Supporting Information

Σχετικά έγγραφα
ESI. Functionalization of pyridyl ketones using deprotolithiation-in situ zincation

Direct metallation of thienopyrimidines using a mixed lithium-cadmium base and antitumor activity of functionalized derivatives

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Table of Contents 1 Supplementary Data MCD

Electronic Supplementary Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information

Supporting Information

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting information

Supporting Information

Electronic Supplementary Information

Supporting Information. for. A novel application of 2-silylated 1,3-dithiolanes for the. synthesis of aryl/hetaryl-substituted ethenes and

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supplementary information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

National d Histoire Naturelle, 57 rue Cuvier (C.P. 54), Paris, France. Contents:

The Free Internet Journal for Organic Chemistry

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

difluoroboranyls derived from amides carrying donor group Supporting Information

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Supporting Information

Experimental procedure

phase: synthesis of biaryls, terphenyls and polyaryls

Supporting Information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Supporting Information for: electron ligands: Complex formation, oxidation and

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information. Experimental section

Divergent synthesis of various iminocyclitols from D-ribose

Available online at

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting Information

Supporting Information

Selective mono reduction of bisphosphine

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information for

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Deprotonative Cadmation of Functionalized Aromatics

Fused Bis-Benzothiadiazoles as Electron Acceptors

gem-dichloroalkenes for the Construction of 3-Arylchromones

Electronic Supplementary Information

multicomponent synthesis of 5-amino-4-

Available online at shd.org.rs/jscs/

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supplementary Information

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supporting Information

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

SUPPLEMENTARY MATERIAL

Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Supporting Information

SUPPORTING INFORMATION

Supporting Information

Transcript:

Supporting Information for Deproto-metallation of N-arylated pyrroles and indoles using a mixed lithium zinc base and regioselectivity-computed CH acidity relationship Mohamed Yacine Ameur Messaoud 1,2, Ghenia Bentabed-Ababsa* 2, Madani Hedidi 1,2, Aïcha Derdour 2, Floris Chevallier 1, Yury S. Halauko* 3, Oleg A. Ivashkevich 3, Vadim E. Matulis 4, Laurent Picot* 5, Valérie Thiéry* 5, Thierry Roisnel 6, Vincent Dorcet 6 and Florence Mongin* 1 Address: 1 Equipe Chimie et Photonique Moléculaires, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS-Université de Rennes 1, Bâtiment 10A, Case 1003, Campus de Beaulieu, 35042 Rennes, France, 2 Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences, Université d Oran 1 Ahmed Ben Bella, BP 1524 El M Naouer, 31000 Oran, Algeria, 3 UNESCO Chair of Belarusian State University, 14 Leningradskaya Str., Minsk, 220030, Belarus, 4 Research Institute for Physico-Chemical Problems of Belarusian State University, 14 Leningradskaya Str., Minsk, 220030, Belarus, 5 Laboratoire Littoral Environnement et Sociétés, UMRi CNRS 7266, Université de La Rochelle, 17042 La Rochelle, France, and 6 Centre de Diffractométrie X, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS-Université de Rennes 1, Bâtiment 10B, Campus de Beaulieu, 35042 Rennes, France Email: Ghenia Bentabed-Ababsa* - badri_sofi@yahoo.fr; Yury S. Halauko* - hys@tut.by; Laurent Picot* - laurent.picot@univ-lr.fr; Valérie Thiéry* - valerie.thiery@univ-lr.fr; Florence Mongin* - Florence.mongin@univ-rennes1.fr *Corresponding author Experimental description of the synthesized compounds, 1 H and 13 C NMR spectra, calculated values of the Gibbs energies G acid [kcal mo1 1 ] for deprotonation, selected Cartesian coordinates of molecular geometry for the most stable rotamer forms optimized at B3LYP/6-31G(d) level of theory S1

Table of Contents Experimental descriptions of the synthesized compounds... S3 1 H and 13 C NMR spectra of compounds 3a, 4a, 3b, 4d, 3e, 4e, 4c, 3d, 4d, 5b, 5d and 6d... S10 Calculated values of the Gibbs energies acid G [kcal mol -1 ] for deprotonation at the corresponding positions of the investigated compounds... S22 Cartesian coordinates of molecular geometries for most stable rotamer form of selected compounds (on example of 1b and 2b, neutral molecule, gas phase) optimized at B3LYP/6-31G(d) level of theory... S23 S2

