HPLC * 271016 HPLC - DAD DiamonsilC 18 250 mm 4. 6 mm 5 μm - -1% 370 nm 1. 0 ml /min 40 R282. 7 A 1001-1528 2011 01-0001-05 Comparison of HPLC fingerprint between enzymatic Calculus bovis and natural Calculus bovis LI Ke QI Yong-xiu YU Xiu-ling WANG Fu-gang LI Bing-long GAO Yun-sheng * Dept. of Pharmacy Taishan Medical College Taian 271016 Shandong China KEY WORDS natural Calculus bovis calculus bovis cultivated by glucuronidase HPLC fingerprint ABSTRACT AIM To develop an HPLC-PDA fingerprint analysis method of natural Calculus bovis in comparison with Calculus bovis cultivated by glucuronidase. METHODS An HPLC analysis was carried out on a Diamonsil C 18 column 4. 6 mm 250 mm 5 μm with the mobile phase consisting Methanol A -chloroform -1% acetic acid aqueous solution in gradient mode. The detection wavelength was set at 370 nm. The flow rate was 1. 0 ml min - 1 and the analytic time was 40 min. RESULTS Under the above chromatographic conditions the mutual mode of HPLC fingerprints was set up Calculus bovis cultivated by glucuronidase had a similar fingerprint chromatogram to the natral Calculus bovis but there was a little difference in their concent. CONCLUSION The method is in good precision and reproducibility and could be available for the identification of various substitutes of Calculus bovis. Calculus bovis Bostaurus 2-3 domesticus Gmelin 4 5-6 7 1 680 1% ~ 2% 1 1. 1 Waters 600 2996 DAD Calculus bovis cultivated by glucuronidase Empower Waters Sarto- rious BT 25S 1 /100000 CBCG 2010-03-20 2009ZRQN060 J10LF-16 1978 - Tel 0538 6229752-8004 E-mail likegaofeng@ 126. com. * 1955 - Tel 0538-6229756 E-mail ysgao@ tsmc. edu. cn. 1
KQ-500DE AP-01P VACUUM PUMP Autoscience Autoscience 1. 2 2 HPLC 100077-200604 Fig. 2 HPLC chromatogram of natural Calculus bovis 2. 3 in dimethyl sulfoxide DMSO 2004-03 2004-05 2004-06 2004-08 2004-10 2004-12 2005-02 2005-05 2005-08 2005-10 450 nm 3 370 nm 4 Bostaurus domesticus Gmelin 2005 370 nm 2 2. 1 5 ml 3 450 nm HPLC 2. 2 Fig. 3 HPLC chromatogram of natural Calculus 2. 2. 1 2 bovis at 450 nm 10 ml - - - 90 10 0. 015 0. 3 10 min 6000 r /min 10 min 2 20 μl 4 370 nm HPLC 1 2 Fig. 4 HPLC chromatogram of natural Calculus bovis 2. 3. 1 200 ~ 400 nm DAD at 370 nm 2. 3. 2 5 60 min 40 min 40 min 1 Fig. 1 - - - HPLC HPLC chromatogram of natural Calculus bovis in methanol-chloroform-hydrochloride-h 2 O 2. 2. 2 5 60 min HPLC Fig. 5 HPLC chromatogram of natural Calculus bovis in 60 minites 2
2. 3. 3 DiamonsilC 18 250 mm 4. 6 mm 5 μm A - B -1% C 0 ~ 10 min 65% A 6% B 29% C 11 ~ 30 min 82 % A 15% B 3% C 31 ~ 40 min 65 % A 6% B 29% C 1. 0 ml / min 370 nm 0 ~ 40 min 20 μl 2. 4 2. 4. 1 2 2. 2. 1 6 Fig. 6 RSD HPLC chromatogram of 10 batches of natural Calculus bovis 0. 021% 0. 97% 2. 4. 2 2. 2. 1 0 2 4 8 10 12 24 h RSD 0. 053% 1. 34% 7 2. 4. 3 6 Fig. 7 Mutual pattern of HPLC chromatogram on 2. 2. 1 natural Calculus bovis RSD 0. 107% 1. 55% 2. 5 2. 5. 1 2. 2. 1 10 10 20 μl 10 8 10 HPLC 2004A 0 ~ 40 min HPLC Fig. 8 HPLC chromatogram on 10 batches of Calculus bovis cultivated by glucuronidase and mutual pattern 6 7 of natural Calculus bovis 10 8 2. 5. 2 10 2. 5. 3 HPLC 17 2004A 10 10 10 0. 877 0. 918 0. 881 0. 928 0. 827 0. 906 0. 838 50% 0. 930 0. 899 0. 868 S 10 1 0. 994 0. 996 0. 982 0. 987 2 10 0. 994 0. 996 0. 982 0. 986 0. 992 0. 988 6 10 HPLC 10 3
