organic papers 7,8-Dihydroxy-3-methyl-10-oxo-1H,10Hpyrano[4,3-b]chromene-9-carboxylic

Σχετικά έγγραφα
Experimental. Crystal data

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Supplementary Material

Triclinic, P1 a = (2) Å b = (3) Å c = (4) Å = (1) = (1) = (1) Data collection.

metal-organic compounds

Experimental. Crystal data. C 37 H 38 N 4 O 6 M r = Monoclinic, P2 1 a = (2) Å b = (7) Å c = (2) Å = 112.

metal-organic compounds

data reports 2-(4-Methylphenyl)-2-oxoethyl 3,4-dimethoxybenzoate Structure description Synthesis and crystallization Refinement

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Supplementary information

Supporting Information-B. A Facile Iterative Synthesis of 2,5-Terpyrimidinylenes as Non-peptidic α-helical Mimics

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

metal-organic compounds

IV. ANHANG 179. Anhang 178

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Supporting Information

Experimental. Crystal data. C 23 H 27 ClN 2 O M r = Triclinic, P1 a = (3) Å b = (6) Å c = (7) Å = (4) = 80.

Supporting Information

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Single Crystal X-Ray Structure Determination of Compounds 8a, 8b and 11a

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Experimental. Crystal data. C 37 H 24 N 2 O 3 M r = Orthorhombic, P a = (1) Å b = (2) Å c = 26.

Electronic Supplementary Information (ESI)

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

2-Carboxyquinolinium-2,4,6-trinitrobenzenesulfonatequinolinium-2-carboxylate

metal-organic compounds

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

2. Experimental Crystal data. C 22 H 29 F 3 O 5 S M r = Orthorhombic, P a = (10) Å b = (12) Å c = 27.

metal-organic compounds

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Supporting Information

metal-organic compounds

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

organic compounds 78 HeÂctor Novoa de Armas et al. C 24 H 36 O 6 Acta Cryst. (2000). C56, 78±79 Comment Experimental

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Electronic Supplementary Information (ESI)

ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE

metal-organic compounds

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

2-(5-Bromo-1H-indol-3-yl)-4-(4-bromophenyl)-5- (4-chlorobenzoyl)-1H-pyrrole-3-carbonitrile dimethyl sulfoxide monosolvate

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Table of Contents 1 Supplementary Data MCD

2. Experimental Crystal data

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information

organic compounds 5-Chloro-3-methyl-4-[3-(4-nitro- phenyl)-4,5-dihydro-1h-pyrazol-5-yl]- 1-phenyl-1H-pyrazole: a chain of fused hydrogen-bonded rings

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

metal-organic compounds

data reports a molecular salt Structure description

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide derivatives as Bacterial Quorum Sensing and Biofilm Inhibitors

Supporting Information

Mouhamadou Birame Diop, a * Libasse Diop a and Allen G. Oliver b

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

metal-organic compounds

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Supporting Information

SUPPLEMENTARY MATERIAL

Supporting Information

Experimental. Crystal data. C 15 H 12 BrN 3 O 2 S M r = Trigonal, R3 a = (9) Å c = (5) Å V = (4) Å 3.

Synthesis and effects of oxadiazole derivatives on tyrosinase activity and SK-MEL-28 malignant melanoma cells

Mohamed Amedjkouh, Jacques Grimaldi, Jean-Pierre Reboul and Didier Siri

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Elizabeth M. Horstman, a Jeffery A. Bertke, b Toby J. Woods b * and Paul J. A. Kenis a

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Fused Bis-Benzothiadiazoles as Electron Acceptors

Direct metallation of thienopyrimidines using a mixed lithium-cadmium base and antitumor activity of functionalized derivatives

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting Information

Supporting Information

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates

Supporting Information for

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Electronic Supplementary Information

