Supporting Information

Σχετικά έγγραφα
Supporting Information

Table of Contents 1 Supplementary Data MCD

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Electronic Supplementary Information:

Supporting Information

Supporting Information for: electron ligands: Complex formation, oxidation and

Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003 Chem. Eur. J Supporting Information. for

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

ELECTRONIC SUPPORTING INFORMATION

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Electronic Supporting Information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Supplementary materials

Electronic Supplementary Information

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

SUPPORTING INFORMATION

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supporting Information

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

The Role of Imidoselenium(II) Chlorides in the Formation of Cyclic Selenium

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information

of the methanol-dimethylamine complex

Supporting Information

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

SUPPLEMENTARY MATERIAL

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting Information

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Supplementary!Information!

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek


Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Supporting information

Design and Solid Phase Synthesis of New DOTA Conjugated (+)-Biotin Dimers Planned to Develop Molecular Weight-Tuned Avidin Oligomers

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Supporting Information

Supporting Information

Fused Bis-Benzothiadiazoles as Electron Acceptors

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Electronic Supplementary Information

Supporting Information

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

difluoroboranyls derived from amides carrying donor group Supporting Information

Supporting Information

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Supporting Information

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Supporting Information for

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Ionic liquid effect over the Biginelli reaction under homogeneous and heterogeneous catalysis

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Electronic Supplementary Information

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Synthetic Control of Excited States in Cyclometalated Ir(III) Complexes using Ancillary Ligands

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Supporting Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting information

Supporting Information

Transcript:

Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany

An Unusual Supramolecular Building Block: the Mixed Group 15/16 Element Ligand Complex [(Cp*Mo) 2 (µ,η 3 - P 3 )(µ,η 2 -PS)] Laurence J. Gregoriades, Gábor Balázs, Eike Brunner, Christian Gröger, Joachim Wachter, Manfred Zabel and Manfred Scheer* Contents 1. 31 P NMR Spectral Data of Polymer 5 2. ESI MS and IR Spectral Data of Polymer 4 3. ESI MS and IR Spectral Data of Polymer 5 4. Theoretical Calculations 5. References

2 1. 31 P NMR Spectral Data of Polymer 5 The 31 P NMR spectra of compound 5 in CD 3 CN and in the solid state are illustrated in Figures 1 and 2, respectively. Figure 1. Room temperature 31 P NMR spectrum of 5 in CD 3 CN, with labelling scheme (P X : 373.8 ( 1 J AX = 375 Hz, 1 J BX = 386 Hz, 2 J MX = 22 Hz); P M : 132.1 ( 2 J AM = 57 Hz, 2 J XM = 18 Hz); P B : 304.9 ( 1 J XB = 384 Hz); P A : 327.3 ( 1 J XA = 380 Hz, 2 J MA = 57 Hz)).

3 Figure 2. Room temperature 31 P MAS NMR spectrum of 5, with labelling scheme (P X : 367.2; P M : 128.2; P B : 295.51; P A : 340.3).

4 2. ESI MS and IR Spectral Data of Polymer 4 ν Positive ion ESI MS (CH 3 CN, 25 C): m/z (%) = 2304.0 (0.5) [Cu 3 I 2 {(Cp*Mo) 2 P 4 S} 3 ] +, 2111.1 (1) [Cu 2 I{(Cp*Mo) 2 P 4 S} 3 ] +, 1870.7 (1) [Cu 4 I 3 {(Cp*Mo) 2 P 4 S} 2 ] +, 1682.4 (2) [Cu 3 I 2 {(Cp*Mo) 2 P 4 S} 2 ] +, 1491.1 (26) [Cu 2 I{(Cp*Mo) 2 P 4 S} 2 ] +, 1300.0 (16) [Cu{(Cp*Mo) 2 P 4 S} 2 ] +, 1103.8 (2) [Cu 3 I 2 {(Cp*Mo) 2 P 4 S}(NCCH 3 )] +, 1062.8 (12) [Cu 3 I 2 {(Cp*Mo) 2 P 4 S}] +, 913.9 (72) [Cu 2 I{(Cp*Mo) 2 P 4 S}(NCCH 3 )] +, 874.8 (4) [Cu 2 I{(Cp*Mo) 2 P 4 S}] +, 722.0 (100) [Cu{(Cp*Mo) 2 P 4 S}(NCCH 3 )] +, 681.0 (3) [Cu{(Cp*Mo) 2 P 4 S}] +. Negative ion ESI MS (CH 3 CN, 25 C): m/z (%) = 2220.1 (0.1) [Cu 11 I 12 ], 2033.8 (0.1) [Cu 10 I 11 ], 1843.8 (0.1) [Cu 9 I 10 ], 1649.9 (0.1) [Cu 8 I 9 ], 1460.0 (0.1) [Cu 7 I 8 ], 1270.3 (0.5) [Cu 6 I 7 ], 1078.3 (0.5) [Cu 5 I 6 ], 888.4 (1) [Cu 4 I 5 ], 698.6 (11) [Cu 3 I 4 ], 506.7 (26) [Cu 2 I 3 ], 316.7 (100) [CuI 2 ]. IR (KBr): = 2972 (w), 2952 (w), 2902 (m), 2850 (w), 1629 (w), 1561 (w), 1542 (w), 1477 (m), 1446 (m), 1422 (m), 1377 (s), 1262 (w), 1160 (w), 1070 (w), 1026 (m), 801 (w), 736 (w), 625 (w), 556 (w), 540 (w), 507 (w), 427 (w) cm -1. 3. ESI MS and IR Spectral Data of Polymer 5 Positive ion ESI MS (CH 3 CN, RT): m/z (%) = 1345.2 (100) [Ag{(Cp*Mo) 2 P 4 S} 2 ] +, 767.9 (19) [Ag{(Cp*Mo) 2 P 4 S}(NCCH 3 )] +, 726.9 (3) [Ag{(Cp*Mo) 2 P 4 S}] +. Negative ion ESI MS (CH 3 CN, RT): m/z (%) = 967.2 (100) [Al{OC(CF 3 ) 3 } 4 ]. IR (KBr): ν = 2972 (w), 2914 (w), 1481 (w), 1449 (w), 1425 (w), 1378 (m), 1353 (m), 1302 (s), 1278 (s), 1242 (s), 1220 (vs), 1167 (w), 1135 (w), 1103 (m), 1027 (w), 975 (vs), 830 (w), 805 (w), 756 (w), 728 (m), 560 (w), 537 (w), 447 (w) cm -1.

