arxv:.v [math.ca] 6 Dec Pontwse strong approxmaton of almost perodc functons n S W lodzmerz Lensk and Bogdan Szal Unversty of Zelona Góra Faculty of Mathematcs, Computer Scence and Econometrcs 65-56 Zelona Góra, ul. Szafrana a, Poland W.Lensk@wme.uz.zgora.pl, B.Szal @wme.uz.zgora.pl Abstract We consder the class GM β n pontwse estmate of the devatons n strong mean of S almost perodc functons from matrx means of partal sums of ther Fourer seres. Key words: Almost perodc functons; Rate of strong approxmaton; Summablty of Fourer seres Mathematcs Subject Classfcaton: A Introducton Let S p p be the class of all almost perodc functons n the sense of Stepanov wth the norm u /p sup u ft } p when p < f S p : u sup fu when p. u Suppose that the Fourer seres of f S p has the form Sf x ν wth the partal sums A ν fe λνx, where A ν f lm L L S γk f x λ ν γ k A ν fe λνx L fte λνt, and that λ < λ ν < λ ν f ν N,,3...}, lm v λ ν, λ ν λ ν, A ν A ν >. Let Ω α,p, wth some fxed postve α, be the set of functons
of class S p bounded on U, whose Fourer exponents satsfy the conon λ ν λ ν α ν N. In case f Ω α,p where S λk f x Ψ λ,η t f xtf x t}ψ λk,λ k αt, η λt sn sn ηλt η λt < λ < η, t >. Let A : be an nfnte matrx of real nonnegatve numbers such that, where n,,,.... k Let us consder the strong mean } /q H q n,a,γ f x S γk f x f x q k q >. As measures of approxmaton by the quantty, we use the best approxmaton of f by entre functons g σ of exponental type σ bounded on the real axs, shortly g σ B σ and the modul of contnuty of f defned by the formulas and G x f δ s,p : E σ f S p nf g σ f g σ S p, ωf δ S p sup f t f S p, t δ w x fδ p : [/αδ] k k δ /p δ ϕ x t } p, δ kδ kδ ϕ x t p s/p /s, s >, where ϕ x t : f xtf x t f x, respectvely. Recently, L. Lendler [] defned a new class of sequences named as sequences of rest bounded varaton, brefly denoted by RBV S,.e. } RBVS a : a n C : a k a k Ka a m for all m N, 3 km where here and throughout the paper Ka always ndcates a constant dependng only on a.
Denote by M S the class of nonnegatve and nonncreasng sequences. The class of general monotone coeffcents, GM, wll be defned as follows see []: } GM It s obvous that a : a n C : m km a k a k Ka a m for all m N MS RBVS GM.. In [5,,, 3] was defned the class of β general monotone sequences as follows: Defnton Let β : β n be a nonnegatve sequence. The sequence of complex numbers a : a n s sad to be β general monotone, or a GM β, f the relaton holds for all m. m km a k a k Kaβ m 5 In the paper [3] Tkhonov consdered, among others, the followng examples of the sequences β n : β n a n, β n [cn] k[n/c] a k k for some c >. It s clear that GM β GM and see [3, Remark.] GM β β GM β. Moreover, we assume that the sequence Kα n n s bounded, that s, that there exsts a constant K such that Kα n K holds for all n, where Kα n denote the sequence of constants appearng n the nequaltes 3-5 for the sequences α n : k. Now we can gve the conons to be used later on. We assume that for all n m km K [cm] k[m/c] k holds f α n k belongs to GM β, for n,,... We have shown n [7] the followng theorem: Theorem If f Ω α,p p >, p q, α >, k GM β for all n, and lm n a n, hold, then H q n,a,γ f S } /q ω q f, p k S p k for n,,,..., where γ γ k s a sequence wth γ k αk. 3 6
In ths paper we consder the class GM β n pontwse estmate of the quantty H q n,a,γ f for f S. Thus we present some analog of the followng result of P. Pych-Taberska see [, Theorem 5]: Theorem 3 If f Ω α, and q, then H q n,a,γ f S n k [ ] } q /q ωf f S k S /q, for n,,,..., where γ γ k s a sequence wth γ k αk, when k n and otherwse. We shall wrte I I f there exsts a postve constant K, sometmes depended on some parameters, such that I KI. Statement of the results Let us consder a functon w x of modulus of contnuty type on the nterval [,,.e. a nondecreasng contnuous functon havng the followng propertes: w x, w x δ δ w x δ w x δ for any δ,δ wth x such that the set Ω α,p,s w x f Ω α,p : s nonempty. We start wth proposton [ /p δ ϕ x t ϕ x t±γ ] p w x γ δ } and G x f δ s,p w x δ, where γ,δ > Proposton If f Ω α,, w x, α > and < q, then n for n,,,... Sαk } /q f x f x q Our man results are followng w x E αn/ f S, Theorem 5 If f Ω α,, w x, α >, < q, k GM β for all n, and lm n a n, hold, then H q n,a,γ f x ] } q /q [w x E αk f k S [c] k for some c > and n,,,..., where γ γ k s a sequence wth γ k αk.