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Experimental. Crystal data

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

The Free Internet Journal for Organic Chemistry

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Transcript:

organic papers Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 7,8-Dihydroxy-3-methyl-10-oxo-1H,10Hpyrano[4,3-b]chromene-9-carboxylic acid Jian-Feng Wang, a * Yong-Jie Zhang, b Mei-Juan Fang, a Yao-Jian Huang, b Zan-Bin Wei, a Zhong-Hui Zheng, b Wen-Jin Su b and Yu-Fen Zhao a a Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and b Department of Biology, Xiamen University, Xiamen 361005, People's Republic of China Correspondence e-mail: jfwang@yanan.xmu.edu.cn Key indicators Single-crystal X-ray study T = 296 K Mean (C±C) = 0.002 AÊ R factor = 0.037 wr factor = 0.119 Data-to-parameter ratio = 13.0 The structure of the title compound, anhydrofulvic acid, C 14 H 10 O 7, a yellow acidic metabolite isolated from Paecilomyces sp. was determined by X-ray analysis. The chromone ring system is essentially planar, with the carboxylic acid group coplanar with the ring. Comment The title compound, (I), had been prepared by dehydration of a natural product, fulvic acid [3,7,8-trihydroxy-3-methyl-10- oxo-4,10-dihydro-1h,3h-pyrano[4,3-b]chromene-9-carboxylic acid, (II)], isolated from several fungi (Dean et al., 1957). In this study, (I) was isolated from the fermentation broth of Paecilomyces sp., an endophytic fungus of Cephalataxus fortunei, and its structure was determined by X-ray analysis. Received 9 July 2003 Accepted 28 July 2003 Online 8 August 2003 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The chromone ring system of (I) is essentially planar, with the hydroxyl and carboxylic acid groups coplanar with the benzene ring. There is one intermolecular hydrogen bond and three intramolecular hydrogen bonds in the crystal structure (Table 2), rendering the crystal very stable (m.p. 516±518 K). Experimental The title compound, (I), was isolated from the organic extract of the liquid culture of Paecilomyces sp. Recrystallization from ethyl acetate afforded green crystals suitable for X-ray analysis. The molecular formula of (I) was deduced from the high resolution ESI±MS spectrum as C 14 H 10 O 7, showing an accurate mass at m/z 291.0501 [M + H] +.The 13 C NMR analysis revealed 14 C atoms: (p.p.m.) = 20.0 (C13), 64.3(C12), 94.5 (C10), 101.3 (C4), 103.358 (C8), 113.0 (C6), 118.0 (C1), 143.5 (C2), 149.8 (C3), 152.0 (C5), 158.6 (C9), 167.6 (C11), 168.8 (C14) and 171.3 (C7). # 2003 International Union of Crystallography Printed in Great Britain ± all rights reserved Crystal data C 14 H 10 O 7 M r = 290.22 Monoclinic, P2 1 =c a = 7.814 (5) A Ê b = 10.085 (5) A Ê c = 15.124 (5) A Ê = 90.178 (5) V = 1191.8 (10) A Ê 3 Z =4 D x = 1.617 Mg m 3 Mo K radiation Cell parameters from 2225 re ections = 2.4±27.5 = 0.13 mm 1 T = 296 (2) K Chunk, green 0.20 0.18 0.10 mm o1244 Jian-Feng Wang et al. C 14 H 10 O 7 DOI: 10.1107/S1600536803016714 Acta Cryst. (2003). E59, o1244±o1245

