Cyclic Cystine-Bridged Peptides from the Marine. Sponge Clathria basilana Induce Apoptosis in. Tumor Cells and Depolarize the Bacterial

Σχετικά έγγραφα
SUPPORTING INFORMATION

SUPPORTING INFORMATION

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Supporting Information

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α- Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information for. A New Diketopiperazine, Cyclo-(4-S-Hydroxy-R-Proline-R-Isoleucine), from an Australian Specimen of the Sponge

Supporting Information for. Update of spectroscopic data for 4-hydroxyldictyolactone and dictyol E isolated from a Halimeda stuposa - Dictyota

Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide derivatives as Bacterial Quorum Sensing and Biofilm Inhibitors

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

SUPPORTING INFORMATION

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Electronic Supplementary Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Supporting Information

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information. Experimental section

SUPPLEMENTARY MATERIAL

The Sponge-Derived Fijianolide Polyketide Class: Further Evaluation of Their Structural and Cytotoxicity Properties

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

A strategy for the identification of combinatorial bioactive compounds. contributing to the holistic effect of herbal medicines

c Key words: cultivation of blood, two-sets blood culture, detection rate of germ Vol. 18 No

Chemical Constituents and Antioxidant Activity of Teucrium barbeyanum Aschers.

Supporting Information

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

The Free Internet Journal for Organic Chemistry

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information

Supporting Information

Electronic Supplementary Information

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Rudi Hendra 1, Paul A. Keller 1* Telephone: Fax:

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

National d Histoire Naturelle, 57 rue Cuvier (C.P. 54), Paris, France. Contents:

Phenylpropanoids, Sesquiterpenoids and Flavonoids from Pimpinella tragium Vill. subsp. lithophila (Schischkin) Tutin

Supporting Information

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting information

ATP. adenosine triphosphate (ATP) Nontuberculous Mycobacteria (NTM) ATP

Electrolyzed-Reduced Water as Artificial Hot Spring Water

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Etest. cefepime. oxacillin Staphylococcus aureus oxacillin. imipenem piperacillin ceftazidime cefpirome

Table of Contents 1 Supplementary Data MCD

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Supporting Information

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supplementary Information

Supporting Information

Electronic Supplementary Information (ESI)

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Electronic Supplementary Information

Available online at shd.org.rs/jscs/

Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Nguyen Hien Trang* **

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Supplementary information:

Divergent synthesis of various iminocyclitols from D-ribose

difluoroboranyls derived from amides carrying donor group Supporting Information

Available online at shd.org.rs/jscs/

Supporting information

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Electronic Supplementary Information

The effect of curcumin on the stability of Aβ. dimers

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Available online at

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information. Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl- N'-[2-nitro(het)aryl]hydrazides

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

of the methanol-dimethylamine complex

Supplementary Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

SUPPORTING INFORMATION

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Synthesis of α-deoxymono and -Difluorohexopyranosyl. 1-Phosphates and Kinetic Evaluation with Thymidylyl- and. Guanidylyltransferases

Supporting Information

Transcript:

Supporting information Cyclic Cystine-Bridged Peptides from the Marine Sponge Clathria basilana Induce Apoptosis in Tumor Cells and Depolarize the Bacterial Cytoplasmic Membrane Amin Mokhlesi,, Fabian Stuhldreier, Katharina W. Wex, Anne Berscheid, Rudolf Hartmann, Nidja Rehberg, Parichat Sureechatchaiyan, Chaidir Chaidir, O Matthias U. Kassack, Rainer Kalscheuer, Heike Brötz-Oesterhelt, Sebastian Wesselborg, Björn Stork, Georgios Daletos,*, and Peter Proksch*, Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany. Department of Marine Biology, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran. Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany. Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28/E8, 72076 Tübingen, Germany. Institute of Complex Systems: Strukturbiochemie, Forschungszentrum Jülich, Wilhelm- Johnenstrasse, 52428 Jülich, Germany. 1

Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany. O Center for Pharmaceutical and Medical Technology, Agency for the Assessment and Application Technology, 10340 Jakarta, Indonesia. * Corresponding authors. Tel: ++492118114163. E-mail: proksch@uni-duesseldorf.de, georgios.daletos@uni-duesseldorf.de 2

