposton.. from [, p. 8] we can wrte A ±ν f A±ν f gαµ/ lm L ft gαµ/ t e λνt L L lm sup T ft g αµ/ t e λνt L T L T lm sup T ft gαµ/ t L T L T lm sup UT sup ft gαµ/ t L T T LU R U f g αµ/ W f g αµ/ S E αµ/ f S, for some g αµ/ B αµ/, wth αk/ < αµ/ < λ ν, where W s the Weyl norm. Therefore, the devaton can be estmated from above by n n n Sαk ϕ x tψ kκ t ϕ x tψ kκ t f x f x 6 } / } / } n E αn/ f S, } / Eαk/ f S

where κ equals or. Applyng the Mnkowsk nequalty we obtan n } / ϕ x tψ kκ t n /α / ϕ x tψ kκ t n /α } / I k So, for the frst term we have } / n I k κ e κ e κ e κ e n κ e k κ e kκ k /α /α /α u κ e k α ϕ x uϕ x v ϕ x uϕ x v /α u n n I k } / } nκ / I k } kκ / I k } kκ / I k k k /α ϕ x tψ kκ t. / kκ / Ψ kκuψ kκvdudv} kκ / Ψ kκuψ kκvdudv} ϕ x uϕ x vsn αu u v kκ αuk κ sn sn κ e k α /α u sn αv ϕ x uϕ x vsn αu u v k αuk sn sn 7 } / αvk κ dudv sn αv αvk dudv } /

Takng y αu, z αv and r n the relaton see [3] and [9] r k sn k yk sn zk ] sn y z sn [r r rcosy cosz [ ][ ] r rsn yz r rsn y z and usng the nequalty sn yz yz y z, we obtan k k αuk sn sn αvk uv [ r uv ][ r u v ]. Hence, takng u v t, by the Gabsonya dea [3] n I k /α u /α u ϕ x uϕ x v dudv [ uv ][ u v ] ϕ x uϕ x v dudv [ u ][ u v ] /α u [/α] ϕ x uϕ x u t du [ u ][ t ] j j j ϕ x uϕ x u t du ] [ t [/α] [/α] j j j j j ϕ x u du ϕ x u t j j ϕ x u du j ϕ x v dv 8

[/α] j j ϕ x u du [/α] [/α] j j j ϕ x u du j j j ϕ x v dv ϕ x v dv [/α] [/α] [/α] [/α] j j ϕ x u du [/α] j ϕ x u du ϕ x u du [/α] ν j j ν ϕ x v dv ν ν ϕ x v dv [ ] [ ] G x f w x. For the second term, usng the Lensk method [6], we obtan n I k } / n n n µ µ/α µ µ/α µ/α µ/α } / I k [ϕ x t Φ x f δ k,t]ψ kκ t Φ x f δ k,tψ kκ t n I k } / / / 9

and I k α α α α δ k δ k δk δk µ/α µ µ/α µ/α µ µ/α ϕ x t Φ x f δ k,t t [ δ k t µ/α µ µ µ/α µ/α µ/α t [ t [ t 3 t δk ϕ x t ϕ x tu du } t ϕ xt ϕ x tu du ] tµ/α ϕ x s ϕ x su ds tµ/α ] } ϕ x s ϕ x su ds du ] δk µ/α δ k [µ/α] ϕ x s ϕ x su ds µ } µ/α [µ/α] ϕ x s ϕ x su ds du δk µ/α [ t ] } δ k t 3 ϕ x s ϕ x su ds du. µ µ/α Snce f Ω α,, w x, for any x lm ζ ζ ζ ϕ x s ϕ x su ds lm ζ ζ w xu lm ζ ζ w xδ k lm ζ ζ w x, and therefore I k δk α δ k [ α /α ϕ x s ϕ x su ds δk µ/α w x udu δ k δk δ k w x δ k. µ w x uduw x δ k µ/α µ α µ } t ] du

Next, we wll estmate the term I k. So, I k µ/α Φ x f δ k,t d α µ µ/α t [ Φ x f δ k,t α t α µ µ µ/α µ/α I ki k d cos αtkκ αkκ Φx f δ k,t t cos αtkκ αkκ cos αtkκ αkκ cos αtkκ αkκ αtkκ cos αkκ ] tµ/α tµ/α cos αtkκ αkκ Snce f Ω α,, w x, for any x usng 7 lm Φ x f [ ] [ ] δ k, α ζ cos ζ ζ [ α ζ] k κ cos ζ k κ αkκ αkκ w x δ k w x α lm ζ w x δ k ζw x α ζ ζ ζ lm k ζ ζ w x lm k ζ ζ, and therefore I k α Usng 7, we get [ Φx f δ k, α [ µ α µ] cos[ µ cos[ Φ xf δ k, α µ [ α µ] µk κ] αkκ Φ x f δ k,/α α [/α] 3Φ xf δ k,/α µk κ] αkκ cos[ µk κ] cos[ ] µk κ] αkκ I k k Φ xf δ k,/α Smlarly I k α µ µ/α cos αtkκ αkκ αkκ cos[ µk κ] cos[ µk κ] αkκ [ cos µk κ] k κ µ/α cos[ αkκ µk κ]. k κ k w xδ k w x /α. d Φ xf δ k,t t cos αtkκ αkκ Φ xf δ k,t t 3