N-(2-Thienyl)pyrrole (1a) [1]. The procedure 1 (16 h reaction time) using pyrrole (0.42 ml) and 2-iodothiophene (0.44 ml) (or 2-bromothiophene (0.39 ml)) gave 1a (eluent: heptane- CH 2 Cl 2 95:5) in 75% (20%) yield as a beige powder: mp 57 C; 1 H NMR (CDCl 3 ) 6.33 (t, 2H, J = 2.1 Hz), 6.91 (dd, 1H J = 3.6 and 1.5 Hz), 6.93-6.97 (m, 1H), 6.99 (d, 1H, J = 1.5 Hz), 7.01 (t, 2H, J = 2.1 Hz); 13 C NMR (CDCl 3 ) 110.5 (2CH), 115.6 (CH), 119.2 (2CH), 121.4 (CH), 126.2 (CH), 144.3 (C). N-(3-Pyridyl)pyrrole (1b) [2]. The procedure 1 (32 h reaction time) using pyrrole (0.42 ml) and 3-iodopyridine (0.82 g) (or 3-bromopyridine (0.39 ml)) gave 1b (eluent: heptane-acoet 80:20) in 65% (26%) yield as a yellow oil: 1 H NMR (CDCl 3 ) 6.38 (t, 2H, J = 2.1 Hz), 7.07 (t, 2H, J = 2.3 Hz), 7.31 (dd, 1H J = 8.1 and 4.8 Hz), 7.64 (ddd, 1H, J = 8.4, 2.7 and 1.5 Hz), 8.47 (d, 1H, J = 4.5 Hz), 8.72 (d, 1H, J = 2.1 Hz); 13 C NMR (CDCl 3 ) 111.4 (2CH), 119.0 (2CH), 123.9 (CH), 127.3 (CH), 136.9 (C), 141.9 (CH), 146.7 (CH). N-(4-Methoxyphenyl)pyrrole (1d) [3]. The procedure 1 (72 h reaction time) using pyrrole (0.42 ml) and 4-iodoanisole (0.94 g) gave 1d (eluent: heptane-ch 2 Cl 2 80:20) in 46% yield as a white powder: mp 110 C; 1 H NMR (CDCl 3 ) 3.84 (s, 3H), 6.33 (t, 2H, J = 2.1 Hz), 6.92-6.98 (m, 2H), 7.01 (t, 2H, J = 2.1 Hz), 7.30-7.34 (m, 2H); 13 C NMR (CDCl 3 ) 55.7 (CH 3 ), 110.0 (2CH), 114.7 (2CH), 119.8 (2CH), 122.3 (2CH), 134.6 (C), 157.7 (C). N-(4-Bromophenyl)pyrrole (1e) [4]. The procedure 1 (72 h reaction time) using pyrrole (0.42 ml) and 1-bromo-4-iodobenzene (1.1 g) gave 1e (eluent: heptane-ch 2 Cl 2 90:10) in 81% yield as a white powder: mp 92 C; 1 H NMR (CDCl 3 ) 6.41 (t, 2H, J = 2.3 Hz), 7.09 (t, 2H, J = 2.3 Hz), 7.26-7.32 (m, 2H), 7.53-7.59 (m, 2H); 13 C NMR (CDCl 3 ) 111.0 (2CH), 118.7 (C), 119.2 (2CH), 121.9 (2CH), 132.6 (2CH), 139.7 (C). N-(2-Thienyl)indole (2a) [5]. The procedure 1 (48 h reaction time) using indole (0.70 g) and 2-iodothiophene (0.44 ml) gave 2a (eluent: heptane-ch 2 Cl 2 90:10) in 50% yield as a yellow oil: 1 H NMR (CDCl 3 ) 6.92 (dd, 1H, J = 3.3 and 0.6 Hz), 7.20-7.33 (m, 3H), 7.44-7.56 (m, 3H), 7.87 (d, 1H, J = 8.1 Hz), 7.94 (dd, 1H J = 7.8 and 0.9 Hz); 13 C NMR (CDCl 3 ) 104.2 (CH), 110.7 (CH), 120.3 (CH), 120.9 (CH), 121.1 (CH), 121.5 (CH), 122.9 (CH), 126.0 (CH), 129.0 (C), 129.3 (CH), 137.0 (C), 141.6 (C). N-(3-Pyridyl)indole (2b) [6]. The procedure 1 (48 h reaction time) using indole (0.70 g) and 3-iodopyridine (0.82 g) gave 2b (eluent: heptane-acoet 80:20) in 70% yield as a yellow oil: S3

1 H NMR (CDCl 3 ) 6.80 (dd, 1H, J = 3.3 and 0.9 Hz), 7.24-7.35 (m, 2H), 7.36 (d, 1H, J = 3.3 Hz), 7.48 (dd, 1H, J = 8.1 and 4.8 Hz), 7.59 (d, 1H, J = 8.1 Hz), 7.75-7.79 (m, 1H), 7.85 (ddd, 1H, J = 8.1, 2.7 and 1.5 Hz), 8.65 (dd, 1H, J = 4.8 and 1.5 Hz), 8.89 (d, 1H J = 2.7 Hz); 13 C NMR (CDCl 3 ) 104.8 (CH), 109.9 (CH), 120.9 (CH), 121.4 (CH), 122.9 (CH), 124.1 (CH), 127.3 (CH), 129.4 (C), 131.4 (CH), 135.6 (C), 136.4 (C), 145.3 (CH), 147.2 (CH). N-Phenylindole (2c) [7]. The procedure 1 (24 h reaction time) using indole (0.70 g) and iodobenzene (0.82 g) gave 2c (eluent: heptane-ch 2 Cl 2 90:10) in 30% yield as a yellow oil: 1 H NMR (CDCl 3 ) 6.73 (dd, 1H, J = 3.3 and 0.9 Hz), 7.18-7.30 (m, 2H), 7.35-7.42 (m, 2H), 7.53-7.56 (m, 4H), 7.59-7.63 (m, 1H), 7.71-7.76 (m, 1H); 13 C NMR (CDCl 3 ) 103.7 (CH), 110.6 (CH), 120.5 (CH), 121.2 (CH), 122.5 (CH), 124.5 (2CH), 126.6 (CH), 128.1 (CH), 129.4 (C), 129.7 (2CH), 135.9 (C), 139.9 (C). N-(4-Methoxyphenyl)indole (2d) [8]. The procedure 1 (72 h reaction time) using indole (0.70 g) and 4-iodoanisole (0.94 g) gave 2d (eluent: heptane-ch 2 Cl 2 90:10) in 15% yield as a white powder: mp 58 C; 1 H NMR (CDCl 3 ) 3.89 (s, 3H), 6.68 (dd, 1H, J = 3.3 and 0.9 Hz), 7.02-7.08 (m, 2H), 7.15-7.26 (m, 2H), 7.30 (d, 1H, J = 3.0 Hz), 7.40-7.46 (m, 2H), 7.46-7.51 (m, 1H), 7.69-7.73 (m, 1H); 13 C NMR (CDCl 3 ) 55.7 (CH 3 ), 103.0 (CH), 110.5 (CH), 114.8 (2CH), 120.2 (CH), 121.1 (CH), 122.3 (CH), 126.1 (2CH), 128.4 (CH), 129.1 (C), 133.0 (C), 136.4 (C), 158.4 (C). N-(4-Bromophenyl)indole (2e) [9]. The procedure 1 (56 h reaction time) using indole (0.70 g) and 1-bromo-4-iodobenzene (1.1 g) gave 2e (eluent: heptane-ch 2 Cl 2 90:10) in 60% yield as a yellow oil: 1 H NMR (CDCl 3 ) 6.74 (dd, 1H, J = 3.3 and 0.9 Hz), 7.20-7.31 (m, 2H), 7.32 (d, 1H, J = 3.3 Hz), 7.38-7.43 (m, 2H), 7.54-7.59 (m, 1H), 7.63-7.69 (m, 2H), 7.72-7.76 (m, 1H); 13 C NMR (CDCl 3 ) 104.3 (CH), 110.4 (CH), 119.8 (C), 120.7 (CH), 121.4 (CH), 122.8 (CH), 125.9 (2CH), 127.7 (CH), 129.5 (C), 132.8 (2CH), 135.8 (C), 138.9 (C). Crystal data for 2e. C 14 H 10 BrN, M = 272.14, monoclinic, P2 1 /n, a = 9.7442(7), b = 13.1654(12), c = 17.8252(17) Å, β = 93.934(4), V = 2281.3(3) Å 3, Z = 8, d = 1.585 g cm -3, μ = 3.572 mm -1. A final refinement on F 2 with 5231 unique intensities and 289 parameters converged at ωr(f 2 ) = 0.2092 (R(F) = 0.0822) for 3568 observed reflections with I > 2σ(I). N-(4-(Trifluoromethyl)phenyl)pyrrole (1f) [10]. The procedure 2 (24 h reaction time) using pyrrole (0.69 ml) and 1-iodo-4-(trifluoromethyl)benzene (1.8 ml) gave 1f (eluent: heptane- S4