organic papers Data collection Bruker AXS SMART area-detector diffractometer ' and! scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.974, T max = 0.987 10 074 measured re ections Re nement Re nement on F 2 R[F 2 >2(F 2 )] = 0.037 wr(f 2 ) = 0.119 S = 1.09 2615 re ections 201 parameters H atoms treated by a mixture of independent and constrained re nement Table 1 Selected geometric parameters (A Ê, ). 2615 independent re ections 2225 re ections with I > 2(I) R int = 0.022 max = 27.5 h = 10! 10 k =0! 13 l =0! 19 w = 1/[ 2 (F o 2 ) + (0.0758P) 2 + 0.0975P] where P =(F o 2 +2F c 2 )/3 (/) max < 0.001 max = 0.24 e A Ê 3 min = 0.20 e A Ê 3 Extinction correction: SHELXL97 Extinction coef cient: 0.013 (3) Figure 1 ORTEP3 (Farrugia, 1997) plot of the structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. O1ÐC9 1.3410 (16) O1ÐC5 1.3671 (14) C1ÐC2 1.3972 (18) C1ÐC6 1.4468 (15) C1ÐC14 1.5057 (16) O2ÐC11 1.3531 (18) O2ÐC12 1.4362 (16) C2ÐO6 1.3329 (14) C2ÐC3 1.4257 (18) O3ÐC7 1.2802 (15) C3ÐO7 1.3391 (16) C3ÐC4 1.3613 (16) C9ÐO1ÐC5 119.65 (9) C2ÐC1ÐC6 118.46 (10) O6ÐC2ÐC1 125.17 (11) O6ÐC2ÐC3 112.45 (11) C1ÐC2ÐC3 122.38 (10) O7ÐC3ÐC4 120.34 (11) O7ÐC3ÐC2 120.28 (11) C4ÐC3ÐC2 119.37 (11) C3ÐC4ÐC5 118.80 (11) O1ÐC5ÐC4 112.05 (10) O1ÐC5ÐC6 123.10 (10) C4ÐC5ÐC6 124.85 (10) C5ÐC6ÐC1 116.12 (11) C5ÐC6ÐC7 116.07 (10) C1ÐC6ÐC7 127.81 (10) O3ÐC7ÐC8 117.51 (11) O3ÐC7ÐC6 124.58 (11) C8ÐC7ÐC6 117.90 (10) O4ÐC14 1.2473 (16) C4ÐC5 1.3922 (18) O5ÐC14 1.2704 (18) C5ÐC6 1.4046 (16) C6ÐC7 1.4594 (17) C7ÐC8 1.4044 (16) C8ÐC9 1.3585 (18) C8ÐC12 1.5034 (18) C9ÐC10 1.4192 (16) C10ÐC11 1.344 (2) C11ÐC13 1.4838 (17) C9ÐC8ÐC7 121.37 (11) C9ÐC8ÐC12 116.98 (11) C7ÐC8ÐC12 121.50 (11) O1ÐC9ÐC8 121.83 (11) O1ÐC9ÐC10 116.77 (11) C8ÐC9ÐC10 121.35 (11) C2ÐC1ÐC14 115.70 (10) C6ÐC1ÐC14 125.84 (11) C11ÐO2ÐC12 117.25 (10) C11ÐC10ÐC9 118.01 (12) C10ÐC11ÐO2 122.64 (11) C10ÐC11ÐC13 124.90 (13) O2ÐC11ÐC13 112.29 (12) O2ÐC12ÐC8 112.12 (11) O4ÐC14ÐO5 119.47 (11) O4ÐC14ÐC1 118.04 (13) O5ÐC14ÐC1 122.49 (11) O-bound H atoms were located in a difference Fourier synthesis, and their coordinates were re ned. C-bound H atoms were placed at calculated positions (CÐH = 0.93, 0.96 or 0.97 A Ê ) and were included in the re nement in the riding-model approximation. Their displacement parameters were set at 1.2 or 1.5 times U eq of the parent C or O atoms, respectively. Data collection: SMART (Bruker, 2001); cell re nement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to re ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97. The authors thank the Natural Science Foundation of Fujian Province, China (No. C0110002), the Key Foundation of Science & Technology Project of Fujian Province, China (No. 2002 H011) and the National High Technology Research and Development Program of China (863 Program, No. 2001 AA620401) for supporting this work. Table 2 Hydrogen-bonding geometry (A Ê, ). DÐHA DÐH HA DA DÐHA O5ÐH5O3 1.18 (1) 1.19 (1) 2.3696 (15) 177 (2) O6ÐH6O4 0.93 (2) 1.56 (2) 2.4395 (18) 155.4 (18) O7ÐH7O6 0.84 (2) 2.17 (2) 2.6108 (16) 113.0 (19) O7ÐH7O4 i 0.84 (2) 1.94 (2) 2.6794 (15) 147 (2) Symmetry code: (i) 2 x; 1 2 y; 1 2 z. References Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115±119. Bruker (2001). SAINT (Version 6.22) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA. Dean, F. M., Eade, R. A., Moubasher, R. & Robertson, A. (1957). Nature (London), 157, 366. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Sheldrick, G. M. (1996). SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of GoÈttingen, Germany. Acta Cryst. (2003). E59, o1244±o1245 Jian-Feng Wang et al. C 14 H 10 O 7 o1245