5 4. Theoretical Calculations DFT calculations on the model complex cation [Ag{(CpMo) 2 P 4 S} 2 ] + (I) were carried out using the Amsterdam Density Functional program (ADF) version 2006.01. [1] Scalar relativistic corrections were included via the Zero Order Regular Approximation (ZORA) method. [2] The generalized gradient approximation was employed, using the local density approximation of Vosko, Wilk, and Nusair [3] together with the nonlocal exchange correction by Becke [4] and nonlocal correlation corrections by Perdew. [5] The Slater-type orbital (STO) basis sets were of triple-ζ quality augmented with a single polarization function and two diffuse functions (ADF basis TZP++). The cores of the atoms were frozen up to 1s for C, 2p for P and S and 4p for Mo and Ag. Optimisations were performed without symmetry restraints with an integration grid of 4.0. Solvation effects were incorporated via the Conductor-like Screening Model (COSMO) [6] using acetonitrile as solvent. The relative energies of selected linkage isomers in the gas phase as well as in solution (acetonitrile as solvent) are given in Table 1. The gas phase optimised geometries of the cations Ia-m are depicted in Figure 3.

6 Table 1. Relative energies [kj mol 1 ] of selected linkage isomers of the cation [Ag{(CpMo) 2 P 4 S} 2 ] + (I) in the gas phase and in solution. Compound Relative Energy gas phase solution (acetonitrile) Ia 0.0 0.0 Ib 29.8 30.1 Ic 31.2 30.3 Id 31.3 30.1 Ie 33.4 31.1 If 37.8 35.8 Ig 40.8 39.9 Ih 41.0 38.8 Ii 43.8 43.4 Ij 46.5 47.1 Ik 46.6 46.6 Il 59.4 55.4 Im 75.0 71.8

7 Figure 3. Optimised geometries of the cations Ia-m in the gas phase. Ia Ib Ic Id Ie If Ig Ih

8 Ii Ij Ik Il Im

9 Table 2. Cartesian coordinates for the optimised structure of Ia (gas phase). 1.Ag -0.046931 0.005528 0.064829 2.Mo -4.442404-1.241849 0.140024 3.Mo -4.303913 1.452198 0.286661 4.P -5.459750 0.071004 1.902293 5.P -3.304719-0.063439 2.241521 6.P -2.394477 0.005193 0.247205 7.P -6.228126 0.254275-0.753923 8.S -4.455005 0.219943-1.866264 9.C -5.781654-3.056389-0.442438 10.C -5.451248-3.173805 0.930480 11.C -4.048714-3.355742 1.024480 12.C -3.509962-3.341947-0.285585 13.C -4.581135-3.156564-1.189522 14.C -5.352841 3.423752 0.982879 15.C -5.184958 3.479912-0.423768 16.C -3.792100 3.502010-0.698011 17.C -3.104246 3.440901 0.533595 18.C -4.070303 3.396800 1.571801 19.H -6.782954-2.933879-0.852419 20.H -6.153273-3.165958 1.762122 21.H -3.485508-3.487470 1.948152 22.H -2.460980-3.461187-0.551416 23.H -4.495827-3.094028-2.274498 24.H -6.303108 3.411525 1.514002 25.H -5.984616 3.528249-1.162233 26.H -3.333642 3.541416-1.685674 27.H -2.023397 3.436119 0.667665 28.H -3.860947 3.348001 2.640221 29.Mo 4.068863-1.281882 0.308554 30.Mo 4.090669 1.416915 0.161099 31.P 4.379677 0.170833 2.221184 32.P 2.284817 0.166883 1.612353 33.P 2.266200 0.029154-0.621293 34.P 6.172295 0.046963 0.141151 35.S 5.040322-0.040706-1.611557 36.C 4.102948-3.174846 1.667514 37.C 5.302047-3.190320 0.921951 38.C 4.963229-3.307769-0.446032 39.C 3.552728-3.396215-0.549981 40.C 3.020160-3.307849 0.756843 41.C 4.610119 3.396298 1.251970 42.C 3.272650 3.504289 0.795136 43.C 3.283795 3.472960-0.620906 44.C 4.627896 3.348177-1.039077 45.C 5.450298 3.305326 0.114729 46.H 4.023703-3.106053 2.751335 47.H 6.309839-3.115290 1.327617 48.H 5.668546-3.334656-1.277720 49.H 2.986112-3.507669-1.473338 50.H 1.964432-3.348493 1.023913 51.H 4.936689 3.420978 2.289671 52.H 2.391154 3.605463 1.427992 53.H 2.414779 3.539133-1.274528 54.H 4.971041 3.292575-2.072515 55.H 6.537356 3.240040 0.124689