AcOEt 90:10) in 96% yield as a white powder: mp 112 C; 1 H NMR (CDCl 3 ) 6.40 (t, 2H, J = 2.1 Hz), 7.14 (t, 2H, J = 2.1 Hz), 7.50 (d, 2H, J = 8.1 Hz), 7.69 (d, 2H, J = 8.4 Hz); 13 C NMR (CDCl 3 ) 111.6 (2CH), 119.2 (2CH), 120.0 (2CH), 124.2 (q, C, J = 270 Hz), 127.0 (q, 2CH, J = 3.8 Hz), 127.5 (q, C, J = 33 Hz), 143.3 (C). N-(4-(Trifluoromethyl)phenyl)indole (2f) [11]. The procedure 2 (24 h reaction time) using indole (1.2 g) and 1-iodo-4-(trifluoromethyl)benzene (1.8 ml) gave 2f (eluent: heptane- CH 2 Cl 2 70:30) in 90% yield as a white powder: mp 62 C; 1 H NMR (CDCl 3 ) 6.76 (dd, 1H, J = 3.3 and 0.9 Hz), 7.21-7.33 (m, 2H), 7.38 (d, 1H, J = 3.3 Hz), 7.61-7.68 (m, 3H), 7.73 (dm, 1H, J = 7.5 Hz), 7.81 (d, 1H, J = 8.4 Hz); 13 C NMR (CDCl 3 ) 10 (CH), 110.5 (CH), 121.1 (CH), 121.6 (CH), 123.1 (CH), 124.0 (2CH), 124.1 (q, C, J = 271 Hz), 127.0 (q, 2CH, J = 3.7 Hz), 127.5 (CH), 128.3 (q, C, J = 32 Hz), 129.8 (C), 135.6 (C), 142.9 (C). N-(5-iodo-2-thienyl)pyrrole (3a). The procedure 3 using N-(2-thienyl)pyrrole (1a, 0.15 g) gave 3a (eluent: heptane-acoet 80:20) in 97% yield as a beige powder: mp < 50 C; IR (ATR): 678, 722, 747, 769, 784, 810, 881, 937, 995, 1018, 1047, 1066, 1109, 1213, 1228, 1252, 1267, 1283, 1310, 1480, 1511, 1558, 1723, 2964 cm -1 ; 1 H NMR (CDCl 3 ) 6.37 (t, 2H, J = 2.1 Hz), 6.62 (d, 1H, J = 3.9 Hz), 6.97 (t, 2H, J = 2.1 Hz), 7.14 (d, 1H, J = 3.9 Hz); 13 C NMR (CDCl 3 ) 66.2 (C), 110.9 (2CH), 117.0 (CH), 121.0 (2CH), 135.9 (CH), 148.5 (C); MS (ESI): calcd for C 8 H 6 INS [M] + 275, found 275. N-(5-Iodo-2-thienyl)indole (4a). The procedure 3 using N-(2-thienyl)indole (2a, 0.20 g) gave 4a (eluent: heptane-acoet 80:20) in 91% yield as a yellow oil; IR (ATR): 717, 739, 761, 793, 891, 944, 1014, 1131, 1196, 1213, 1226, 1285, 1306, 1331, 1457, 1475, 1516, 1550, 3051 cm - 1 ; 1 H NMR (CDCl 3 ) 6.79 (dd, 1H, J = 3.3 and 0.9 Hz), 6.83 (d, 1H, J = 3.9 Hz), 7.30-7.44 (m, 4H), 7.70 (dm, 1H, J = 8.4 Hz), 7.80 (dm, 1H, J = 8.0 Hz); 13 C NMR (CDCl 3 ) 68.9 (C), 104.8 (CH), 110.6 (CH), 121.2 (CH), 121.2 (CH), 121.9 (CH), 123.2 (CH), 128.8 (CH), 129.1 (C), 135.8 (CH), 136.8 (C), 146.2 (C); MS (ESI): calcd for C 12 H 8 INS [M] + 325, found 325. N-(2-Iodo-3-pyridyl)pyrrole (3b). The procedure 4 using N-(3-pyridyl)pyrrole (1b, 72 mg) gave 3b (eluent: heptane-acoet 50:50) in 59% yield as a beige powder: mp 104-106 C; IR (ATR): 705, 733, 815, 923, 1010, 1047, 1068, 1083, 1109, 1209, 1237, 1332, 1383, 1397, 1461, 1491, 1556, 3125 cm -1 ; 1 H NMR (CDCl 3 ) 6.34 (t, 2H, J = 2.2 Hz), 6.80 (t, 2H, J = 2.2 Hz), 7.33 (dd, 1H, J = 7.8 and 4.5 Hz), 7.50 (dd, 1H, J = 7.8 and 1.8 Hz), 8.37 (dd, 1H, J = S5

