35 3 2016 9 GLOBAL GEOLOGY Vol. 35 No. 3 Sept. 2016 1004 5589 2016 03 0729 09 1 1 1 1 1 1 2 1. 130061 2. 810008 SiO 2 49. 72% ~ 51. 58% δeu 1. 26 ~ 1. 54 Eu LILE Rb Ba K P La /Sm Th /La Nb /U P588. 124 P595 A doi 10. 3969 /j. issn. 1004-5589. 2016. 03. 013 Geochemical characteristics of gabbro from Binggounan Cu -Ni deposit in the north of eastern Kunlun metallogenic belt YAN Jia-ming 1 SUN Feng-yue 1 CHEN Guang-jun 1 QIAN Ye 1 LI Liang 1 WANG Chao 1 HE Shu-yue 2 1. College of Earth Sciences Jilin University Changchun 130061 China 2. The Third Institution of Qinghai Geological Mineral Prospecting Xining 810008 China Abstract In order to determine the petrogenesis and tectonic setting in the north of eastern Kunlun orogenic belt the authors analyze the whole rock geochemical characteristics of gabbro in the Binggounan copper-nickel deposit. The SiO 2 content of Binggounan gabbros is 49. 72% to 51. 58% and rock series are of calcium alkali. Chondrte-normalized REE patterns are LREE-slight rich δeu are 1. 26 ~ 1. 54 with slight Eu positive anomaly. The gabbros are enriched in large ion lithophile elements LILE Rb Ba K and relatively depleted in P. The La / Sm Th /La and Nb /U values suggest that rock masses have experienced some crustal contamination in the process of emplacement. Studies suggest that the primary magma deprived from a depleted mantle. Combining with regional tectonic evolution the authors conclude that the gabbro formed in the post-collisional extension setting. Key words Binggounan copper and nickel deposit gabbro whole rock geochemical characteristics magma source tectonic setting north of eastern Kunlun orogenic belt 1-4 0-5 2016-04-13 2016-06-03 201411025. 1963-. E-mail sfy@ jlu. edu. cn
730 35-6-9 1-10 11 12 13 15 3 16 2 3 14-1 1a 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.. Fig. 1 1 1 Regional geographic map of Binggounan in north of eastern Kunlun orogenic belt 1. R. 2014. 2. S. 2003.
3 731-0. 35 km 2 1b 2 1. 5 ~ 5 km 30 ~ 60 m 2 60% ~ 65% 20% ~ 25% 5% - - ~ 10% 3% 2 ~ 4 mm - 1. 5 mm ± 1 mm ± 0. 5 km 2 0. 4 km 2 a b. Opx. Pl. Fig. 2 2 Microphoto graphs of Binggounan gabbro CaO K 3 2 O MnO P 2 O 5 Fe 2 O T 3 0. 01% 0. 005% FeO X - 0. 1% Fining MAT MgO -ICP -MS Element Ⅰ Na 2 O SiO 2 Al 2 O 3 0. 015% TiO 2 17
