상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Σχετικά έγγραφα
Approximation of distance between locations on earth given by latitude and longitude

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

EE512: Error Control Coding

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 8.3 Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Homework 3 Solutions

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Higher Derivative Gravity Theories

Section 7.6 Double and Half Angle Formulas

derivation of the Laplacian from rectangular to spherical coordinates

Matrices and Determinants

2 Composition. Invertible Mappings

( ) 2 and compare to M.

4.6 Autoregressive Moving Average Model ARMA(1,1)

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

the total number of electrons passing through the lamp.

w o = R 1 p. (1) R = p =. = 1

1 String with massive end-points

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Section 8.2 Graphs of Polar Equations

Homework 8 Model Solution Section

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

( y) Partial Differential Equations

[1] P Q. Fig. 3.1

EE101: Resonance in RLC circuits

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Durbin-Levinson recursive method

Solutions to Exercise Sheet 5

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Section 9.2 Polar Equations and Graphs

The challenges of non-stable predicates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Example Sheet 3 Solutions

Galatia SIL Keyboard Information

Math221: HW# 1 solutions

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Exercises to Statistics of Material Fatigue No. 5

PARTIAL NOTES for 6.1 Trigonometric Identities

Areas and Lengths in Polar Coordinates

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

6.3 Forecasting ARMA processes

Numerical Analysis FMN011

Finite Field Problems: Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

CE 530 Molecular Simulation

Derivation of Optical-Bloch Equations

Areas and Lengths in Polar Coordinates

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Math 6 SL Probability Distributions Practice Test Mark Scheme

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Space-Time Symmetries

The Simply Typed Lambda Calculus

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Second Order Partial Differential Equations

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

What happens when two or more waves overlap in a certain region of space at the same time?

Laplace s Equation in Spherical Polar Coördinates

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Calculating the propagation delay of coaxial cable

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία Η ΚΑΤΑΘΛΙΨΗ ΣΕ ΕΦΗΒΟΥΣ ΜΕ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 1

Variational Wavefunction for the Helium Atom

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Solution Series 9. i=1 x i and i=1 x i.

ST5224: Advanced Statistical Theory II

Dark matter from Dark Energy-Baryonic Matter Couplings

Statistical Inference I Locally most powerful tests

ECON 381 SC ASSIGNMENT 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Every set of first-order formulas is equivalent to an independent set

1. For each of the following power series, find the interval of convergence and the radius of convergence:

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Spherical Coordinates

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Lecture 26: Circular domains

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Capacitors - Capacitance, Charge and Potential Difference

Forced Pendulum Numerical approach

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΗΡΕΑΖΕΙ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ

Transcript:

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy otential scattering. 1 2014.12.05 (FRI) Heavy Ion Meeting

Motivation It is exected that in the high energy limit hotons or gluons are emitted in the direction of the initial jet articles. Chec the behavior of bremsstrahlung in relativistic heavy-ion collisions by calculating the cross section. 2 2014.12.05 (FRI) Heavy Ion Meeting

Model : Jet article scattering in medium C. Y. Wong, Phys. Rev. C 85, 064909 (2012) Two diagrams interfere to give the constructive behavior in the forward direction which results in the ridge correlation. 3 2014.12.05 (FRI) Heavy Ion Meeting

Bremsstrahlung of jet article in medium Interference term may lay an imortant role in this rocess and give the forward ea. 4 2014.12.05 (FRI) Heavy Ion Meeting

Bremsstrahlung of jet articles Initial Jet Particles Emitted Photon Medium Momentum Transfer Final Jet Particles Medium Parton 5 2014.12.05 (FRI) Heavy Ion Meeting

Amlitude for the Process 6 2014.12.05 (FRI) Heavy Ion Meeting

Cross Section for the Process Add them first before square them and interference terms are exected to give the forward ea. 7 2014.12.05 (FRI) Heavy Ion Meeting

Degree of Freedom - Consider 5 articles 2s of freedom - on mass shell condition : 5 - Energy momentum conservation : 4 - Set the direction of initial jet & medium arton to z axis : x = y = 0 & a x = a y = 0 - Left 7 degrees of freedom : 0, 0, θ, φ, 0, θ, φ 8 2014.12.05 (FRI) Heavy Ion Meeting