4.5 and 1.8 Hz); 13 C NMR (CDCl 3 ) 110.1 (2CH), 119.9 (C), 122.1 (2CH), 123.1 (CH), 134.7 (CH), 141.8 (C), 149.5 (CH); MS (ESI): calcd for C 9 H 7 IN 2 [M] + 270, found 270. N-(2-Iodo-3-pyridyl)indole (4b). The procedure 4 using N-(3-pyridyl)indole (2b, 0.19 g) gave 4b (eluent: heptane-acoet 80:20) in 71% yield as a yellow oil; IR (ATR): 678, 709, 726, 744, 768, 811, 884, 1017, 1046, 1140, 1187, 1213, 1227, 1250, 1267, 1288, 1308, 1332, 1399, 1438, 1460, 1510, 1566, 2965, 3050 cm -1 ; 1 H NMR (CDCl 3 ) 6.75 (dd, 1H, J = 3.3 and 0.9 Hz), 7.01-7.24 (m, 4H), 7.42 (dd, 1H, J = 7.8 and 4.5 Hz), 7.63 (dd, 1H, J = 7.8 and 1.8 Hz), 7.70-7.74 (m, 1H), 8.49 (dd, 1H, J = 4.5 and 1.8 Hz); 13 C NMR (CDCl 3 ) 104.3 (CH), 110.4 (CH), 120.8 (CH), 121.3 (CH), 121.9 (C), 122.8 (CH), 123.4 (CH), 128.4 (CH), 128.7 (C), 136.4 (CH), 136.8 (C), 140.2 (C), 150.2 (CH); MS (ESI): calcd for C 13 H 9 IN 2 [M] + 320, found 320. 2-Iodo-N-(3-iodo-4-methoxyphenyl)indole (4d ). The procedure 4 using N-(4- methoxyphenyl)-1h-indole (2d, 0.11 g) gave 4d (eluent: heptane-acoet 80:20) in 15% yield as a beige powder: mp 166 C; IR (ATR): 681, 731, 745, 782, 817, 906, 1018, 1046, 1147, 1212, 1248, 1265, 1286, 1309, 1440, 1464, 1490, 1564, 1595, 2838, 2939, 3061 cm -1 ; 1 H NMR (CDCl 3 ) 3.98 (s, 3H), 6.93 (d, 1H, J = 0.6 Hz), 6.95 (d, 1H, J = 8.7 Hz), 7.08-7.13 (m, 3H), 7.32 (dd, 1H, J = 8.7 and 2.4 Hz), 7.56-7.59 (m, 1H), 7.78 (d, 1H, J = 2.7 Hz); 13 C NMR (CDCl 3 ) 56.8 (CH 3 ), 84.5 (C), 85.6 (C), 110.6 (CH), 110.8 (CH), 113.7 (CH), 119.5 (CH), 120.6 (CH), 122.6 (CH), 129.7 (C), 130.2 (CH), 132.7 (C), 139.6 (C), 139.8 (CH), 158.4 (C); MS (ESI): calcd for C 15 H 11 I 2 NO [M] + 475, found 475. N-(4-Bromo-3-iodophenyl)pyrrole (3e). The procedure 4 using N-(4-bromophenyl)pyrrole (1e, 0.11 g) gave 3e (eluent: heptane-acoet 80:20) in 58% yield as a yellow powder: mp 64-66 C; IR (ATR): 656, 723, 812, 867, 928, 1007, 1021, 1067, 1123, 1264, 1328, 1397, 1456, 1488, 1525, 1560, 1580, 2927, 3103 cm -1 ; 1 H NMR (CDCl 3 ) 6.38 (t, 2H, J = 2.2 Hz), 7.03 (t, 2H, J = 2.1 Hz), 7.23 (dd, 1H, J = 8.7 and 2.7 Hz), 7.62 (d, 1H, J = 8.7 Hz), 7.89 (d, 1H, J = 2.7 Hz); 13 C NMR (CDCl 3 ) 101.9 (C), 111.4 (2CH), 119.2 (2CH), 121.3 (CH), 126.1 (C), 131.7 (CH), 133.1 (CH), 140.2 (C). Crystal data for 3e. C 10 H 7 BrIN, M = 347.98, monoclinic, P2 1 /n, a = 10.0665(5), b = 5.9895(4), c = 17.5155(10) Å, β = 103.942(3), V = 1024.96(10) Å 3, Z = 4, d = 2.255 g cm -3, μ = 6.974 mm -1. A final refinement on F 2 with 2335 unique intensities and 118 parameters converged at ωr(f 2 ) = 0.0789 (R(F) = 0.032) for 1971 observed reflections with I > 2σ(I). S6