10 Table 3. Cartesian coordinates for the optimised structure of Ib (gas phase). 1.Ag -0.025629-0.058950-0.032265 2.Mo 4.117235-1.369636 0.126922 3.Mo 4.018514 1.329622 0.027349 4.P 4.341282-0.070405-1.924511 5.P 2.271982-0.181094-1.236962 6.P 2.274439-0.031305 1.009112 7.P 6.164462 0.057417 0.122773 8.S 5.079234 0.078281 1.908097 9.C 5.480557-3.260773-0.066484 10.C 4.477232-3.326874-1.062265 11.C 3.222589-3.443479-0.408594 12.C 3.448233-3.437454 0.989211 13.C 4.843206-3.319288 1.196600 14.C 4.773607 3.269814-1.061314 15.C 5.161771 3.340484 0.297641 16.C 3.982485 3.409025 1.086687 17.C 2.872897 3.363742 0.215666 18.C 3.363095 3.275066-1.112418 19.H 6.552726-3.192466-0.240321 20.H 4.641567-3.333452-2.138628 21.H 2.255764-3.535067-0.902107 22.H 2.689556-3.510679 1.766740 23.H 5.341496-3.271136 2.166101 24.H 5.443766 3.218406-1.918233 25.H 6.185179 3.368411 0.670563 26.H 3.942452 3.473017 2.174016 27.H 1.825120 3.393506 0.512264 28.H 2.760083 3.231070-2.018799 29.Mo -4.150746-1.309099 0.029007 30.Mo -3.984810 1.383478 0.100187 31.P -4.342980 0.114225-1.921486 32.P -2.263469-0.054693-1.256162 33.P -2.285760-0.093141 0.997141 34.P -6.169239 0.166350 0.115361 35.S -5.077852 0.051540 1.891211 36.C -4.194075-3.245287-1.274181 37.C -5.432865-3.181533-0.600715 38.C -5.179636-3.265723 0.788445 39.C -3.782009-3.411442 0.978926 40.C -3.173443-3.391909-0.296691 41.C -4.343804 3.386009-1.019531 42.C -2.983009 3.358044-0.629473 43.C -2.926458 3.358761 0.786658 44.C -4.252537 3.391947 1.271313 45.C -5.131636 3.408950 0.158576 46.H -4.050095-3.215617-2.353415 47.H -6.412093-3.076394-1.066211 48.H -5.933033-3.234555 1.576595 49.H -3.272418-3.513542 1.936254 50.H -2.106477-3.482979-0.499091 51.H -4.717254 3.419265-2.041267 52.H -2.129332 3.346853-1.306112 53.H -2.023795 3.342103 1.396183 54.H -4.547818 3.392930 2.320675 55.H -6.218798 3.456551 0.201513

11 Table 4. Cartesian coordinates for the optimised structure of Ic (gas phase). 1.Ag 0.001811 0.199475 0.111070 2.Mo -4.719891 1.105007-0.027807 3.Mo -4.211170-1.538825 0.010123 4.P -3.734441-0.111070-1.898060 5.P -2.324197 0.194495-0.268506 6.P -3.324937 0.020394 1.662701 7.P -6.308021-0.585325-0.938713 8.S -6.154287-0.521182 1.152286 9.C -6.175986 2.770872-0.775676 10.C -4.881894 3.069480-1.265709 11.C -4.048647 3.338271-0.150724 12.C -4.817317 3.191622 1.028670 13.C -6.131644 2.838702 0.639019 14.C -4.019701-3.538939-1.194421 15.C -5.056131-3.696549-0.241998 16.C -4.476841-3.617580 1.052754 17.C -3.092201-3.394186 0.901173 18.C -2.810727-3.347304-0.490310 19.H -7.052766 2.541320-1.379288 20.H -4.588724 3.122037-2.312455 21.H -2.994531 3.609901-0.195015 22.H -4.467786 3.339481 2.049144 23.H -6.968573 2.654235 1.312725 24.H -4.136012-3.557939-2.277078 25.H -6.108079-3.873944-0.464613 26.H -5.008780-3.697483 2.000565 27.H -2.367316-3.289312 1.707325 28.H -1.831264-3.195604-0.942904 29.Mo 4.176247 1.184614-0.023582 30.Mo 3.990145-1.513312-0.083586 31.P 4.385063-0.134351-2.039354 32.P 2.293263-0.032063-1.428787 33.P 2.282397-0.048147 0.816216 34.P 6.170039-0.313670 0.036745 35.S 5.044993-0.272901 1.795835 36.C 4.330669 3.172965-1.231140 37.C 5.533496 3.047592-0.502285 38.C 5.213890 3.077860 0.875122 39.C 3.813478 3.254258 1.003928 40.C 3.266598 3.306119-0.298783 41.C 4.356108-3.439521-1.323168 42.C 3.009283-3.470034-0.882691 43.C 3.007045-3.550222 0.531877 44.C 4.351853-3.572830 0.965113 45.C 5.187904-3.508475-0.177888 46.H 4.238357 3.197924-2.315942 47.H 6.530408 2.935186-0.925755 48.H 5.925850 2.990609 1.696899 49.H 3.261466 3.329046 1.939963 50.H 2.213876 3.440032-0.546594 51.H 4.691859-3.411344-2.357901 52.H 2.129747-3.447077-1.525416 53.H 2.128029-3.591174 1.173627 54.H 4.687163-3.626467 2.001241 55.H 6.276455-3.533691-0.177251