and I k 8 α k [ µ/α ϕ x tδ k ϕ x t µ/α δ k t ] Φ x f δ k,t µ µ/α µ/α 8 α k δ k 6 α k t 3 µ/α µ µ/α µ/α µ µ/α ϕ x tδ k ϕ x t t w x δ k w x t t 3 w x δ k [ ] µ α w x δ k w x k δ k k α µ 3 µ w x δ k w x δ k k µ 3 w µ x α µ 3 w x δ k k w x δ k k Summng up whence µ w x δ k w x α w x δ k w x α I k w x δ k k n I k } / and thus the desred result follows. 3. Proof of Theorem 5 k µ µ. µ µ 3 w x δ k w x w x, α α n n For some c > H q n,a,γ f x [c] Sαk f x f x q w x x } / k k w α } / w x w x k k [c] Sαk f x f x q /q

[c] Sαk f x f x q k I xi x. /q m k m Sαk f x f x q Usng Proposton and denotng the left hand sde of the nequalty from ts by F n,.e. F n w x E αn/ f S, we get I x [c] k [c] k k/ k/ [c] k k lk/ k/ [c] F q k/ /q. Sαl k lk/ By partal summaton, our Proposton gves I q x m k m a n, m m l m Sαl f x f x q Sαl k l m /q f x f x q Sαl f x f x q /q f x f x q /q m m F q α m / k m ] m a n, m F q α m / m m F q α m / a n, m. k m Snce 6 holds, we have a n,s a n,r a n,r a n,s m s kr k m [c m ] k[ m /c] k m r s m, 3

whence and Thus a n,s a n,r I q x [c m ] k[ m /c] m a n, m m F q α m / k m m m r m m m r s m m r m a n, m a n,r r m a n,r m [c m ] k[ m /c] Fnally, by elementary calculatons we get I q x m m F q α m / m[c] [c m ] k[ m /c] [c m ] k[ m /c] k k. a m n,k k Fq α m / k m [c] m[c] F q α m / k m [c] F q α m / m k m [c] F q αk/ m k m [c] k m [c] F q αk/ m[c] k Fq α m / k m m k m. m[c] F q α m / k m m[c] k m F q αk [c] k m F q αk [c] F q α a m n, m[c] [c] r m r k m r F q αk/ F q α a m n, m[c] [c] r mr k mr F q αk [c]

[c] r k F q αk/ k [c] r F q αk. [c] [c] r k [c]r F q αk [c] k [c] F q αk [c] Thus we obtan the desred result. 3.3 Proof of Theorem 6 If k MS then k GM β and usng Theorem 5 we obtan H q n,a,γ f x ] } q /q [w x k k k k [c] mk [c] ] } q /q [w x k k k a n,m k [c] mk [c] [ ] q E αm f [c] S p a n,m [ Eαk f S p /q ] q /q ] } q /q [w x k [ [c] [c] k k ] } q /q [w x f k Eαk S p k Eαk f S p ] q } /q Ths ends our proof. References [] A. D. Baley, Almost Everywhere Convergence of Dyadc Partal Sums of Fourer Seres for Almost Perodc Functons, Master of Phlosophy, A thess submtted to School of Mathematcs of The Unversty of Brmngham for the degree of Master of Phlosophy, September 8. [] A. S. Bescovtch, Almost perodc functons, Cambrdge, 93. [3] O. D. Gabsonya, Ponts of strong summablty of Fourer seres, Translated from Matematcheske Zametk, Vol., No. 5, pp. 65-66 Math. Notes 973, 93 98 97.} 5

[] L Lendler, On the unform convergence and boundedness of a certan class of sne seres, Analyss Math., 7, 79-85. [5] L. Lendler, A new extenson of monotone sequence and ts applcaton, J. Inequal. Pure and Appl. Math., 7 6, Art. 39, 7 pp. [6] W. Lensk, Pontwse strong and very strong approxmaton of Fourer seres, Acta Math. Hung., 53,7, p.5-33. [7] W. Lensk and B. Szal, Strong approxmaton of almost perodc functons, Math. Inequal. Appl. accepted for publcaton. [8] B. L. Levtan, Almost perodc functons, Gos. Izdat. Tekh-Teoret. Lter., Moscov 953 n Russan. [9] J. Marcnkewcz, Sur la sommablte forte de seres de Fourer, J. London Math. Soc. 939, pp. 6-68. [] P. Pych-Taberska, Approxmaton propertes of the partal sums of Fourer seres of almost perodc functons, Studa Math. XCVI 99,9-3. [] S. Tkhonov, Trgonometrc seres wth general monotone coeffcents, J. Math. Anal. Appl., 36 7, 7-735. [] S. Tkhonov, On unform convergence of trgonometrc seres. Mat. Zametk, 8 7, 3-3, translaton n Math. Notes, 8 7, 68-7. [3] S. Tkhonov, Best approxmaton and modul of smoothness: Computaton and equvalence theorems, J. Approx. Theory, 53 8, 9-39. 6