N-(4-Bromo-3-iodophenyl)indole (4e). The procedure 4 using N-(4-bromophenyl)indole (2e, 0.14 g) gave 4e (eluent: heptane-acoet 80:20) in 57% yield as a yellow oil: IR (ATR): 694, 738, 761, 820, 883, 907, 963, 1009, 1072, 1100, 1133, 1211, 1232, 1298, 1333, 1465, 1490, 1516, 1579, 1709, 1895, 2929, 3051 cm -1 ; 1 H NMR (CDCl 3 ) 6.70 (dd, 1H, J = 3.3 and 0.6 Hz), 7.16-7.29 (m, 2H), 7.27 (d, 1H, J = 3.3 Hz), 7.38 (dd, 1H, J = 8.4 and 2.4 Hz), 7.52 (dd, 1H, J = 8.4 and 0.9 Hz), 7.68 (dd, 1H, J = 7.2 and 1.8 Hz), 7.74 (d, 1H, J = 8.7 Hz), 8.02 (d, 1H, J = 2.4 Hz); 13 C NMR (CDCl 3 ) 101.9 (C), 104.7 (CH), 110.2 (CH), 120.9 (CH), 121.4 (CH), 122.9 (CH), 12 (CH), 127.0 (C), 127.3 (CH), 129.5 (C), 133.2 (CH), 135.3 (CH), 135.4 (C), 139.3 (C); MS (ESI): calcd for C 14 H 9 BrIN [M] + 397, found 397. 2-Iodo-N-phenylpyrrole (3c). The procedure 5 using commercial N-phenylpyrrole (1c, 95 mg) gave 3c (eluent: heptane-acoet 80:20) in 86% yield as a yellow oil; IR (ATR): 692, 710, 761, 782, 875, 940, 1033, 1072, 1116, 1299, 1320, 1388, 1431, 1457, 1496, 1513, 1597, 2925, 3047, 3103 cm -1 ; 1 H NMR (CDCl 3 ) 6.19 (dd, 1H, J = 3.6 and 3.0 Hz), 6.41 (dd, 1H, J = 3.6 and 1.8 Hz), 6.87 (dd, 1H, J = 3.0 and 1.8 Hz), 7.19-7.32 (m, 5H); 13 C NMR (CDCl 3 ) 69.1 (C), 111.8 (CH), 120.4 (CH), 125.7 (CH), 126.8 (2CH), 127.8 (CH), 128.8 (2CH), 140.8 (C). The analyses are similar to those previously reported [12]. 2-Iodo-N-phenylindole (4c). The procedure 5 using N-phenylindole (2c, 0.13 g) gave 4c (eluent: heptane-acoet 80:20), after recrystallization from pentane, in 92% yield as a yellow powder: mp 88 C; IR (ATR): 678, 691, 746, 763, 780, 809, 962, 1016, 1046, 1070, 1139, 1212, 1227, 1251, 1267, 1289, 1307, 1436, 1457, 1494, 1594, 2924, 3043 cm -1 ; 1 H NMR (CDCl 3 ) 6.99 (s, 1H), 7.11-7.18 (m, 3H), 7.37-7.42 (m, 2H), 7.53-7.64 (m, 4H); 13 C NMR (CDCl 3 ) 83.9 (C), 110.9 (CH), 113.8 (CH), 119.5 (CH), 120.5 (CH), 122.4 (CH), 128.7 (CH), 129.1 (2CH), 129.4 (2CH), 129.7 (C), 138.8 (C), 139.5 (C). Crystal data for 4c. C 14 H 10 IN, M = 319.13, monoclinic, C c, a = 7.0800(3), b = 20.6660(10), c = 8.2442(5) Å, β = 100.632(2), V = 1185.54(10) Å 3, Z = 4, d = 1.788 g cm -3, μ = 2.671 mm -1. A final refinement on F 2 with 2183 unique intensities and 145 parameters converged at ωr(f 2 ) = 0.0563 (R(F) = 0.0233) for 2139 observed reflections with I > 2σ(I). N-(3-Iodo-4-methoxyphenyl)pyrrole (3d). The procedure 6 using N-(4- methoxyphenyl)pyrrole (1d, 0.12 g) gave 3d (eluent: heptane-acoet 80:20) in 97% yield as a white powder: mp 126-128 C; IR (ATR): 670, 739, 808, 885, 932, 1011, 1024, 1047, 1070, 1125, 1181, 1242, 1259, 1294, 1332, 1413, 1440, 1456, 1499, 1575, 1600, 2835, 2958, 3128 S7