12 Table 5. Cartesian coordinates for the optimised structure of Id (gas phase). 1.Ag -0.061553-0.090640-0.299951 2.Mo -3.991628 1.678924-0.306595 3.Mo -4.685328-0.879859-0.738822 4.P -6.179129 0.769006 0.241029 5.P -6.000627 1.083414-1.893449 6.P -3.961312 0.631871-2.508793 7.S -3.639060-0.098270 1.414604 8.P -2.403889-0.168821-0.269544 9.C -3.333724 3.377580 1.169989 10.C -4.538074 3.784230 0.554119 11.C -4.285389 3.927192-0.833853 12.C -2.928446 3.599453-1.075847 13.C -2.339518 3.260177 0.168019 14.C -5.928215-2.737164-0.063158 15.C -4.575578-3.146825-0.199101 16.C -4.218103-3.034837-1.563889 17.C -5.331926-2.534666-2.268885 18.C -6.392376-2.358640-1.340840 19.H -3.201964 3.171316 2.232451 20.H -5.484703 3.973966 1.056890 21.H -5.008503 4.243807-1.585229 22.H -2.426650 3.626758-2.041258 23.H -1.300959 2.971532 0.331862 24.H -6.506953-2.722808 0.858854 25.H -3.934009-3.505278 0.606070 26.H -3.246077-3.270126-1.994575 27.H -5.379340-2.339746-3.339765 28.H -7.392205-1.993830-1.575786 29.Mo 3.839118 1.615831-0.781163 30.Mo 4.108410-1.034759-0.427596 31.P 5.256628 0.626493 0.943800 32.P 6.197627 0.448937-0.998736 33.P 4.674066 0.105410-2.508922 34.S 2.355603 0.306058 0.724407 35.P 2.122152-0.007250-1.455313 36.C 4.639580 3.779638-0.337441 37.C 3.281686 3.740075 0.035336 38.C 2.512282 3.492440-1.131631 39.C 3.400910 3.398074-2.230799 40.C 4.714006 3.566408-1.738828 41.C 4.777752-2.821355 0.914641 42.C 5.531762-2.858451-0.283657 43.C 4.642198-3.094823-1.363543 44.C 3.338311-3.216208-0.829745 45.C 3.421408-3.038566 0.571029 46.H 5.483969 3.950883 0.329073 47.H 2.897905 3.862982 1.048028 48.H 1.425482 3.421551-1.181107 49.H 3.123977 3.223137-3.269020 50.H 5.625777 3.549296-2.334975 51.H 5.171846-2.677293 1.918896 52.H 6.612635-2.742473-0.361948 53.H 4.919677-3.201650-2.411030 54.H 2.429990-3.408646-1.398970 55.H 2.584335-3.063751 1.269067

13 Table 6. Cartesian coordinates for the optimised structure of Ie (gas phase). 1.Ag 0.012657 0.000246-0.041887 2.Mo -4.019431-1.423226-0.290077 3.Mo -4.064561 1.279714-0.311561 4.P -4.418243-0.058245 1.674108 5.P -2.303649-0.042502 1.113252 6.P -2.214335-0.042962-1.144815 7.P -6.140119-0.107393-0.444591 8.S -4.963540-0.104026-2.166772 9.C -5.279979-3.383436-0.156572 10.C -4.346917-3.381778 0.908341 11.C -3.046323-3.433355 0.343765 12.C -3.174758-3.459906-1.066582 13.C -4.554887-3.423805-1.372960 14.C -4.999170 3.256890 0.553473 15.C -5.250151 3.209123-0.839643 16.C -4.002489 3.277777-1.513940 17.C -2.986376 3.340548-0.536418 18.C -3.603690 3.331295 0.741513 19.H -6.364289-3.368852-0.057989 20.H -4.584566-3.380977 1.970582 21.H -2.111366-3.463063 0.902291 22.H -2.360984-3.502098-1.788732 23.H -4.986117-3.423601-2.374360 24.H -5.751500 3.239603 1.340676 25.H -6.232437 3.159688-1.309311 26.H -3.854433 3.265429-2.593078 27.H -1.916081 3.398112-0.729703 28.H -3.090647 3.380051 1.701681 29.Mo 4.029420-1.413834-0.359322 30.Mo 4.090718 1.273287-0.333342 31.P 2.360641-0.045890 0.686660 32.P 2.171611-0.007371-1.582075 33.P 4.183268-0.055201-2.382921 34.P 5.026466-0.103739 1.537844 35.S 6.130330-0.118262-0.231230 36.C 2.904103-3.411918 0.064737 37.C 4.079949-3.427795 0.847885 38.C 5.185647-3.414699-0.033811 39.C 4.695764-3.421713-1.365213 40.C 3.285746-3.418075-1.302637 41.C 3.418087 3.289030 0.626485 42.C 3.080874 3.336398-0.747892 43.C 4.280687 3.292889-1.501743 44.C 5.357160 3.220727-0.590114 45.C 4.827992 3.215843 0.725880 46.H 1.884044-3.422730 0.445602 47.H 4.127987-3.432021 1.935986 48.H 6.236081-3.412051 0.258953 49.H 5.297975-3.434077-2.272281 50.H 2.608791-3.419842-2.156702 51.H 2.720769 3.318240 1.461807 52.H 2.073940 3.410328-1.157158 53.H 4.357721 3.326543-2.587392 54.H 6.412887 3.169654-0.855217 55.H 5.405132 3.181940 1.649615