Contents S1. Microcionamide C (1)... 6 S1-1. 1 H NMR (DMSO-d 6, 600 MHz) spectrum of 1... 6 S1-2. HMBC NMR (DMSO-d 6, 600 MHz) spectrum of 1... 7 S1-3. ROESY NMR (DMSO-d 6, 600 MHz) spectrum of 1... 8 S1-4. HSQC NMR (DMSO-d 6, 600 MHz) spectrum of 1... 9 S1-5. TOCSY NMR (DMSO-d 6, 600 MHz) spectrum of 1... 10 S1-6. HRESIMS spectrum of 1... 11 S1-7. HRESIMS/MS spectrum of 1... 12 S2. Microcionamide D (2)... 13 S2-1. Table of 1 H (600 MHz), 13 C (150 MHz), HMBC, and ROESY NMR Data (DMSO-d 6, δ in ppm) of Microcionamide D (2)... 13 S2-2. 1 H NMR (DMSO-d 6, 600 MHz) spectrum of 2... 16 S2-3. HMBC NMR (DMSO-d 6, 600 MHz) spectrum of 2... 17 S2-4. ROESY NMR (DMSO-d 6, 600 MHz) spectrum of 2... 18 S2-5. HSQC NMR (DMSO-d 6, 600 MHz) spectrum of 2... 19 S2-6. TOCSY NMR (DMSO-d 6, 600 MHz) spectrum of 2... 20 S2-7. COSY NMR (DMSO-d 6, 600 MHz) spectrum of 2... 21 S2-8. HRESIMS spectrum of 2... 22 S2-9. HRESIMS/MS spectrum of 2... 23 S3. Microcionamide A (3)... 24 S3-1. 1 H NMR (MeOH-d 4, 600 MHz) spectrum of 3... 24 S4. Gombamide B (4)... 25 S4-1. 1 H NMR (DMSO-d 6, 600 MHz) spectrum of 4... 25 S4-2. 13 C NMR (DMSO-d 6, 600 MHz) spectrum of 4... 26 S4-3. HMBC NMR (DMSO-d 6, 600 MHz) spectrum of 4... 27 S4-4. ROESY NMR (DMSO-d 6, 600 MHz) spectrum of 4... 28 S4-5. HSQC NMR (DMSO-d 6, 600 MHz) spectrum of 4... 29 S4-6. TOCSY NMR (DMSO-d 6, 600 MHz) spectrum of 4... 30 3

S4-7. COSY NMR (DMSO-d 6, 600 MHz) spectrum of 4... 31 S4-8. HRESIMS spectrum of 4... 32 S4-9. HRESIMS/MS spectrum of 4... 33 S5. Gombamide C (5)... 34 S5-1. Table of 1 H (600 MHz), 13 C (150 MHz), and HMBC NMR Data (DMSO-d 6, δ in ppm) of Gombamide C (5)... 34 S5-2. 1 H NMR (DMSO-d 6, 600 MHz) spectrum of 5... 37 S5-3. HMBC NMR (DMSO-d 6, 600 MHz) spectrum of 5... 38 S5-4. HSQC NMR (DMSO-d 6, 600 MHz) spectrum of 5... 39 S5-5. TOCSY NMR (DMSO-d 6, 600 MHz) spectrum of 5... 40 S5-6. HRESIMS spectrum of 5... 41 S5-7. HRESIMS/MS spectrum of 5... 42 S6. Gombamide D (6)... 43 S6-1. 1 H NMR (DMSO-d 6, 600 MHz) spectrum of 6... 43 S6-2. 13 C NMR (DMSO-d 6, 150 MHz) spectrum of 6... 44 S6-3. HMBC NMR (DMSO-d 6, 600 MHz) spectrum of 6... 45 S6-4. ROESY NMR (DMSO-d 6, 600 MHz) spectrum of 6... 46 S6-5. HSQC NMR (DMSO-d 6, 600 MHz) spectrum of 6... 47 S6-6. COSY NMR (DMSO-d 6, 600 MHz) spectrum of 6... 48 S6-7. HRESIMS spectrum of 6... 49 S6-8. HRESIMS/MS spectrum of 6... 50 S7. (E)-2-amino-3-methyl-N-styrylbutanamide (7)... 51 S7-1. 1 H NMR (MeOH-d4, 600 MHz) spectrum of 7... 51 S7-2. 13 C NMR (MeOH-d4, 600 MHz) spectrum of 7... 52 S7-3. HMBC NMR (MeOH-d4, 600 MHz) spectrum of 7... 53 S7-4. COSY NMR (MeOH-d4, 600 MHz) spectrum of 7... 54 S7-5. HRESIMS spectrum of 7... 55 S8. Marfey s analysis... 56 S8-1. Table of HPLC (C 18 ) retention times of acid hydrolysates of 1 7 using Marfey s method... 56 4