cm -1 ; 1 H NMR (CDCl 3 ) 3.90 (s, 3H), 6.35 (t, 2H, J = 2.3 Hz), 6.85 (d, 1H, J = 8.7 Hz), 6.99 (t, 2H, J = 2.3 Hz), 7.34 (dd, 1H, J = 8.7 and 2.4 Hz), 7.83 (d, 1H, J = 2.7 Hz); 13 C NMR (CDCl 3 ) 56.7 (CH 3 ), 86.2 (C), 110.4 (2CH), 111.1 (CH), 119.6 (2CH), 121.9 (CH), 132.0 (CH), 135.4 (C), 156.3 (C). Crystal data for 3d. C 11 H 10 INO, M = 299.10, monoclinic, P 2 1 /n, a = 9.9461(4), b = 6.9825(3), c = 15.2049(8) Å, β = 92.314(2), V = 1055.10(8) Å 3, Z = 4, d = 1.883 g cm -3, μ = 3.001 mm -1. A final refinement on F 2 with 2409 unique intensities and 128 parameters converged at ωr(f 2 ) = 0.0548 (R(F) = 0.0253) for 2149 observed reflections with I > 2σ(I). N-(3-Iodo-4-methoxyphenyl)indole (4d). The procedure 6 using N-(4-methoxyphenyl)indole (2d, 0.15 g) gave 4d (eluent: heptane-acoet 80:20), after recrystallization from pentane, in 71% yield as a beige powder: mp 98-100 C; IR (ATR): 678, 726, 747, 768, 810, 885, 968, 1017, 1046, 1112, 1139, 1186, 1215, 1227, 1250, 1267, 1287, 1334, 1459, 1492, 1510, 1597, 2965 cm -1 ; 1 H NMR (CDCl 3 ) 3.96 (s, 3H), 6.68 (dd, 1H, J = 3.3 and 0.9 Hz), 6.94 (d, 1H, J = 8.7 Hz), 7.16-7.27 (m, 2H), 7.26 (d, 1H, J = 2.7 Hz), 7.44-7.48 (m, 2H), 7.68-7.72 (m, 1H), 7.93 (d, 1H, J = 2.7 Hz); 13 C NMR (CDCl 3 ) 56.8 (CH 3 ), 86.2 (C), 103.5 (CH), 110.3 (CH), 111.1 (CH), 120.5 (CH), 121.2 (CH), 122.5 (CH), 125.8 (CH), 128.1 (CH), 129.1 (C), 134.0 (C), 135.8 (CH), 136.3 (C), 157.0 (C); MS (ESI): calcd for C 15 H 12 INO [M] + 349, found 349. N-(3-(1-Pyrrolyl)-2-pyridyl)imidazole (5b). The procedure 7 using N-(2-iodo-3- pyridyl)pyrrole (3b, 0.27 g) gave 5b (eluent: AcOEt-heptane 80:20) in 85% yield as a yellow oil: IR (ATR): 655, 728, 765, 810, 923, 972, 1013, 1048, 1072, 1093, 1213, 1239, 1260, 1302, 1335, 1446, 1493, 1582, 3119 cm -1 ; 1 H NMR (CDCl 3 ) 6.31 (t, 2H, J = 2.1 Hz), 6.61 (t, 2H, J = 2.1 Hz), 6.82 (s, 1H), 6.97 (s, 1H), 7.34 (dd, 1H, J = 7.8 and 4.8 Hz), 7.41 (s, 1H), 7.77 (dd, 1H, J = 8.1 and 1.7 Hz), 8.47 (dd, 1H, J = 4.8 and 1.7 Hz); 13 C NMR (CDCl 3 ) 111.4 (2CH), 117.5 (CH), 121.1 (2CH), 122.7 (CH), 128.3 (C), 129.6 (CH), 136.1 (CH), 137.3 (CH), 144.8 (C), 147.9 (CH); MS (ESI): calcd for C 12 H 10 N 4 [M] + 210, found 210. N-(2-Methoxy-5-(1-pyrrolyl)phenyl)imidazole (5d). The procedure 7 using N-(3-iodo-4- methoxyphenyl)pyrrole (3d, 0.30 g) gave 5d (eluent: AcOEt-heptane 80:20) in 67% yield as a beige powder: mp 130 C; IR (ATR): 659, 700, 723, 813, 985, 1019, 1032, 1055, 1070, 1247, 1263, 1281, 1464, 1496, 1520, 2841, 2937, 3109 cm -1 ; 1 H NMR (CDCl 3 ) 3.87 (s, 3H), 6.34 (t, 2H, J = 2.1 Hz), 7.01 (t, 2H, J = 2.1 Hz), 7.10 (d, 1H, J = 8.7 Hz), 7.19 (s, 1H), 7.23 (s, 1H), 7.32 (d, 1H, J = 2.7 Hz), 7.37 (dd, 1H, J = 8.7 and 2.7 Hz), 7.84 (s, 1H); 13 C NMR S8

(CDCl 3 ) 56.3 (CH 3 ), 110.7 (2CH), 113.3 (CH), 118.3 (CH), 119.6 (2CH), 120.2 (CH), 120.9 (CH), 127.0 (C), 129.0 (CH), 134.7 (C), 137.8 (CH), 150.4 (C). Crystal data for 5d. C 14 H 13 N 3 O, M = 239.27, monoclinic, P 2 1 /n, a = 11.4222(6), b = 5.4888(3), c = 19.7338(12) Å, β = 100.562(2), V = 1216.23(12) Å 3, Z = 4, d = 1.307 g cm -3, μ = 0.086 mm -1. A final refinement on F 2 with 2777 unique intensities and 164 parameters converged at ωr(f 2 ) = 0.101 (R(F) = 0.0404) for 2281 observed reflections with I > 2σ(I). N-(2-Methoxy-5-(1-indolyl)phenyl)imidazole (6d). The procedure 7 using N-(3-iodo-4- methoxyphenyl)indole (4d, 0.35 g) gave 6d (eluent: AcOEt-heptane 80:20) in 40% yield as a yellow oil: IR (ATR): 659, 704, 737, 762, 817, 884, 1022, 1055, 1093, 1106, 1134, 1212, 1226, 1251, 1286, 1457, 1491, 1519, 1591, 1609, 2841, 2932, 3051 cm -1 ; 1 H NMR (CDCl 3 ) 3.93 (s, 3H), 6.69 (d, 1H, J = 2.7 Hz), 7.17-7.30 (m, 6H), 7.44-7.51 (m, 3H), 7.69 (d, 1H, J = 7.2 Hz), 7.84 (br s, 1H); 13 C NMR (CDCl 3 ) 56.4 (CH 3 ), 103.9 (CH), 110.1 (CH), 113.3 (CH), 120.2 (CH), 120.6 (CH), 121.4 (CH), 121.8 (CH), 122.7 (CH), 124.9 (CH), 128.0 (CH), 128.0 (C), 129.0 (CH), 129.2 (C), 133.3 (C), 136.1 (C), 137.8 (CH), 151.1 (C); MS (ESI): calcd for C 18 H 15 N 3 O [M] + 289, found 289. 1. Reddy, V. P.; Kumar, A. V.; Rao, K. R. Tetrahedron Lett. 2011, 52, 777-780. doi:10.1016/j.tetlet.2010.12.016 2 Teo, Y.-C.; Yong, F.-F.; Sim, S. Tetrahedron 2013, 69, 7279-7284. doi:10.1016/j.tet.2013.06.095 3 Panda, N.; Jena, A. K.; Mohapatra, S.; Rout, S. R. Tetrahedron Lett. 2011, 52, 1924-1927. doi:10.1016/j.tetlet.2011.02.050 4 Jiang, D.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2007, 72, 672-674. doi:10.1021/jo062060e 5 Tang, B.-X.; Guo, S.-M.; Zhang, M.-B.; Li, J.-H. Synthesis 2008, 1707-1716. doi:10.1055/s-2008-1067014 6 Romero, M.; Harrak, Y.; Basset, J.; Ginet, L.; Constans, P.; Pujol, M. D. Tetrahedron 2006, 62, 9010-9016. doi:10.1016/j.tet.2006.07.011 7 Kidwai, M.; Mishra, N. K.; Bhardwaj, S.; Jahan, A.; Kumar, A.; Mozumdar, S. ChemCatChem 2010, 2, 1312-1317. doi:10.1002/cctc.201000062 8 Rao, R. K.; Naidu, A. B.; Jaseer, E. A.; Sekar, G. Tetrahedron 2009, 65, 4619-4624. doi:10.1016/j.tet.2009.03.061 9 Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Eur. J. 2006, 12, 3636-3646. doi:10.1002/chem.200501473 10 Ma, H.-C.; Jiang, X.-Z. J. Org. Chem. 2007, 72, 8943-8946. doi:10.1021/jo7015983 11 Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem. 2007, 2147-2151. doi:10.1002/ejoc.200601084 12 Seggio, A.; Lannou, M. I.; Chevallier, F.; Nobuto, D.; Uchiyama, M.; Golhen, S.; Roisnel, T.; Mongin, F. Chem. Eur. J. 2007, 13, 9982-9989. doi:10.1002/chem.200700608 S9