14 Table 7. Cartesian coordinates for the optimised structure of If (gas phase). 1.Ag -0.000118-0.047322-0.140996 2.Mo 4.092512-1.356061 0.096381 3.Mo 4.008036 1.332623 0.008466 4.P 4.357989-0.054965-1.963995 5.P 2.291542-0.149812-1.332354 6.P 2.271240-0.028588 0.951732 7.S 6.105407 0.063068 0.353962 8.P 4.845242 0.069461 2.019189 9.C 5.409291-3.285798-0.014021 10.C 4.429521-3.380288-1.026891 11.C 3.161254-3.431074-0.395729 12.C 3.358718-3.365467 1.005265 13.C 4.751767-3.274031 1.242967 14.C 4.751030 3.311283-1.006306 15.C 5.138099 3.349296 0.357390 16.C 3.968470 3.384560 1.152006 17.C 2.855099 3.337677 0.283237 18.C 3.340165 3.301437-1.051095 19.H 6.485653-3.225198-0.172899 20.H 4.615033-3.421944-2.099196 21.H 2.202030-3.521417-0.904461 22.H 2.581581-3.395533 1.766756 23.H 5.233909-3.224353 2.219070 24.H 5.422219 3.299479-1.863739 25.H 6.162855 3.361537 0.729661 26.H 3.934111 3.423680 2.240025 27.H 1.808884 3.359768 0.583768 28.H 2.731970 3.273703-1.954880 29.Mo -4.155288-1.313062 0.012457 30.Mo -3.959850 1.371147 0.063737 31.P -4.349924 0.098400-1.978261 32.P -2.291334-0.098112-1.337940 33.P -2.272275-0.109084 0.931645 34.S -6.108317 0.173750 0.342602 35.P -4.845562 0.046390 1.999901 36.C -4.226175-3.310234-1.212713 37.C -5.440173-3.198132-0.505010 38.C -5.144924-3.229839 0.884241 39.C -3.745718-3.380723 1.030481 40.C -3.177803-3.419458-0.262873 41.C -4.294108 3.434976-0.985833 42.C -2.930734 3.346617-0.615773 43.C -2.857452 3.282093 0.799092 44.C -4.176884 3.340896 1.306616 45.C -5.061124 3.427265 0.203490 46.H -4.112151-3.311917-2.296084 47.H -6.430573-3.096406-0.947737 48.H -5.870921-3.175865 1.695576 49.H -3.205719-3.445205 1.973730 50.H -2.119097-3.533101-0.493252 51.H -4.681072 3.515405-2.000143 52.H -2.085375 3.339672-1.303135 53.H -1.947611 3.228912 1.394191 54.H -4.461649 3.330439 2.357875 55.H -6.148556 3.477632 0.262118

15 Table 8. Cartesian coordinates for the optimised structure of Ig (gas phase). 1.Ag -0.003816-0.012421-0.022993 2.Mo -4.019097-1.413741-0.257222 3.Mo -4.062655 1.276874-0.277005 4.P -4.322149-0.048241 1.757186 5.P -2.264197-0.054580 1.098529 6.P -2.275672-0.034433-1.195579 7.S -6.098464-0.104752-0.552906 8.P -4.847130-0.105982-2.221715 9.C -5.234522-3.408647-0.178645 10.C -4.296861-3.443926 0.877562 11.C -3.001443-3.434935 0.301882 12.C -3.140675-3.393085-1.107747 13.C -4.525486-3.378073-1.405908 14.C -4.973994 3.290418 0.495663 15.C -5.197662 3.213156-0.903776 16.C -3.943566 3.244586-1.555969 17.C -2.942249 3.305593-0.563455 18.C -3.580375 3.341677 0.705345 19.H -6.318875-3.401301-0.068404 20.H -4.527265-3.485540 1.941154 21.H -2.061482-3.471375 0.851664 22.H -2.330786-3.392439-1.835189 23.H -4.966321-3.362549-2.402291 24.H -5.741905 3.307142 1.267568 25.H -6.170587 3.155572-1.392864 26.H -3.781764 3.203680-2.632136 27.H -1.869014 3.345656-0.741783 28.H -3.082044 3.401980 1.672429 29.Mo 4.002314-1.414262-0.367207 30.Mo 4.061384 1.277285-0.340225 31.P 2.369339-0.053568 0.745722 32.P 2.107639 0.002290-1.531226 33.P 4.098596-0.057517-2.388367 34.P 5.042927-0.099662 1.505132 35.S 6.105291-0.115559-0.288262 36.C 2.894894-3.422211 0.069327 37.C 4.061290-3.412263 0.865593 38.C 5.177165-3.394595-0.002526 39.C 4.703494-3.426567-1.339752 40.C 3.293512-3.440545-1.294307 41.C 3.425612 3.282322 0.657428 42.C 3.063323 3.351055-0.709319 43.C 4.247642 3.307583-1.487669 44.C 5.340804 3.212544-0.598224 45.C 4.837334 3.194791 0.727987 46.H 1.870735-3.441018 0.438139 47.H 4.097467-3.400966 1.954048 48.H 6.223605-3.373514 0.303437 49.H 5.318201-3.444002-2.238253 50.H 2.627526-3.462248-2.156742 51.H 2.744398 3.305903 1.506177 52.H 2.049962 3.440649-1.098878 53.H 4.305008 3.353779-2.574130 54.H 6.391190 3.157053-0.883318 55.H 5.432168 3.142705 1.639689