Theorem 6 If f Ω α,, w x, α >, < q, k MS for all n, and lm n a n, hold, then H q n,a,γ f x [w x k Eαk k f S for n,,,..., where γ γ k s a sequence wth γ k αk. Remark Snce, by the Jackson type theorem E σ f S p ωf σ S p ] q } /q and [ δ δ ϕ t ϕ t±γ ] S p G f δ,p S p ωf δ S p, ωf γ S p, the analyss of the proof of Proposton shows that, the estmate from Theorem 5 mples the estmate from Theorem wth p and < q. Thus, takng when k n and otherwse, n the case p [, ] we obtan the better estmate than ths one from Theorem 3 wth q []. 3 Proofs of the results 3. Proof of Proposton In the proof we wll use the followng functon Φ x f δ,ν δ wth δ δ n and ts estmate from [6, Lemma, p. 8] νδ ϕ ν x udu, Φ x f ζ,δ w x ζ w x ζ 7 for f Ω α,, w x and any ζ,ζ >. We can also note that by monotoncty n q,] n Sαk } /q f x f x q n Sαk } / f x f x. Moreover, for n our estmate s evdent, therefore we gve the estmate of the quantty H q n,a,γf x wth q and n >, only. Denote by Sk f the sums of the form Sαkf x A ν fe λνx λ ν αk 5
αk such that the nterval, αk does not contan any λ ν. Applyng Lemma.. of [8] we easly verfy that S kf x f x where Ψ k t Ψ αk t,.e.,αk Ψ k t sn αt ϕ x tψ k t, sn αkt αt see also [], p.. Evdently, f the nterval exponent λ ν, then αk, αk contans a Fourer Sαkf x Skf x A ν fe λνx A ν fe λνx. Analyzng the proof of Proposton.. from [, p. 8] we can wrte A ±ν f A±ν f gαµ/ lm L ft gαµ/ t e λνt L L lm sup T ft g αµ/ t e λνt L T L T lm sup T ft gαµ/ t L T L T lm sup UT sup ft gαµ/ t L T T LU R U f g αµ/ W f g αµ/ S E αµ/ f S, for some g αµ/ B αµ/, wth αk/ < αµ/ < λ ν, where W s the Weyl norm. Therefore, the devaton can be estmated from above by n n n Sαk ϕ x tψ kκ t ϕ x tψ kκ t f x f x 6 } / } / } n E αn/ f S, } / Eαk/ f S
where κ equals or. Applyng the Mnkowsk nequalty we obtan n } / ϕ x tψ kκ t n /α / ϕ x tψ kκ t n /α } / I k So, for the frst term we have } / n I k κ e κ e κ e κ e n κ e k κ e kκ k /α /α /α u κ e k α ϕ x uϕ x v ϕ x uϕ x v /α u n n I k } / } nκ / I k } kκ / I k } kκ / I k k k /α ϕ x tψ kκ t. / kκ / Ψ kκuψ kκvdudv} kκ / Ψ kκuψ kκvdudv} ϕ x uϕ x vsn αu u v kκ αuk κ sn sn κ e k α /α u sn αv ϕ x uϕ x vsn αu u v k αuk sn sn 7 } / αvk κ dudv sn αv αvk dudv } /
Takng y αu, z αv and r n the relaton see [3] and [9] r k sn k yk sn zk ] sn y z sn [r r rcosy cosz [ ][ ] r rsn yz r rsn y z and usng the nequalty sn yz yz y z, we obtan k k αuk sn sn αvk uv [ r uv ][ r u v ]. Hence, takng u v t, by the Gabsonya dea [3] n I k /α u /α u ϕ x uϕ x v dudv [ uv ][ u v ] ϕ x uϕ x v dudv [ u ][ u v ] /α u [/α] ϕ x uϕ x u t du [ u ][ t ] j j j ϕ x uϕ x u t du ] [ t [/α] [/α] j j j j j ϕ x u du ϕ x u t j j ϕ x u du j ϕ x v dv 8