supporting information [doi:10.1107/s1600536803016714] 7,8-Dihydroxy-3-methyl-10-oxo-1H,10H-pyrano[4,3-b]chromene-9-carboxylic acid Jian-Feng Wang, Yong-Jie Zhang, Mei-Juan Fang, Yao-Jian Huang, Zan-Bin Wei, Zhong-Hui Zheng, Wen-Jin Su and Yu-Fen Zhao S1. Comment The title compound, (I), had been prepared by dehydration of a natural product, fulvic acid [3,7,8-trihydroxy-3- methyl-10-oxo-4,10-dihydro-1h,3h-pyrano[4,3-b]chromene- 9-carboxylic acid, (II)], isolated from several fungi (Dean, 1957). In this study, (I) was isolated from the fermentation broth of Paecilomyces sp., an endophytic fungi of Cephalataxus fortunei, and its structure was determined by X-ray analysis. The chromone ring system of (I) is essentially planar, with the hydroxyl and carboxylic acid groups coplanar with the ring. There is one intermolecular hydrogen bond and three intramolecular hydrogen bonds in the crystal structure (Table 2), which make the crystal very stable (m.p. 516 518 K). S2. Experimental The title compound, (I) was isolated from the organic extract of the liquid culture of the Paecilomyces sp. Recrystallization from ethyl acetate afforded green crystals suitable for X-ray analysis. The molecular formula of (I) was deduced from the high resolution ESI MS spectrum as C 14 H 10 O 7, showing an accurate mass at m/z 291.0501 [M + H] +. The 13 C NMR analysis revealed 14 carbons: δ (p.p.m.) = 20.0 (C13), 64.3(C12), 94.5 (C10), 101.3 (C4), 103.358 (C8), 113.0 (C6), 118.0 (C1), 143.5 (C2), 149.8 (C3), 152.0 (C5), 158.6 (C9), 167.6 (C11), 168.8 (C14) and 171.3 (C7). S3. Refinement Molecule (I) crystallized in the monoclinic, space group P2 1 /c. H atoms on O atoms were located in difference Fourier syntheses and the C-bound H atoms were placed at calculated positions (C H = 0.93, 0.96 or 0.97 Å) and were included in the refinement in the riding-model approximation. Their displacement parameters were set at 1.2 and or 1.5 times U eq of the equivalent isotropic displacement parameters of the parent C or O atoms, respectively. sup-1

Figure 1 ORTEP-3 (Farrugia, 1997) plot of the structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. 7,8-Dihydroxy-3-methyl-10-oxo-1H,10H-pyrano[4,3-b]chromene-9-carboxylic acid Crystal data C 14 H 10 O 7 M r = 290.22 Monoclinic, P2 1 /c Hall symbol: -P 2ybc a = 7.814 (5) Å b = 10.085 (5) Å c = 15.124 (5) Å β = 90.178 (5) V = 1191.8 (10) Å 3 Z = 4 Data collection Bruker AXS area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.974, T max = 0.987 Refinement Refinement on F 2 Least-squares matrix: full R[F 2 > 2σ(F 2 )] = 0.037 wr(f 2 ) = 0.119 S = 1.09 2615 reflections F(000) = 600 D x = 1.617 Mg m 3 Melting point = 516 518 K Mo Kα radiation, λ = 0.71069 Å Cell parameters from 2225 reflections θ = 2.4 27.5 µ = 0.13 mm 1 T = 296 K Chunk, green 0.20 0.18 0.10 mm 2615 measured reflections 2615 independent reflections 2225 reflections with I > 2σ(I) R int = 0.000 θ max = 27.5, θ min = 2.4 h = 10 10 k = 0 13 l = 19 0 201 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map sup-2