16 Table 9. Cartesian coordinates for the optimised structure of Ih (gas phase). 1.Ag 0.004436-0.051403-0.071443 2.Mo 4.097871-1.359876 0.080934 3.Mo 4.013970 1.332690-0.013824 4.P 4.242401-0.061815-2.008744 5.P 2.242842-0.153919-1.233745 6.P 2.338242-0.019086 1.039991 7.S 6.124486 0.054980 0.199703 8.P 4.972675 0.078260 1.938931 9.C 5.377150-3.308451-0.031026 10.C 4.374032-3.401381-1.020958 11.C 3.118827-3.423078-0.357958 12.C 3.350632-3.338901 1.035390 13.C 4.750619-3.268943 1.240252 14.C 4.741570 3.333291-0.995508 15.C 5.093800 3.365769 0.379890 16.C 3.905056 3.373653 1.142787 17.C 2.815219 3.313372 0.246676 18.C 3.332224 3.295329-1.074661 19.H 6.450697-3.264002-0.214784 20.H 4.529981-3.459335-2.096687 21.H 2.146870-3.501283-0.843706 22.H 2.591567-3.345427 1.815917 23.H 5.256177-3.212819 2.203583 24.H 5.432851 3.336197-1.836047 25.H 6.109075 3.396426 0.776180 26.H 3.841956 3.400270 2.230249 27.H 1.761582 3.312557 0.521982 28.H 2.747672 3.263135-1.994089 29.Mo -4.127338-1.316884 0.034656 30.Mo -3.944051 1.373362 0.103618 31.P -4.268360 0.108345-1.937592 32.P -2.224628-0.086740-1.217562 33.P -2.270486-0.109909 1.042631 34.P -6.134437 0.170669 0.068646 35.S -5.083266 0.053239 1.869311 36.C -4.160688-3.271004-1.239476 37.C -5.411531-3.187371-0.590968 38.C -5.186755-3.252426 0.802833 39.C -3.792042-3.407873 1.022756 40.C -3.160347-3.413111-0.240402 41.C -4.296859 3.396605-0.990896 42.C -2.931460 3.351697-0.615180 43.C -2.860800 3.330527 0.799159 44.C -4.182623 3.366490 1.298413 45.C -5.071746 3.405639 0.195688 46.H -3.993636-3.260278-2.315308 47.H -6.378992-3.076425-1.079306 48.H -5.952600-3.201776 1.576949 49.H -3.304304-3.498880 1.991611 50.H -2.090845-3.516948-0.420993 51.H -4.678078 3.444096-2.009041 52.H -2.085731 3.342218-1.301936 53.H -1.953252 3.299619 1.400023 54.H -4.465334 3.353736 2.351182 55.H -6.158767 3.457204 0.249076

17 Table 10. Cartesian coordinates for the optimised structure of Ii (gas phase). 1.Ag -0.003199-0.004069 0.047842 2.Mo -4.537336 1.349057-0.020149 3.Mo -4.542058-1.343567-0.025104 4.P -3.564401 0.000483-1.794449 5.P -2.348274 0.006304 0.035256 6.P -3.591951-0.005371 1.799662 7.P -6.287544 0.004504-1.189601 8.S -6.383400 0.005525 0.907228 9.C -5.525325 3.293615-0.855638 10.C -4.136367 3.356209-1.122648 11.C -3.460736 3.409552 0.123864 12.C -4.424328 3.366309 1.159540 13.C -5.700006 3.291602 0.550352 14.C -4.779888-3.360227-1.220079 15.C -5.818241-3.278536-0.259846 16.C -5.228744-3.312705 1.031140 17.C -3.830567-3.383740 0.868399 18.C -3.554619-3.414193-0.526607 19.H -6.320275 3.261680-1.600114 20.H -3.674642 3.397105-2.107303 21.H -2.381556 3.473940 0.260823 22.H -4.224450 3.397379 2.229035 23.H -6.655029 3.237583 1.073612 24.H -4.907109-3.364940-2.301415 25.H -6.885520-3.232057-0.476527 26.H -5.761068-3.269876 1.980487 27.H -3.093604-3.417405 1.669612 28.H -2.567772-3.478800-0.983254 29.Mo 4.525311 1.346554 0.032630 30.Mo 4.540139-1.349054 0.037295 31.P 3.558567-0.008187-1.739982 32.P 2.342375-0.018621 0.082269 33.P 3.584293-0.000747 1.853924 34.P 6.277617 0.002538-1.125217 35.S 6.376251 0.010581 0.971850 36.C 3.827838 3.360727-0.912328 37.C 5.231402 3.309120-1.053100 38.C 5.797730 3.292424 0.243203 39.C 4.745882 3.371383 1.192514 40.C 3.530075 3.409144 0.478459 41.C 4.425517-3.339975-1.172764 42.C 3.471174-3.421907-0.132295 43.C 4.155670-3.393561 1.109589 44.C 5.537560-3.300600 0.832518 45.C 5.708670-3.263518-0.576101 46.H 3.105682 3.393648-1.725982 47.H 5.781373 3.268786-1.992271 48.H 6.862273 3.241118 0.473157 49.H 4.858162 3.390979 2.275292 50.H 2.535183 3.466148 0.918866 51.H 4.214139-3.354650-2.240205 52.H 2.392086-3.496816-0.264159 53.H 3.700716-3.449498 2.097226 54.H 6.334416-3.253929 1.574452 55.H 6.659615-3.213464-1.104562