732 35 4 4. 1 4. 1. 1 - Zr / TiO 2 3 5 AFM 4 1 Al 2 O 3 MgO 1. 83% ~ 2. 16% SiO 2 49. 72% ~ 51. 58% Al 2 O 3 15. 7% ~ 16. 18% CaO 6. 45% ~ 8. 37% TiO 2 1. 9% ~ 2. 18% MgO MgO = 4. 06% ~ 4. 79% Mg # = 41 ~ 45 Nb /Y 18 1 3 Nb /Y - Zr / TiO 2 0. 0001 Fig. 3 Nb /Y - Zr / TiO 2 0. 0001 diagram of Binggounan gabbro Fig. 4 4 AFM AFM diagram of Binggounan gabbro 4. 1. 2 76. 46 10-6 ~ 90. 56 10-6 4 LREE /HREE 2. 60 ~ 2. 89 La /Yb N 1. 65 ~ 1. 95 La /Sm N 1. 64 ~ 2. 03 5 δeu 1. 26 ~ 1. 54 Eu 6 Rb Ba K P P 19 20 5 5. 1 SiO 2 49. 72% ~51. 58% 5 Fig. 5 21 Chondrte-normalized REE patterns of Binggounan gabbro
3 733 Table 1 1 wt% 10-6 Major elements wt% and trace elements 10-6 of Binggounan gabbro BGS -12 BGS -13 BGS -14 BGS -15 BGS -16 SiO 2 51. 25 50. 89 51. 20 51. 58 49. 72 TiO 2 2. 06 2. 01 2. 06 1. 90 2. 18 Al 2 O 3 15. 96 16. 12 15. 92 16. 18 15. 70 Fe 2 O 3 3. 19 2. 95 2. 81 2. 67 3. 05 FeO 7. 75 7. 83 7. 79 7. 71 7. 65 TFe 2 O 3 11. 79 11. 64 11. 46 11. 23 11. 54 MnO 0. 22 0. 22 0. 22 0. 21 0. 23 MgO 4. 16 4. 06 4. 40 4. 25 4. 79 CaO 6. 50 7. 48 6. 77 6. 45 8. 37 Na 2 O 4. 51 4. 32 4. 23 4. 34 3. 62 K 2 O 1. 18 1. 13 1. 52 1. 50 1. 51 P 2 O 5 0. 04 0. 11 0. 04 0. 03 0. 05 LOI 2. 15 1. 83 2. 01 2. 16 2. 11 Total 98. 96 98. 95 98. 97 98. 98 98. 97 Cr 62. 60 60. 80 66. 20 74. 90 93. 40 V 200. 00 174. 00 175. 00 183. 00 241. 00 Ga 17. 40 16. 00 14. 90 16. 90 16. 90 Rb 43. 20 35. 40 54. 30 60. 30 58. 40 Sr 325. 00 300. 00 323. 00 364. 00 337. 00 Y 34. 10 32. 20 28. 90 32. 61 32. 42 Nb 13. 01 11. 12 10. 81 12. 21 11. 62 Sb 3. 14 2. 56 2. 24 2. 86 2. 97 Cs 1. 91 2. 09 2. 46 2. 89 2. 33 Ba 199. 01 188. 03 238. 05 272. 12 253. 13 La 13. 31 12. 72 10. 23 12. 08 11. 52 Ce 27. 32 27. 12 22. 42 24. 93 24. 64 Pr 3. 63 3. 64 3. 11 3. 18 3. 27 Nd 15. 91 16. 41 13. 91 14. 80 14. 93 P 179. 01 497. 75 179. 01 113. 52 200. 85 Sm 4. 12 4. 54 3. 91 3. 98 4. 11 Ti 12 346. 59 12 046. 91 12 346. 59 11 387. 63 13 065. 81 Eu 2. 17 1. 91 1. 77 2. 06 1. 94 Gd 4. 79 4. 63 4. 23 4. 11 4. 58 Tb 1. 01 1. 01 0. 93 0. 92 0. 94 Dy 6. 38 6. 27 5. 58 5. 86 6. 22 Ho 1. 43 1. 27 1. 22 1. 29 1. 29 Er 4. 17 4. 07 3. 89 3. 93 4. 16 Tm 0. 73 0. 67 0. 65 0. 66 0. 65 Yb 4. 94 4. 40 4. 17 4. 49 4. 52 Lu 0. 75 0. 61 0. 62 0. 65 0. 66 Hf 5. 21 4. 37 4. 32 4. 75 5. 12 Ta 0. 82 0. 67 0. 71 0. 74 0. 69 Tl 0. 94 0. 74 1. 13 1. 25 1. 22 Th 2. 32 1. 98 1. 78 2. 01 1. 91 U 0. 60 0. 50 0. 46 0. 55 0. 50 K 9795. 76 9380. 68 12618. 26 12452. 23 12535. 24 Zr 195. 03 165. 11 168. 15 185. 07 197. 04 ΣREE 90. 56 89. 12 76. 45 82. 83 83. 33 δeu 1. 48 1. 26 1. 32 1. 54 1. 36 LREE 66. 39 66. 19 55. 18 60. 92 60. 32 HREE 24. 17 22. 93 21. 27 21. 91 23. 01 LREE /HREE 2. 74 2. 88 2. 59 2. 77 2. 62 Nb /Ta 15. 91 16. 49 15. 21 16. 59 16. 69 Sm /Nd 0. 25 0. 27 0. 28 0. 26 0. 27 Rb /Sr 0. 13 0. 11 0. 16 0. 16 0. 17 10-2 10-6.