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ 2 (F o2 ) + (0.0758P) 2 + 0.0975P] where P = (F o 2 + 2F c2 )/3 (Δ/σ) max < 0.001 Δρ max = 0.24 e Å 3 Δρ min = 0.20 e Å 3 Extinction correction: SHELXL97, Fc * =kfc[1+0.001xfc 2 λ 3 /sin(2θ)] -1/4 Extinction coefficient: 0.013 (3) Special details Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wr and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ(f 2 ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq O1 0.78838 (13) 0.14646 (9) 0.63238 (5) 0.0384 (2) C1 0.84098 (14) 0.06547 (12) 0.39489 (7) 0.0310 (3) O2 0.48841 (13) 0.14163 (10) 0.73806 (6) 0.0446 (3) C2 0.92692 (15) 0.18227 (13) 0.37272 (7) 0.0332 (3) O3 0.64067 (14) 0.16488 (10) 0.47837 (6) 0.0477 (3) C3 0.96229 (16) 0.28357 (12) 0.43593 (8) 0.0363 (3) O4 0.87828 (14) 0.00461 (10) 0.24704 (6) 0.0486 (3) C4 0.91286 (17) 0.26637 (13) 0.52140 (8) 0.0385 (3) O5 0.73718 (16) 0.14121 (11) 0.33084 (7) 0.0573 (3) C5 0.82745 (16) 0.15028 (12) 0.54437 (7) 0.0321 (3) O6 0.98542 (13) 0.21222 (10) 0.29248 (6) 0.0440 (3) C6 0.78576 (14) 0.04765 (12) 0.48533 (7) 0.0297 (3) O7 1.04580 (15) 0.39362 (10) 0.41172 (6) 0.0511 (3) C7 0.69266 (15) 0.06445 (12) 0.52273 (8) 0.0327 (3) C8 0.65930 (15) 0.06322 (12) 0.61391 (7) 0.0332 (3) C9 0.70915 (16) 0.03979 (13) 0.66582 (8) 0.0340 (3) C10 0.67352 (18) 0.04178 (14) 0.75777 (8) 0.0400 (3) C11 0.56121 (17) 0.04719 (13) 0.78941 (8) 0.0393 (3) C12 0.57850 (18) 0.17989 (13) 0.65946 (8) 0.0398 (3) C13 0.4922 (2) 0.04747 (16) 0.88069 (9) 0.0532 (4) C14 0.81714 (17) 0.03259 (14) 0.32080 (8) 0.0383 (3) H4A 0.9357 0.3310 0.5637 0.046* H5 0.687 (3) 0.156 (2) 0.4038 (8) 0.086* H6 0.952 (2) 0.138 (2) 0.2601 (12) 0.066* H7 1.066 (3) 0.393 (2) 0.3574 (15) 0.077* H10A 0.7263 0.1028 0.7950 0.048* H12A 0.4994 0.2229 0.6191 0.048* H12B 0.6668 0.2435 0.6749 0.048* H13A 0.5534 0.0161 0.9159 0.080* H13B 0.5055 0.1342 0.9060 0.080* H13C 0.3730 0.0245 0.8792 0.080* sup-3

Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 O1 0.0535 (5) 0.0374 (5) 0.0244 (4) 0.0101 (4) 0.0063 (3) 0.0020 (3) C1 0.0342 (6) 0.0337 (6) 0.0252 (5) 0.0058 (5) 0.0004 (4) 0.0023 (4) O2 0.0499 (5) 0.0407 (5) 0.0434 (5) 0.0048 (4) 0.0141 (4) 0.0014 (4) C2 0.0387 (6) 0.0363 (6) 0.0246 (5) 0.0065 (5) 0.0019 (4) 0.0022 (4) O3 0.0620 (6) 0.0400 (5) 0.0410 (5) 0.0149 (5) 0.0075 (4) 0.0107 (4) C3 0.0447 (7) 0.0332 (6) 0.0310 (6) 0.0014 (5) 0.0039 (5) 0.0038 (4) O4 0.0673 (7) 0.0490 (6) 0.0297 (4) 0.0057 (5) 0.0094 (4) 0.0084 (4) C4 0.0525 (7) 0.0346 (6) 0.0284 (6) 0.0065 (6) 0.0041 (5) 0.0031 (4) O5 0.0764 (8) 0.0546 (7) 0.0409 (5) 0.0211 (6) 0.0112 (5) 0.0197 (4) C5 0.0389 (6) 0.0339 (6) 0.0236 (5) 0.0003 (5) 0.0026 (4) 0.0003 (4) O6 0.0614 (6) 0.0441 (5) 0.0264 (4) 0.0013 (5) 0.0102 (4) 0.0026 (4) C6 0.0316 (5) 0.0309 (6) 0.0266 (5) 0.0035 (5) 0.0004 (4) 0.0004 (4) O7 0.0794 (7) 0.0416 (5) 0.0324 (4) 0.0169 (5) 0.0130 (5) 0.0021 (4) C7 0.0337 (6) 0.0321 (6) 0.0322 (6) 0.0020 (5) 0.0006 (4) 0.0024 (4) C8 0.0354 (6) 0.0320 (6) 0.0323 (6) 0.0015 (5) 0.0029 (4) 0.0023 (4) C9 0.0379 (6) 0.0343 (6) 0.0299 (5) 0.0006 (5) 0.0035 (4) 0.0033 (4) C10 0.0490 (7) 0.0436 (7) 0.0274 (6) 0.0035 (6) 0.0039 (5) 0.0000 (5) C11 0.0462 (7) 0.0381 (7) 0.0337 (6) 0.0062 (5) 0.0056 (5) 0.0059 (5) C12 0.0466 (7) 0.0332 (6) 0.0396 (6) 0.0006 (6) 0.0087 (5) 0.0017 (5) C13 0.0703 (9) 0.0509 (8) 0.0387 (7) 0.0033 (7) 0.0180 (6) 0.0096 (6) C14 0.0425 (6) 0.0426 (7) 0.0298 (6) 0.0072 (6) 0.0005 (5) 0.0075 (5) Geometric parameters (Å, º) O1 C9 1.3410 (16) C7 C8 1.4044 (16) O1 C5 1.3671 (14) C8 C9 1.3585 (18) C1 C2 1.3972 (18) C8 C12 1.5034 (18) C1 C6 1.4468 (15) C9 C10 1.4192 (16) C1 C14 1.5057 (16) C10 C11 1.344 (2) O2 C11 1.3531 (18) C11 C13 1.4838 (17) O2 C12 1.4362 (16) O3 H5 1.189 (10) C2 O6 1.3329 (14) C4 H4A 0.9300 C2 C3 1.4257 (18) O5 H5 1.182 (9) O3 C7 1.2802 (15) O6 H6 0.93 (2) C3 O7 1.3391 (16) O7 H7 0.84 (2) C3 C4 1.3613 (16) C10 H10A 0.9300 O4 C14 1.2473 (16) C12 H12A 0.9700 C4 C5 1.3922 (18) C12 H12B 0.9700 O5 C14 1.2704 (18) C13 H13A 0.9600 C5 C6 1.4046 (16) C13 H13B 0.9600 C6 C7 1.4594 (17) C13 H13C 0.9600 C9 O1 C5 119.65 (9) C11 C10 C9 118.01 (12) C2 C1 C6 118.46 (10) C10 C11 O2 122.64 (11) O6 C2 C1 125.17 (11) C10 C11 C13 124.90 (13) sup-4