18 Table 11. Cartesian coordinates for the optimised structure of Ij (gas phase). 1.Ag 0.001806-0.009485 0.066221 2.Mo 1.360641-4.117686-0.231890 3.Mo -1.328470-4.112694-0.230265 4.P 0.013231-5.205906-1.958602 5.P 0.017255-6.373507-0.139143 6.P 0.012681-5.037820 1.576407 7.S 0.021424-2.349730-1.354523 8.P 0.015330-2.333587 0.845882 9.C 3.432923-3.367128-1.041710 10.C 3.348507-4.754841-1.291823 11.C 3.282137-5.414112-0.037700 12.C 3.321817-4.433872 0.984150 13.C 3.414873-3.165848 0.360621 14.C -3.364430-4.045978-1.385969 15.C -3.386916-3.026556-0.398704 16.C -3.356348-3.643418 0.875590 17.C -3.285177-5.037815 0.680105 18.C -3.293899-5.286875-0.717968 19.H 3.491178-2.588667-1.802031 20.H 3.355980-5.235741-2.268739 21.H 3.228954-6.491332 0.115457 22.H 3.308684-4.624579 2.055373 23.H 3.475334-2.207798 0.874560 24.H -3.389322-3.900823-2.464562 25.H -3.443661-1.955056-0.589505 26.H -3.361427-3.134814 1.838069 27.H -3.247050-5.793586 1.463268 28.H -3.256253-6.267380-1.190632 29.Mo 1.345883 4.058137-0.113037 30.Mo -1.340874 4.065080-0.107626 31.P 0.001914 5.162573-1.832647 32.P 0.004207 6.323859-0.010472 33.P 0.007866 4.980895 1.701031 34.S -0.007133 2.309796-1.247860 35.P 0.001949 2.294529 0.971997 36.C 3.359576 4.930120-0.951900 37.C 3.383585 3.533594-1.140057 38.C 3.351205 2.916940 0.137946 39.C 3.326097 3.940695 1.117727 40.C 3.323408 5.182056 0.444557 41.C -3.362342 4.329130-1.245093 42.C -3.306447 5.303630-0.219896 43.C -3.293432 4.634070 1.031617 44.C -3.351857 3.245138 0.780232 45.C -3.381557 3.056837-0.622271 46.H 3.379353 5.684515-1.737475 47.H 3.402836 3.023122-2.102078 48.H 3.370734 1.846357 0.336844 49.H 3.309441 3.797989 2.196733 50.H 3.313070 6.163809 0.916414 51.H -3.403605 4.523902-2.315220 52.H -3.293417 6.383027-0.364538 53.H -3.274364 5.107654 2.011234 54.H -3.357921 2.461470 1.535810 55.H -3.415278 2.098388-1.139767

19 Table 12. Cartesian coordinates for the optimised structure of Ik (gas phase). 1.Ag -0.007474 0.000408 0.039285 2.Mo -4.549904 1.346036-0.056552 3.Mo -4.546720-1.348061-0.061171 4.P -3.508831 0.001018-1.824783 5.P -2.355343 0.010075 0.010249 6.P -3.669092-0.003871 1.760428 7.S -6.341003 0.001491-1.091159 8.P -6.351866 0.000813 1.006929 9.C -5.516548 3.319863-0.846105 10.C -4.129049 3.399821-1.101218 11.C -3.464046 3.403382 0.151742 12.C -4.436474 3.320737 1.176947 13.C -5.710379 3.270061 0.558478 14.C -4.807868-3.379952-1.197826 15.C -5.825685-3.297288-0.211824 16.C -5.212854-3.307149 1.062574 17.C -3.816978-3.357155 0.871551 18.C -3.567568-3.410064-0.528972 19.H -6.303004 3.298864-1.600838 20.H -3.658093 3.461170-2.081013 21.H -2.386025 3.460472 0.302006 22.H -4.242020 3.324986 2.247529 23.H -6.671013 3.227569 1.071579 24.H -4.959717-3.406460-2.276102 25.H -6.898945-3.255530-0.402757 26.H -5.728670-3.264820 2.021014 27.H -3.065344-3.383729 1.659132 28.H -2.587909-3.465797-1.003544 29.Mo 4.533417 1.347983 0.033608 30.Mo 4.539649-1.345259 0.038559 31.P 3.556962-0.005288-1.736862 32.P 2.341545-0.012699 0.085231 33.P 3.589826 0.002537 1.854525 34.P 6.270852-0.003778-1.142363 35.S 6.383640 0.004731 0.953252 36.C 3.840500 3.382106-0.868529 37.C 5.238505 3.313321-1.047113 38.C 5.839309 3.269952 0.232566 39.C 4.814598 3.348630 1.210639 40.C 3.580655 3.411941 0.530643 41.C 4.455559-3.355019-1.152725 42.C 3.486873-3.430662-0.125433 43.C 4.153120-3.381743 1.126439 44.C 5.537803-3.283042 0.868856 45.C 5.729047-3.260700-0.537669 46.H 3.096426 3.439532-1.661589 47.H 5.763344 3.278608-2.000984 48.H 6.909395 3.203476 0.431981 49.H 4.957627 3.350929 2.290527 50.H 2.598663 3.477234 0.998985 51.H 4.260979-3.384511-2.223316 52.H 2.410218-3.514510-0.271695 53.H 3.684270-3.428227 2.108047 54.H 6.323782-3.224641 1.621675 55.H 6.687502-3.211094-1.053535