734 35 MgO 4. 16% ~ 4. 79% Mg # 41 ~ 45 Cr Ni Co 60. 8 10-6 ~ 93. 4 10-6 19. 9 10-6 ~ 30. 7 10-6 20. 0 10-6 ~ 32. 0 10-6 LILE 427. 5 ± 7. 1 Ma 27 6 La /Sm 4. 5 23 La /Sm 2. 6 ~ 3. 2 Th /La 0. 17 0. 125 0. 204 24 Nb /U 34 Nb /U 9 ~ 12 23 Nb /U 21. 5 ~ 23. 1 OIB K /Ti 0. 70 23 K /Ti 0. 78 ~ 1. 1 0. 94 OIB 9 28 5. 2 Th Nb Zr Th Nb Zr Th Nb Zr 29 Th /Nb > 0. 11 Nb /Zr > 0. 04 Nb /Zr < 0. 04 Nb /Zr = 0. 04 29 Th /Nb > 0. 11 Nb /Zr > 0. 04 30 Zr - Zr /Y WPB Zr Y 22 6 Fig. 6 Primitive mantle-normalized trace element spider diagram of Binggounan gabbro 7 Zr - TiO 2 31 8 30 Zr - Zr /Y 29 OIB HFSE LREE /HFSE 27 IAB Fitton 25 La /Nb < 1. 5 OIB La /Nb < 1. 5 1 ~ 1. 1 Leat 26 La /Ta < 22 La / 32 Ta > ~ 30 La /Ta < 22 14 ~ 19 OIB
3 735 Fig. 7 Fig. 8 7 8 28 Zr - Zr /Y Zr - Zr /Y diagram of Binggounan gabbro Zr - TiO 2 30 Zr - TiO 2 diagram of Binggounan gabbro 33 6 1 2 Rb Ba K P 3 1. J. 2004 50 3 267-269. JIANG Chun-fa. Accordion type movement and openingclosing tectonics J. Geological Review 2004 50 3 267-269. 2. M. 2000 1-154. JIANG Chun-fa WANG Zong-qi LI Jin-yi. Openingclosing tectonics in central orogenic belt M. Beijing Geological Publishing House 2000 1-154. 3. J. 2002 23 6 501-508. BIAN Qian-tao ZHAO Da-sheng YE Zheng-ren et al. The early theory of Kun -Qi -Qin suture J. Acta Geoscientia Sinica 2002 23 6 501-508. 4. J. 2007 26 4 373-382. LI Rong-she JI Wen-hua ZHAO Zhen-ming et al. Progress in the study of the Early Paleozoic Kunlun orogenic belt J. Geological Bulletin of China 2007 26 4 Ar -Ar 373-382. 444. 5 ± 1. 5 Ma 1 5. J. 423 ± 1 Ma 9 2010 43 4 10-17. FENG Cheng-you LI Dong-sheng WU Zheng-shou et A2 1 391 ~ 396 Ma. 1 25 R. 2003.
736 35 al. Major types time-space distribution and metallogeneses of polymetallic deposits in the Qimantage metallogenic belt eastern Kunlun area J. Northwestern Geology 2010 43 4 10-17. 6 Mao J W Pirajno F Zhang Z H et al. A review of the Cu -Ni sulphide deposits in the Chinese Tianshan and Altay orogens Xinjiang Autonomous Region NW China principal characteristics and ore-forming processes J. Journal of Asian Earth Sciences 2008 32 2 184-203. 7. chemistry Hami Xinjiang NW China J. Acta Petrologica Sinica 2010 26 2 503-522. J. 2009 55 6 873-884. QIAN Zhuang-zhi SUN Tao TANG Zhong-li et al. Platinum-group elements geochemistry and its significances of the Huangshandong Ni-Cu sulfide deposit East Tianshan China J. Geological Review 2009 55 6 873-884. 8 Song X Y Li X R. Geochemistry of the Kalatongke Ni - Cu - PGE sulfide deposit NW China implications for the formation of magmatic sulfide mineralization in a post- 13. J. 2011 85 9 1435-1451. CHEN Bo XIA Ming-zhe WANG Bang-yao et al. Lithogeochemistry and petrogenesis of Huangshan intrusion East Tianshan Xinjiang J. Mineral Petrol 2011 85 9 1435-1451. 14. J. 1997 22 4 339-342. collisional environment J. Mineralium Deposita YIN Hong-fu ZHANG Ke-xin. Characteristics of the 2009 44 3 303-327. eastern Kunlun orogenic belt J. Earth Science 9. 1997 22 4 339-342. - U-Pb 15. - J. 2014 21 6 381-401. WANG Guan SUN Feng-yue LI Bi-le et al. Petrography zircon U -Pb geochronology and geochemistry of the mafic-ultramafic intrusion in Xiarihamu Cu -Ni deposit from East Kunlun with implications for geodynamic set- J. 1984 58 1 1-17. HUANG Ji-qing CHEN Guo-ming CHEN Bing-wei. Preliminary analysis of the Tethys -Himalayan tectonic domain J. Acta Geologica Sinica 1984 58 1 1-17. 16. ting J. Earth Science Frontiers 2014 21 6 381-401. 10. - SHRIMP U - Pb J. 2004 49 22 2324-2328. HAN Bao-fu JI Jian-qing SONG Biao et al. SHRIMP zircon U -Pb age and its geological significances of the Kalatongke and Huangshandong Cu-Ni ore bearing mafic-ultramafic complex Xinjiang China J. Bulletin of Science and Technology 2004 49 22 2324-2328. 11 J. 2006 80 1 23-31. WANG Jing-bin XU Xin. Post-collisional tectonic evolution and metallogenesis in northern Xinjiang China J. Acta Geologica Sinica 2006 80 1 23-31. 12. - U -Pb J. 2010 26 2 503-522. XIAO Qing-hua QIN Ke-zhang TANG Dong-mei et al. Xiangshanxi composite Cu -Ni -Ti -Fe deposit belongs to comagmatic evolution product evidences from ore microscopy zircon U -Pb chronology and petrological-geo- M. 1992 183-217. JIANG Chun-fa YANG Jing-sui FENG Bing-gui et al. Opening-closing tectonics in Kunlun M. Beijing Geological Publishing House 1992 183-217. 17 Qi L Hu J Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry J. Talanta 2000 51 507-513. 18. J. 1999 15 3 364-370. LI Xian-hua LI Ji LIU Ying et al. Geochemistry characteristics of the Paleoproterozoic meta-volcanics in. the Cathaysia block and its tectonic significance J. Acta Petrologica Sinica 1999 15 3 364-370. 19.