O6 C2 C3 112.45 (11) O2 C11 C13 112.29 (12) C1 C2 C3 122.38 (10) O2 C12 C8 112.12 (11) O7 C3 C4 120.34 (11) O4 C14 O5 119.47 (11) O7 C3 C2 120.28 (11) O4 C14 C1 118.04 (13) C4 C3 C2 119.37 (11) O5 C14 C1 122.49 (11) C3 C4 C5 118.80 (11) C3 C4 H4A 120.6 O1 C5 C4 112.05 (10) C5 C4 H4A 120.6 O1 C5 C6 123.10 (10) C7 O3 H5 109.9 (11) C4 C5 C6 124.85 (10) C14 O5 H5 112.6 (11) C5 C6 C1 116.12 (11) C2 O6 H6 101.6 (12) C5 C6 C7 116.07 (10) C3 O7 H7 111.2 (16) C1 C6 C7 127.81 (10) C11 C10 H10A 121.0 O3 C7 C8 117.51 (11) C9 C10 H10A 121.0 O3 C7 C6 124.58 (11) O2 C12 H12A 109.2 C8 C7 C6 117.90 (10) C8 C12 H12A 109.2 C9 C8 C7 121.37 (11) O2 C12 H12B 109.2 C9 C8 C12 116.98 (11) C8 C12 H12B 109.2 C7 C8 C12 121.50 (11) H12A C12 H12B 107.9 O1 C9 C8 121.83 (11) C11 C13 H13A 109.5 O1 C9 C10 116.77 (11) C11 C13 H13B 109.5 C8 C9 C10 121.35 (11) H13A C13 H13B 109.5 C2 C1 C14 115.70 (10) C11 C13 H13C 109.5 C6 C1 C14 125.84 (11) H13A C13 H13C 109.5 C11 O2 C12 117.25 (10) H13B C13 H13C 109.5 C6 C1 C2 O6 179.85 (11) C1 C6 C7 C8 177.05 (11) C14 C1 C2 O6 0.86 (18) O3 C7 C8 C9 179.64 (11) C6 C1 C2 C3 0.23 (18) C6 C7 C8 C9 1.11 (18) C14 C1 C2 C3 178.77 (11) O3 C7 C8 C12 4.87 (18) O6 C2 C3 O7 0.01 (18) C6 C7 C8 C12 174.38 (10) C1 C2 C3 O7 179.68 (11) C5 O1 C9 C8 2.91 (18) O6 C2 C3 C4 178.92 (11) C5 O1 C9 C10 179.52 (11) C1 C2 C3 C4 0.75 (19) C7 C8 C9 O1 1.74 (19) O7 C3 C4 C5 179.51 (12) C12 C8 C9 O1 177.42 (11) C2 C3 C4 C5 0.58 (19) C7 C8 C9 C10 179.19 (12) C9 O1 C5 C4 178.53 (11) C12 C8 C9 C10 5.12 (18) C9 O1 C5 C6 1.19 (18) O1 C9 C10 C11 164.87 (12) C3 C4 C5 O1 179.12 (11) C8 C9 C10 C11 12.7 (2) C3 C4 C5 C6 0.6 (2) C9 C10 C11 O2 3.4 (2) O1 C5 C6 C1 178.16 (10) C9 C10 C11 C13 171.42 (13) C4 C5 C6 C1 1.53 (18) C12 O2 C11 C10 23.91 (18) O1 C5 C6 C7 1.56 (17) C12 O2 C11 C13 160.72 (12) C4 C5 C6 C7 178.76 (12) C11 O2 C12 C8 39.37 (15) C2 C1 C6 C5 1.28 (16) C9 C8 C12 O2 30.09 (16) C14 C1 C6 C5 177.60 (11) C7 C8 C12 O2 154.23 (12) C2 C1 C6 C7 179.04 (11) C2 C1 C14 O4 1.73 (17) C14 C1 C6 C7 2.1 (2) C6 C1 C14 O4 177.18 (11) C5 C6 C7 O3 178.19 (11) C2 C1 C14 O5 177.98 (12) sup-5

C1 C6 C7 O3 2.1 (2) C6 C1 C14 O5 3.1 (2) C5 C6 C7 C8 2.62 (16) Hydrogen-bond geometry (Å, º) D H A D H H A D A D H A O5 H5 O3 1.18 (1) 1.19 (1) 2.3696 (15) 177 (2) O6 H6 O4 0.93 (2) 1.56 (2) 2.4395 (18) 155.4 (18) O7 H7 O6 0.84 (2) 2.17 (2) 2.6108 (16) 113.0 (19) O7 H7 O4 i 0.84 (2) 1.94 (2) 2.6794 (15) 147 (2) Symmetry code: (i) x+2, y+1/2, z+1/2. sup-6