20 Table 13. Cartesian coordinates for the optimised structure of Il (gas phase). 1.Ag 0.010999 0.031331-0.069611 2.Mo 1.352175-3.963630-0.000032 3.Mo -1.335267-3.955350 0.001681 4.P 0.000095-5.080348-1.708993 5.P 0.009666-6.216110 0.127584 6.P 0.004751-4.848302 1.823365 7.S 0.013021-2.245390-1.186861 8.P 0.015087-2.193455 1.068272 9.C 3.420140-3.191378-0.796191 10.C 3.362668-4.583529-1.025155 11.C 3.287644-5.223886 0.237931 12.C 3.298346-4.226726 1.244374 13.C 3.380361-2.967629 0.602309 14.C -3.386053-3.857573-1.120051 15.C -3.377078-2.832735-0.137586 16.C -3.333059-3.442531 1.137844 17.C -3.286699-4.839247 0.949016 18.C -3.324161-5.095910-0.447037 19.H 3.478345-2.423106-1.567329 20.H 3.389541-5.077230-1.995901 21.H 3.247112-6.299170 0.407633 22.H 3.274957-4.399733 2.318900 23.H 3.422903-1.999619 1.100238 24.H -3.429534-3.714218-2.198927 25.H -3.423893-1.760729-0.331877 26.H -3.315961-2.927435 2.097228 27.H -3.248625-5.590912 1.736665 28.H -3.310368-6.079326-0.916075 29.Mo 1.336410 4.042894 0.375070 30.Mo -1.347766 4.045068 0.368562 31.P 0.006024 5.093257-1.377534 32.P -0.009340 6.314420 0.422860 33.P -0.013018 5.029720 2.161847 34.P -0.002098 2.369883-0.830057 35.S -0.011041 2.245435 1.393544 36.C 3.367212 4.827624-0.506122 37.C 3.339251 3.429514-0.687979 38.C 3.302988 2.824743 0.590908 39.C 3.332845 3.851206 1.569936 40.C 3.367153 5.088226 0.889540 41.C -3.360095 4.220753-0.793581 42.C -3.365832 5.207625 0.222242 43.C -3.344706 4.551256 1.480904 44.C -3.330925 3.161404 1.239819 45.C -3.334726 2.952963-0.161108 46.H 3.404352 5.576975-1.295955 47.H 3.325724 2.910283-1.645225 48.H 3.270237 1.752951 0.791016 49.H 3.330040 3.710702 2.649571 50.H 3.396894 6.073099 1.355211 51.H -3.393131 4.403462-1.865646 52.H -3.397993 6.285035 0.064480 53.H -3.355270 5.033665 2.457079 54.H -3.296482 2.385394 2.005476 55.H -3.333105 1.988057-0.667582

21 Table 14. Cartesian coordinates for the optimised structure of Im (gas phase). 1.Ag 0.130306 0.275821-1.974637 2.Mo 1.040960-2.509794 1.612134 3.Mo -1.636419-2.237283 1.562227 4.P -0.468426-4.184877 0.661043 5.P -0.503992-4.248519 2.816648 6.P -0.319891-2.202418 3.588962 7.S -0.155960-1.375323-0.263394 8.P -0.085093-0.294920 1.590767 9.C 3.165893-2.455544 0.625448 10.C 2.954410-3.765215 1.109821 11.C 2.829792-3.682438 2.519502 12.C 2.964091-2.323673 2.901024 13.C 3.175333-1.562082 1.726071 14.C -3.721713-2.565601 0.558229 15.C -3.598479-1.181096 0.863020 16.C -3.544724-1.038364 2.266238 17.C -3.595486-2.329424 2.833992 18.C -3.720264-3.271520 1.777870 19.H 3.285481-2.180416-0.422642 20.H 2.907719-4.674539 0.512529 21.H 2.674914-4.521539 3.197453 22.H 2.942468-1.940499 3.919528 23.H 3.334817-0.485522 1.683184 24.H -3.805062-3.003566-0.435194 25.H -3.569938-0.366341 0.139029 26.H -3.450497-0.101839 2.814270 27.H -3.579229-2.561427 3.897940 28.H -3.794617-4.352668 1.894106 29.Mo 1.774794 2.575528-5.259790 30.Mo -0.900888 2.805736-5.273721 31.P 0.396151 2.091440-7.220523 32.P 0.573364 4.228576-6.918750 33.P 0.605506 4.656737-4.786476 34.S 0.263670 0.704726-4.667671 35.P 0.394806 2.351099-3.209121 36.C 3.747301 2.346857-6.507717 37.C 3.727364 1.309687-5.553174 38.C 3.764155 1.899242-4.263175 39.C 3.827897 3.306670-4.425109 40.C 3.812141 3.581259-5.810139 41.C -2.944156 2.320500-6.288553 42.C -2.752154 3.722318-6.334744 43.C -2.736050 4.214969-5.003822 44.C -2.928995 3.117746-4.135260 45.C -3.046366 1.949220-4.925525 46.H 3.728688 2.223456-7.590132 47.H 3.672234 0.243977-5.773484 48.H 3.771846 1.366473-3.312617 49.H 3.883789 4.044619-3.626676 50.H 3.855130 4.569808-6.267049 51.H -3.020330 1.653928-7.145873 52.H -2.649052 4.324030-7.237684 53.H -2.628921 5.257353-4.707864 54.H -2.970287 3.165135-3.047985 55.H -3.196619 0.935007-4.554622

22 5. References [1] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931-967; C. Fonseca Guerra, J. G. Snijder, G. te Velde, E. J. Baerends, Theor. Chem. Acc. 1998, 99, 391-403; ADF2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. [2] E. van Lenthe, A. Ehlers, E. J. Baerends, J. Chem. Phys. 1999, 110, 8943-8953; E. van Lenthe, R. van Leeuwen, E. J. Baerends, J. G. Snijders, Int. J. Quantum Chem. 1996, 57, 281-293; E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1996, 105, 6505-6516; E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1994, 101, 9783-9792; E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597-4610. [3] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211. [4] A. D. Becke, J. Chem. Phys. 1988, 88, 1053-1062; A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100. [5] J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824. [6] A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 1993, 799-805; A. Klamt, V. Jonas, J. Chem. Phys. 1996, 105, 9972-9981; A. Klamt, J. Phys. Chem. 1995, 99, 2224-2235.