Compound 3a 1 H NMR (300 MHz, CDCl 3 ) 7.260 7.148 7.135 6.976 6.969 6.962 6.623 6.610 6.379 6.372 6.365 1.98 1.01 1.96 1.00 9.0 8.0 7.0 6.0 4.0 3.0 2.0 1.0 0.0 13 C NMR (75 MHz, CDCl 3 ) 148.655 136.018 121.161 117.160 111.069 77.738 77.314 76.890 66.314 7.260 7.148 7.135 6.976 6.969 6.962 6.623 6.610 6.379 6.372 6.365 1.98 1.01 1.96 1.00 7.30 7.20 7.10 7.00 6.90 6.80 6.70 6.60 6.50 6.40 6.30 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 S10

Compound 4a 1 H NMR (300 MHz, CDCl 3 ) 10.0 9.0 8.0 7.0 6.0 4.0 3.0 2.0 1.0 0.0 13 C NMR (75 MHz, CDCl 3 ) 146.303 137.000 135.974 129.134 128.995 123.215 122.178 121.286 121.270 110.641 104.863 77.583 77.160 76.737 68.915 7.726 7.701 7.624 7.597 7.352 7.328 7.307 7.295 7.287 7.276 7.254 7.230 6.833 6.820 6.728 6.717 0.98 0.99 4.23 1.02 1.00 7.80 7.70 7.60 7.50 7.40 7.30 7.20 7.10 7.00 6.90 6.80 6.70 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 S11

Compound 3b 1 H NMR (300 MHz, CDCl 3 ) 8.50 8.40 8.30 8.20 8.10 8.00 7.90 7.80 7.70 7.60 7.50 7.40 7.30 7.20 7.10 7.00 6.90 6.80 6.70 6.60 6.50 6.40 6.30 9.0 8.0 7.0 6.0 4.0 3.0 2.0 1.0 0.0 13 C NMR (75 MHz, CDCl 3 ) 149.518 141.784 134.712 123.095 122.139 119.901 110.105 77.584 77.160 76.735 8.416 8.410 8.401 8.394 7.543 7.537 7.517 7.511 7.366 7.350 7.340 7.324 7.260 6.831 6.824 6.816 6.386 6.378 6.371 2.07 1.95 1.04 1.05 1.00 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 S12

Compound 4d 1 H NMR (300 MHz, CDCl 3 ) 7.778 7.770 7.585 7.583 7.574 7.571 7.569 7.560 7.555 7.552 7.343 7.335 7.315 7.306 7.260 7.122 7.114 7.097 7.091 7.090 7.075 7.072 6.969 6.940 6.927 6.925 3.985 2.178 1.555 2.06 3.18 1.06 1.03 1.00 10.0 0.0 13 C NMR (75 MHz, CDCl 3 ) 158.413 139.826 139.659 132.679 130.225 129.683 122.562 120.639 119.523 113.662 110.776 110.558 85.646 84.515 77.160 56.825 170 160 150 140 130 120 110 100 90 S13 80 70 60 50 40 30 20 10 0

Compound 3e 1 H NMR (300 MHz, CDCl 3 ) 9.0 8.0 7.0 6.0 4.0 3.0 2.0 1.0 0.0 13 C NMR (75 MHz, CDCl 3 ) 140.228 133.132 131.656 126.097 121.298 119.183 111.442 101.894 77.583 77.160 76.736 7.892 7.883 7.636 7.607 7.260 7.250 7.241 7.221 7.212 7.035 7.028 7.021 6.385 6.378 6.370 2.09 2.01 1.01 0.98 1.00 7.50 7.00 6.50 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 S14

Compound 4e 1 H NMR (300 MHz, CDCl 3 ) 8.0 7.0 6.0 4.0 3.0 2.0 1.0 0.0 13 C NMR (75 MHz, CDCl 3 ) 139.334 135.440 135.336 133.186 129.466 127.349 127.035 124.956 122.933 121.414 120.946 110.176 104.742 101.919 77.584 77.160 76.736 8.020 8.012 7.754 7.725 7.697 7.673 7.667 7.530 7.502 7.401 7.392 7.372 7.364 7.289 7.277 7.266 7.260 7.239 7.234 7.222 7.217 7.196 7.192 7.172 7.169 6.706 6.695 0.98 4.82 1.12 1.08 2.31 0.94 8.00 7.50 7.00 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 S15

Compound 4c 1 H NMR (300 MHz, CDCl 3 ) 9.0 8.0 7.0 6.0 4.0 3.0 2.0 1.0 0.0 13 C NMR (75 MHz, CDCl 3 ) 139.425 138.807 129.696 129.351 129.064 128.640 122.397 120.498 119.422 113.721 110.815 83.815 77.546 77.123 76.700 7.626 7.609 7.604 7.582 7.557 7.548 7.535 7.531 7.412 7.406 7.385 7.380 7.260 7.151 7.132 7.128 6.992 0.97 3.11 2.00 4.13 7.80 7.70 7.60 7.50 7.40 7.30 7.20 7.10 7.00 6.90 6.80 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 S16