3 737 J. 2009 28 4 485-490. YU Hong-bin QIAO Guo-hua PENG Yu-jing et al. D. 2014. WANG Guan. Metallogenesis of nickel deposits in east- Correcting name on Cenozoic Chuandishan basalt in Jihei ern Kunlun orogenic belt Qinghai Province doctor's area and its significance J. Global Geology 2009 28 4 485-490. degree 2014. thesis D. Changchun Jilin University 20. 28 PENG Bo SUN Feng-yue LI Bi-le et al. The geochemistry and geochronology of the Xiarihamu II mafic- J. 2013 32 4 783-792. WANG Jin-cheng JIN Bing-fu LIU Zhong-cheng et al. Shandong Penglai basalt geological and geochemical characteristics of eastern plot the evolution of the mantle instruction significance J. Global Geology 2013 32 4 783-792. 21 Boynton W V. Geochemistry of the rare earth elements meteorite studies M / /Henderson P. Rare Earth Element ultramafic complex eastern Kunlun Qinghai Province China implications for the genesis of magmatic Ni -Cu sulfide deposits J. Ore Geology Reviews 2016 73 13-28. 29. J. 2007 26 1 77-89. XIA Lin-qi XIA Zu-chun XU Xue-yi et al. The dis- Geochemistry. Amsterdam Elsevier 1984 crimination between continental basalt and island arc baultramafic 63-114. salt based on geochemical method J. Acta Petrologi- 22 Belousova E A Griffin W L O'Reilly S Y et al. Igneous zircon trace element composition as an indicator of source rock type J. Contributions to Mineralogy and Petrology 2002 143 5 602-622. ca et Mineralogica 2007 26 1 77-89. 30 Hofmann A W. Siderophile element in ozeanischen Basalten Ihreverar mung imprimitiven mutelund Ihrebedeutung beider Entwicklung J. Fortschritte der Min- 23 Sun S S McDonough W F. Chemical and isotopic systematic of oceanic basalts implications for mantle composition and processes C / /Saunders A D Norry M J. Magmatism in the ocean basins. London Geological Society of London 1989 313-345. 24 Weaver B L. The origin of ocean island basalt end-member compositions trace element and isotopic constraints J. Earth and Planetary Science Letters 1991 104 2 /4 381-397. 25 Fitton J G James D Kempton P D et al. The role of lithosphere mantle in the generation of Late Cenozoic basic magmas in the western United States C / /Cox K G Menzies M A. Oceanic and continental lithosphere similarities and differences. Journal of Petrology 1988 Spec. 331-349. 26 Leat P T Thompson R N Morrison M A et al. Compositionally-diverse Miocene-recent rift-related magmatism in northwest Colorado partial melting and mixing of mafic magmas from 3 different asthenospheric and lithospheric mantle sources C / /Cox K G Menzies M A. Oceanic and continental lithosphere similarities and differences. Journal of Petrology 1988 Spec. 351-377. 27. era logie Beihe ft 1986 64 1 79. 31 Pearce J A. Trace element characteristics of lavas from destructive plate boundaries C / /Thorps R S. Andesites. New York John Wiley and Sons 1982 525-548. 32. J. 2007 13 3 403-414. MO Xuan-xue LUO Zhao-hua DENG Jin-fu et al. Granitoids and crustal growth in the East -Kunlun orogenic belt J. Geological Journal of China Universities 2007 13 3 403-414. 33. U -Pb J. 2013 37 4 685-697. WANG Guan SUN Feng-yue LI Bi-le et al. Zircon U -Pb geochronology and geochemistry of the Early Devonian syenogranite in the Xiarihamu ore district from East Kunlun with implications for the geodynamic setting J. Geotectonica et Metallogenia 2013 37 4 685-697.