S8-2. Table of HPLC (C 4 ) retention times for L-Ile and L-allo-Ile of 1 5 using Marfey s method... 57 S8-2-1. HPLC chromatogram of derivatized L- and D-allo-Ile standards... 57 S8-2-2. HPLC chromatogram of derivatized D-allo-Ile, L-allo-Ile, and L-Ile standards... 57 S9. Structures of known compounds... 58 S10. Bioactivity results... 59 S10-1. Cytotoxicity effects of 1 3 on human lymphoma and leukemia cell lines... 59 S10-2. Table of antibacterial activity of new 1 7 and known (8 17) compounds reported as minimal inhibitory concentration (MIC) a... 60 5

S1. Microcionamide C (1) S1-1. 1 H NMR (DMSO-d 6, 600 MHz) spectrum of 1 6

S1-2. HMBC NMR (DMSO-d 6, 600 MHz) spectrum of 1 7

S1-3. ROESY NMR (DMSO-d 6, 600 MHz) spectrum of 1 8

S1-4. HSQC NMR (DMSO-d 6, 600 MHz) spectrum of 1 9

S1-5. TOCSY NMR (DMSO-d 6, 600 MHz) spectrum of 1 10

S1-6. HRESIMS spectrum of 1 11

S1-7. HRESIMS/MS spectrum of 1 12

S2. Microcionamide D (2) S2-1. Table of 1 H (600 MHz), 13 C (150 MHz), HMBC, and ROESY NMR Data (DMSO-d 6, δ in ppm) of Microcionamide D (2) Unit Position δ c, a type δ H (J in Hz) HMBC ROESY b Z-PEA NH 9.46, d (10.5) Cys 1 -CO Cys 1 -α, Cys 1 -NH α 121.1, CH 6.72, d (10.0) Cys 1 -CO, Z-PEA-β, Z-PEA-1 β 110.8, CH 5.74, d (10.0) Z-PEA-α, Z-PEA-1, Z-PEA- 2/6 aromatic 1: 134.7, C 2: 127.9, CH 7.35 c Z-PEA-β, Z-PEA-1, Z-PEA- 6, Z-PEA-4 3: 128.3, CH 7.35 c Z-PEA-1, Z-PEA-5, Z-PEA-4 4: 126.4, CH 7.24, m Z-PEA-2/6 5: 128.3, CH 7.35 c Z-PEA-1, Z-PEA-3, Z-PEA-4 6: 127.9, CH 7.35 c Z-PEA-β, Z-PEA-1, Z-PEA- 2, Z-PEA-4 Cys 1 NH 8.24, br s Z-PEA- NH, Ile 2 -α CO 168.0, C α 51.7, CH 4.62 c Cys 1 -CO, Ile 2 -CO, Cys 1 -β Z-PEA-NH β 40.9, CH 2 3.07, br t (11.0); 3.28 c Cys 1 -α, Cys 1 -CO Ile 2 NH 7.77, br s CO 170.9, C α 57.2, CH 4.01, br t (8.5) Ile 2 -CO, Ile 3 -CO, Ile 2 -β, Ile 2 - γ, Ile 2 -γ Cys 1 -NH β 34.3, CH 1.77, m Ile 2 -α γ 24.3, CH 2 1.07, m; 1.48, m Ile 2 -α γ 15.1, CH 3 0.78 c Ile 2 -α 13

δ 11.0, CH 3 0.81 c,d Ile 3 NH n.d. e CO 170.5 α n.d. e 4.08 c β 36.4, CH 1.79, m γ 24.4, CH 2 1.07, m; 1.51, m γ 15.2, CH 3 0.89 c δ 11.0, CH 3 0.83 c,d Ile 4 NH 7.39 c CO n.d. e α 57.0, CH 4.31, br s Ile 5 -β β 35.9, CH 2.08, br s γ 23.5, CH 2 1.16, m; 1.33, m γ 15.6, CH 3 0.87 c δ 11.1, CH 3 0.86 c,d Ile 5 NH 8.59, d (9.3) Cys 6 -CO Cys 6 -α CO 170.4, C α 58.0, CH 4.17, dd (9.7, 7.5) Ile 5 -CO, Cys 6 -CO, Ile 5 -β, Ile 5 -γ, Ile 5 -γ Cys 6 -α β 36.4, CH 1.80, m Ile 5 -α Ile 4 -α, Cys 6 -NH, Cys 6 -α γ 24.3, CH 2 1.08, m; 1.41, m Ile 5 -α γ 15.2, CH 3 0.84 c Ile 5 -α δ 10.9, CH 3 0.80 c,d Cys 6 NH 8.82, br d (7.0) Ile 7 -CO Ile 7 -α, Ile 7 - β, Ile 7 -γ, Ile 5 -β CO 168.6, C 14