Compound 3d 1 H NMR (300 MHz, CDCl 3 ) 3.903 9.0 8.0 7.0 6.0 4.0 3.0 2.0 1.0 13 C NMR (75 MHz, CDCl 3 ) 156.340 135.444 131.961 121.864 119.635 111.072 110.372 86.234 77.584 77.160 76.736 56.747 7.838 7.829 7.359 7.350 7.330 7.321 7.260 6.997 6.990 6.982 6.862 6.833 6.353 6.346 6.338 3.903 3.14 1.99 1.03 2.00 1.03 0.95 8.0 7.0 6.0 4.0 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 S17

Compound 4d 1 H NMR (300 MHz, CDCl 3 ) 3.960 8.0 7.0 6.0 4.0 3.0 2.0 1.0 13 C NMR (75 MHz, CDCl 3 ) 157.040 136.270 135.782 133.984 129.102 128.140 125.822 122.521 121.232 120.457 111.092 110.289 103.548 86.205 77.583 77.160 76.736 56.842 7.936 7.928 7.715 7.710 7.690 7.687 7.685 7.479 7.470 7.450 7.441 7.269 7.260 7.250 7.246 7.224 7.218 7.213 7.209 7.188 7.184 7.164 7.160 6.954 6.925 6.686 6.683 6.675 6.672 1.02 1.00 3.45 2.01 1.02 0.93 8.00 7.90 7.80 7.70 7.60 7.50 7.40 7.30 7.20 7.10 7.00 6.90 6.80 6.70 6.60 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 S18

Compound 5b 1 H NMR (300 MHz, CDCl 3 ) 8.442 8.434 8.426 7.750 7.744 7.724 7.718 7.380 7.334 7.318 7.312 7.308 7.292 7.260 6.931 6.791 6.588 6.581 6.575 6.276 6.270 9.0 8.0 7.0 6.0 13 C NMR (75 MHz, CDCl 3 ) 147.884 144.796 137.268 136.099 129.644 128.322 122.687 121.092 117.450 111.367 77.585 77.160 76.735 160 150 140 130 120 S19 110 100 90 80 70

N N N Compound 5d MeO 1 H NMR (300 MHz, CDCl 3 ) 7.843 7.385 7.376 7.356 7.347 7.323 7.314 7.260 7.235 7.190 7.110 7.081 7.014 7.007 7.000 6.351 6.344 6.337 3.871 3.12 2.09 1.96 1.00 2.00 2.04 1.00 8.0 7.0 6.0 4.0 3.0 2.0 13 C NMR (75 MHz, CDCl 3 ) 150.437 137.784 137.756 134.704 129.045 127.030 120.878 120.201 119.571 118.285 113.300 110.704 77.160 56.316 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 S20

Compound 6d 1 H NMR (300 MHz, CDCl 3 ) 7.913 7.707 7.682 7.679 7.510 7.501 7.489 7.481 7.472 7.464 7.461 7.452 7.443 7.294 7.284 7.261 7.215 7.205 7.175 6.698 6.687 3.931 3.15 1.00 6.71 3.16 1.09 0.92 9.0 8.0 7.0 6.0 4.0 3.0 13 C NMR (75 MHz, CDCl 3 ) 151.058 137.832 136.114 133.272 129.204 129.027 128.011 127.957 124.865 122.687 121.824 121.365 120.618 120.211 113.334 110.108 103.907 77.160 56.382 150 100 50 S21

S22

1b C -2.49745668-0.10139721 0.84000820 C -1.16969012-0.22828081 0.51161267 C -0.89897597 0.69698878-0.54031589 C -2.07250987 1.35155123-0.82542282 N -3.05801946 0.86670142 0.02090394 H -3.10923691-0.64480414 1.54463141 H -0.47048172-0.91638816 0.96717689 C -4.40575778 1.28586004 0.04291307 C -5.12316711 1.36368761 1.24107552 C -6641676 1.63528461-1.14479323 C -6.45125886 1.77763551 1.19612548 H -4.64141801 1.12389719 2.18391205 C -7.00937595 2.11929394-0.03645569 H -7.03955760 1.85058216 2.10599111 H -2.28881605 2.15212453-1.51680592 H 0.05262872 0.86955601-1.02458023 H -4.54490663 1.55931099-2.09672128 H -8.04157986 2.45713411-0.10357005 N -6.33242017 2.05402791-1.18953785 S23

C 0.32181200 2.00372700 0.30814300 C 1.68155500 2.12109600 0.32064600 C 2.22376400 0.80561800 0.11944200 C 1.12230700-0.08471100-0.00631800 H -0.44541500 2.75054300 0.45519600 H 2.23727700 3.03715900 0.46712000 C -1.37742300 0.20680300 0.05996700 C -1.78926800-0.93618700 0.75432500 C -2.33729700 0.90501300-0.68889300 C -3.12207200-1.32713500 0.65935600 H -1.08272900-1.48831700 1.36541800 C -3.99874900-0.55438300-0.10367300 H -3.47963900-2.20833200 1.18371900 H -2.04235800 1.78855400-1.25239200 C 1.29954500-1.44921200-0.26224000 C 3.52917600 0.29623400 0.01811700 C 3.70872900-1.06092100-0.21481900 C 2.60368500-1.92265800-0.36020900 H 4.38445700 0.96013700 0.11399800 H 4.71383000-1.46580600-0.29461400 H 2.77097200-2.97803100-0.55688000 H 0.45473800-2.11738100-0.39402000 N -0.04493000 0.67176600 0.11848300 H -4788600-0.82995300-0.19084000 N -3.62047400 0.54705200-0.76416500 2b S24