[/α] j j ϕ x u du [/α] [/α] j j j ϕ x u du j j j ϕ x v dv ϕ x v dv [/α] [/α] [/α] [/α] j j ϕ x u du [/α] j ϕ x u du ϕ x u du [/α] ν j j ν ϕ x v dv ν ν ϕ x v dv [ ] [ ] G x f w x. For the second term, usng the Lensk method [6], we obtan n I k } / n n n µ µ/α µ µ/α µ/α µ/α } / I k [ϕ x t Φ x f δ k,t]ψ kκ t Φ x f δ k,tψ kκ t n I k } / / / 9
and I k α α α α δ k δ k δk δk µ/α µ µ/α µ/α µ µ/α ϕ x t Φ x f δ k,t t [ δ k t µ/α µ µ µ/α µ/α µ/α t [ t [ t 3 t δk ϕ x t ϕ x tu du } t ϕ xt ϕ x tu du ] tµ/α ϕ x s ϕ x su ds tµ/α ] } ϕ x s ϕ x su ds du ] δk µ/α δ k [µ/α] ϕ x s ϕ x su ds µ } µ/α [µ/α] ϕ x s ϕ x su ds du δk µ/α [ t ] } δ k t 3 ϕ x s ϕ x su ds du. µ µ/α Snce f Ω α,, w x, for any x lm ζ ζ ζ ϕ x s ϕ x su ds lm ζ ζ w xu lm ζ ζ w xδ k lm ζ ζ w x, and therefore I k δk α δ k [ α /α ϕ x s ϕ x su ds δk µ/α w x udu δ k δk δ k w x δ k. µ w x uduw x δ k µ/α µ α µ } t ] du
Next, we wll estmate the term I k. So, I k µ/α Φ x f δ k,t d α µ µ/α t [ Φ x f δ k,t α t α µ µ µ/α µ/α I ki k d cos αtkκ αkκ Φx f δ k,t t cos αtkκ αkκ cos αtkκ αkκ cos αtkκ αkκ αtkκ cos αkκ ] tµ/α tµ/α cos αtkκ αkκ Snce f Ω α,, w x, for any x usng 7 lm Φ x f [ ] [ ] δ k, α ζ cos ζ ζ [ α ζ] k κ cos ζ k κ αkκ αkκ w x δ k w x α lm ζ w x δ k ζw x α ζ ζ ζ lm k ζ ζ w x lm k ζ ζ, and therefore I k α Usng 7, we get [ Φx f δ k, α [ µ α µ] cos[ µ cos[ Φ xf δ k, α µ [ α µ] µk κ] αkκ Φ x f δ k,/α α [/α] 3Φ xf δ k,/α µk κ] αkκ cos[ µk κ] cos[ ] µk κ] αkκ I k k Φ xf δ k,/α Smlarly I k α µ µ/α cos αtkκ αkκ αkκ cos[ µk κ] cos[ µk κ] αkκ [ cos µk κ] k κ µ/α cos[ αkκ µk κ]. k κ k w xδ k w x /α. d Φ xf δ k,t t cos αtkκ αkκ Φ xf δ k,t t 3
and I k 8 α k [ µ/α ϕ x tδ k ϕ x t µ/α δ k t ] Φ x f δ k,t µ µ/α µ/α 8 α k δ k 6 α k t 3 µ/α µ µ/α µ/α µ µ/α ϕ x tδ k ϕ x t t w x δ k w x t t 3 w x δ k [ ] µ α w x δ k w x k δ k k α µ 3 µ w x δ k w x δ k k µ 3 w µ x α µ 3 w x δ k k w x δ k k Summng up whence µ w x δ k w x α w x δ k w x α I k w x δ k k n I k } / and thus the desred result follows. 3. Proof of Theorem 5 k µ µ. µ µ 3 w x δ k w x w x, α α n n For some c > H q n,a,γ f x [c] Sαk f x f x q w x x } / k k w α } / w x w x k k [c] Sαk f x f x q /q
[c] Sαk f x f x q k I xi x. /q m k m Sαk f x f x q Usng Proposton and denotng the left hand sde of the nequalty from ts by F n,.e. F n w x E αn/ f S, we get I x [c] k [c] k k/ k/ [c] k k lk/ k/ [c] F q k/ /q. Sαl k lk/ By partal summaton, our Proposton gves I q x m k m a n, m m l m Sαl f x f x q Sαl k l m /q f x f x q Sαl f x f x q /q f x f x q /q m m F q α m / k m ] m a n, m F q α m / m m F q α m / a n, m. k m Snce 6 holds, we have a n,s a n,r a n,r a n,s m s kr k m [c m ] k[ m /c] k m r s m, 3