Degree of Freedom Using on mass-shell condition & - for initial medium - for final medium We have quadratic equation from two exression and solve it to get a 0 & a 3. 9 2014.12.05 (FRI) Heavy Ion Meeting

Angular Distribution of Cross Section Chec the angular distribution of the cross section. Chec the correlation = θ θ & = φ φ 10 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 10 GeV 9 GeV φ θ φ θ 0.1 GeV 1 = θ θ = φ φ 11 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 10 GeV 9 GeV φ θ φ θ 0.3 GeV 1 = θ θ = φ φ 12 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 10 GeV 9 GeV φ θ φ θ 0.5 GeV 1 = θ θ = φ φ 13 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 10 GeV 9 GeV φ θ φ θ 0.7 GeV 1 = θ θ = φ φ 14 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 10 GeV 9 GeV φ θ φ θ 0.9 GeV 1 = θ θ = φ φ 15 2014.12.05 (FRI) Heavy Ion Meeting

θ Deendence of Cross Section θ deendence 10 GeV 9 GeV φ θ φ θ 0.9 GeV 1 degree = θ θ = φ φ 16 2014.12.05 (FRI) Heavy Ion Meeting

θ Deendence of Cross Section θ deendence 10 GeV 9 GeV φ θ φ θ 0.9 GeV 3 degree = θ θ = φ φ 17 2014.12.05 (FRI) Heavy Ion Meeting

θ Deendence of Cross Section θ deendence 10 GeV 9 GeV φ θ φ θ 0.9 GeV 5 degree = θ θ = φ φ 18 2014.12.05 (FRI) Heavy Ion Meeting

θ Deendence of Cross Section θ deendence 10 GeV 9 GeV φ θ φ θ 0.9 GeV 1 = θ θ = φ φ 19 2014.12.05 (FRI) Heavy Ion Meeting

θ Deendence of Cross Section θ deendence 10 GeV 9 GeV φ θ φ θ 0.9 GeV 15 degree = θ θ = φ φ 20 2014.12.05 (FRI) Heavy Ion Meeting

θ Deendence of Cross Section θ deendence 10 GeV 9 GeV φ θ φ θ 0.9 GeV 2 = θ θ = φ φ 21 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 10 GeV 9 GeV φ θ φ θ 0.9 GeV 1 degree = θ θ = φ φ 22 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 20 GeV 0.9 E i GeV φ θ φ θ 0.9 (E i E f )GeV 1 degree = θ θ = φ φ 23 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 30 GeV 0.9 E i GeV φ θ φ θ 0.9 (E i E f )GeV 1 degree = θ θ = φ φ 24 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 40 GeV 0.9 E i GeV φ θ φ θ 0.9 (E i E f )GeV 1 degree = θ θ = φ φ 25 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 50 GeV 0.9 E i GeV φ θ φ θ 0.9 (E i E f )GeV 1 degree = θ θ = φ φ 26 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 50 GeV 0.8 E i GeV φ θ φ θ 0.9 (E i E f )GeV 1 degree = θ θ = φ φ 27 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 50 GeV 0.85 E i GeV φ θ φ θ 0.9 (E i E f )GeV 1 degree = θ θ = φ φ 28 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 50 GeV 0.9 E i GeV φ θ φ θ 0.9 (E i E f )GeV 1 degree = θ θ = φ φ 29 2014.12.05 (FRI) Heavy Ion Meeting

E Deendence of Cross Section E deendence 50 GeV 0.95 E i GeV φ θ φ θ 0.9 (E i E f )GeV 1 degree = θ θ = φ φ 30 2014.12.05 (FRI) Heavy Ion Meeting

Summary Calculate the cross section of bremsstrahlung for jet articles in medium after the relativistic high energy heavy ion collision. - At given incident energy and T Show the angular distribution of cross section - chec the correlation between and. 31 2014.12.05 (FRI) Heavy Ion Meeting

Outloo Need to include the momentum distribution of medium artons. Will chec the correlation between medium arton a and as a candidate rocess of the ridge correlation. 32 2014.12.05 (FRI) Heavy Ion Meeting

Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy otential scattering. 1 2014.12.05 (FRI) Heavy Ion Meeting