10 2 4 5 6 7 1 3 10 1 Tab. 1 2 10 Relative reserving time of 10 batches of natural Calculus bovis samples 1 2 3 4 5 6 7 8 9 10 1 0. 227 0. 231 0. 226 0. 226 0. 226 0. 227 0. 227 0. 230 0. 228 0. 228 0. 228 2 0. 318 0. 325 0. 316 0. 310 0. 306 0. 314 0. 315 0. 318 0. 320 0. 315 0. 316 3 0. 372 0. 380 0. 371 0. 373 0. 373 0. 374 0. 374 0. 375 0. 373 0. 372 0. 592 4 0. 602 0. 604 0. 600 0. 597 0. 594 0. 580 0. 600 0. 594 0. 587 0. 587 0. 595 5 0. 619 0. 620 0. 618 0. 604 0. 595 0. 602 0. 610 0. 612 0. 618 0. 616 0. 611 6 0. 650 0. 648 0. 651 0. 645 0. 650 0. 655 0. 663 0. 649 0. 650 0. 650 0. 651 7 0. 788 0. 789 0. 787 0. 784 0. 783 0. 788 0. 792 0. 785 0. 783 0. 790 0. 787 8 0. 815 0. 818 0. 818 0. 811 0. 809 0. 815 0. 820 0. 820 0. 815 0. 818 0. 816 9 0. 914 0. 915 0. 913 0. 911 0. 903 0. 910 0. 911 0. 911 0. 912 0. 908 0. 912 10 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 Tab. 2 10 Relative peak area of 10 batches of natural Calculus bovis samples 1 2 3 4 5 6 7 8 9 10 1 0. 012 7 0. 016 7 0. 019 1 0. 024 2 0. 027 0 0. 014 2 0. 026 0 0. 023 8 0. 021 2 0. 019 8 0. 020 5 2 0. 250 2 0. 299 5 0. 199 5 0. 257 1 0. 287 5 0. 294 6 0. 253 2 0. 263 5 0. 244 6 0. 211 2 0. 256 1 3 0. 020 6 0. 032 3 0. 042 1 0. 053 6 0. 044 4 0. 051 9 0. 045 2 0. 050 5 0. 051 2 0. 047 8 0. 044 0 4 0. 016 9 0. 015 4 0. 014 8 0. 017 9 0. 014 5 0. 016 4 0. 016 1 0. 015 5 0. 016 1 0. 015 1 0. 015 9 5 0. 013 7 0. 026 3 0. 011 5 0. 014 7 0. 018 1 0. 013 5 0. 015 0 0. 017 8 0. 014 5 0. 014 8 0. 016 0 6 0. 013 9 0. 018 7 0. 014 6 0. 013 3 0. 019 0 0. 011 1 0. 011 0 0. 012 1 0. 013 2 0. 011 2 0. 013 8 7 0. 016 6 0. 025 6 0. 021 4 0. 035 0 0. 027 0 0. 016 4 0. 028 0 0. 026 0 0. 023 5 0. 022 0 0. 024 2 8 0. 093 1 0. 103 2 0. 093 7 0. 098 4 0. 105 0 0. 098 3 0. 092 3 0. 096 7 0. 095 2 0. 089 2 0. 096 5 9 0. 015 5 0. 032 1 0. 019 4 0. 016 0 0. 011 2 0. 018 8 0. 018 2 0. 020 9 0. 025 3 0. 073 5 0. 020 1 10 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 100 3 3. 1 A - B A - B -1% C A - B -1% C 0 ~ 10 min 65% A 6% B 29% C 11 ~ 30 min82 % A 15% B 3% C 31 ~ 40 min 65 % A 6% B 29% C HPLC 3. 2 10 HPLC 8 626-629. 10 1. J. 2006 23 6 14-15. 2. β- J. 1991 12 1 13-14. 3. J. 2010 30 10 846-848. 4. 6 HPLC-ELSD J. 2010 45 5. HPLC J. 2010 20 3 17-19. 5 6 J. 2005 16 5 363-365. 7 4..
J. 2004 2 5 309-312. 8. M. 2003 5. HPLC * 510095 HPLC Agilent Zorbax Extend-C 18 4. 6 mm 250 mm 5 μm - 0. 3% 0. 2% 268 nm 0. 7 ml /min 20 19 R284. 1 A 1001-1528 2011 01-0005-05 HPLC fingerprint of coptis-evodia couplet medicines TU Yao-sheng LIU Fa-jin SUN Dong-mei ZHUANG Yu-jian Guangdong Provincial Institute of TCM Guangzhou 510095 Guangdong China KEY WORDS coptis-evodia couplet medicines HPLC fingerprints ABSTRACT AIM The HPLC fingerprint of coptis-evodia couplet medicines was carried out to illustrate the effect of the compatibility to chemical compounds and to explain the mechenism of this compatibility. METHODS The chromatographic fingerprints were obtained by measuring the coptis-evodia couplet medicine on an Agilent Zorbax extend-c 18 column 4. 6 mm 250 mm 5 μm with the gradient elution solvent system of acetonitrile-0. 3% phosphoric 0. 2% triethylamine-water. The flow rate was 0. 7 ml /min the column temperature was maintained at 20 and the detection wavelength was set at 268 nm. RESULTS Nineteen co-possessing peaks were selected as the fingerprint peaks and preliminary assignment was also performed by taking berberine peak as the reference peak. CONCLUSION From the couplet medicines angle adding coptis into evodia in stew proves beneficial to the stripping of liposoluble alkaloids come from evodia in proportion. 2 1 1 2 1 6 1 1 1 1. 1 2 Agilent 1200 DAD 2010-01-25 30873369 1957 - * Tel 020 83501292 E-mail tcmgdp@ 163. com 5