whence and Thus a n,s a n,r I q x [c m ] k[ m /c] m a n, m m F q α m / k m m m r m m m r s m m r m a n, m a n,r r m a n,r m [c m ] k[ m /c] Fnally, by elementary calculatons we get I q x m m F q α m / m[c] [c m ] k[ m /c] [c m ] k[ m /c] k k. a m n,k k Fq α m / k m [c] m[c] F q α m / k m [c] F q α m / m k m [c] F q αk/ m k m [c] k m [c] F q αk/ m[c] k Fq α m / k m m k m. m[c] F q α m / k m m[c] k m F q αk [c] k m F q αk [c] F q α a m n, m[c] [c] r m r k m r F q αk/ F q α a m n, m[c] [c] r mr k mr F q αk [c]
[c] r k F q αk/ k [c] r F q αk. [c] [c] r k [c]r F q αk [c] k [c] F q αk [c] Thus we obtan the desred result. 3.3 Proof of Theorem 6 If k MS then k GM β and usng Theorem 5 we obtan H q n,a,γ f x ] } q /q [w x k k k k [c] mk [c] ] } q /q [w x k k k a n,m k [c] mk [c] [ ] q E αm f [c] S p a n,m [ Eαk f S p /q ] q /q ] } q /q [w x k [ [c] [c] k k ] } q /q [w x f k Eαk S p k Eαk f S p ] q } /q Ths ends our proof. References [] A. D. Baley, Almost Everywhere Convergence of Dyadc Partal Sums of Fourer Seres for Almost Perodc Functons, Master of Phlosophy, A thess submtted to School of Mathematcs of The Unversty of Brmngham for the degree of Master of Phlosophy, September 8. [] A. S. Bescovtch, Almost perodc functons, Cambrdge, 93. [3] O. D. Gabsonya, Ponts of strong summablty of Fourer seres, Translated from Matematcheske Zametk, Vol., No. 5, pp. 65-66 Math. Notes 973, 93 98 97.} 5
[] L Lendler, On the unform convergence and boundedness of a certan class of sne seres, Analyss Math., 7, 79-85. [5] L. Lendler, A new extenson of monotone sequence and ts applcaton, J. Inequal. Pure and Appl. Math., 7 6, Art. 39, 7 pp. [6] W. Lensk, Pontwse strong and very strong approxmaton of Fourer seres, Acta Math. Hung., 53,7, p.5-33. [7] W. Lensk and B. Szal, Strong approxmaton of almost perodc functons, Math. Inequal. Appl. accepted for publcaton. [8] B. L. Levtan, Almost perodc functons, Gos. Izdat. Tekh-Teoret. Lter., Moscov 953 n Russan. [9] J. Marcnkewcz, Sur la sommablte forte de seres de Fourer, J. London Math. Soc. 939, pp. 6-68. [] P. Pych-Taberska, Approxmaton propertes of the partal sums of Fourer seres of almost perodc functons, Studa Math. XCVI 99,9-3. [] S. Tkhonov, Trgonometrc seres wth general monotone coeffcents, J. Math. Anal. Appl., 36 7, 7-735. [] S. Tkhonov, On unform convergence of trgonometrc seres. Mat. Zametk, 8 7, 3-3, translaton n Math. Notes, 8 7, 68-7. [3] S. Tkhonov, Best approxmaton and modul of smoothness: Computaton and equvalence theorems, J. Approx. Theory, 53 8, 9-39. 6