α 52.5, CH 4.61 c Ile 7 -CO Ile 5 -NH, Ile 7 -α, Ile 5 - α β 40.2, CH 2 3.19, m; 3.35, m Ile 7 NH 2 8.06, br s CO 167.8, C α 56.1, CH 3.66, br t (5.0) Ile 7 -CO, Ile 7 -β, Ile 7 -γ, Ile 7 -γ Cys 6 -α, Cys 6 -NH β 36.2, CH 1.79, m Ile 7 -α Cys 6 -NH γ 23.4, CH 2 1.10, m; 1.46, m Ile 7 -α Cys 6 -NH γ 14.2, CH 3 0.89 c Ile 7 -α δ 10.8, CH 3 0.83 c.d a Data extracted from HSQC and HMBC spectra. b Sequential NOEs. c Signal overlap prevents determination of couplings. d Assignments within the same column may be interchanged. e n.d. : not detected 15

S2-2. 1 H NMR (DMSO-d 6, 600 MHz) spectrum of 2 16

S2-3. HMBC NMR (DMSO-d 6, 600 MHz) spectrum of 2 17

S2-4. ROESY NMR (DMSO-d 6, 600 MHz) spectrum of 2 18

S2-5. HSQC NMR (DMSO-d 6, 600 MHz) spectrum of 2 19

S2-6. TOCSY NMR (DMSO-d 6, 600 MHz) spectrum of 2 20

S2-7. COSY NMR (DMSO-d 6, 600 MHz) spectrum of 2 21

S2-8. HRESIMS spectrum of 2 22

S2-9. HRESIMS/MS spectrum of 2 23

S3. Microcionamide A (3) S3-1. 1 H NMR (MeOH-d 4, 600 MHz) spectrum of 3 24

S4. Gombamide B (4) S4-1. 1 H NMR (DMSO-d 6, 600 MHz) spectrum of 4 25

S4-2. 13 C NMR (DMSO-d 6, 600 MHz) spectrum of 4 26

S4-3. HMBC NMR (DMSO-d 6, 600 MHz) spectrum of 4 27

S4-4. ROESY NMR (DMSO-d 6, 600 MHz) spectrum of 4 28

S4-5. HSQC NMR (DMSO-d 6, 600 MHz) spectrum of 4 29

S4-6. TOCSY NMR (DMSO-d 6, 600 MHz) spectrum of 4 30

S4-7. COSY NMR (DMSO-d 6, 600 MHz) spectrum of 4 31

S4-8. HRESIMS spectrum of 4 32

S4-9. HRESIMS/MS spectrum of 4 33

S5. Gombamide C (5) S5-1. Table of 1 H (600 MHz), 13 C (150 MHz), and HMBC NMR Data (DMSO-d 6, δ in ppm) of Gombamide C (5) Unit Position δ c, a type δ H (J in Hz) HMBC Cys 1 NH 7.89, br d (8.6) Phe-CO CO 168.4, C α 51.5, CH 4.76 b β 41.7, CH 2 2.91, dd (14.4, 12.4); 3.14, dd (14.4, 3.4) Z-PEA NH 9.72, br d (10.1) Cys 1 -CO α 121.3, CH 6.71, dd (10.1, 9.7) Cys 1 -CO, Z-PEA-β β 111.6, CH 5.79, d (9.7) Z-PEA-α, Z-PEA-2/6, Z-PEA-1 aromatic 1: 135.2, C 2: 128.1, CH 7.38 b 3: 128.4, CH 7.38 b 4: 126.6, CH 7.38 b 5: 128.4, CH 7.38 b 6: 128.1, CH 7.38 b Phe NH 9.00, br d (8.8) CO 170.5, C α 53.4, CH 4.75 b Phe-CO, Phe-β, Pro 3 -CO β 34.1, CH 2 2.98, m Phe-α, Phe-1, Phe-2/6 aromatic 1: 138.0, C 2: 129.1, CH 7.40, br d (7.5) Phe-β, Phe-6, Phe-4 3: 128.0, CH 7.28, br t (7.5) Phe-1, Phe-5 4: 126.1, CH 7.19, br t (7.5) Phe-2/6 5: 128.0, CH 7.28, br t (7.5) Phe-1, Phe-3 6: 129.1, CH 7.40, br d (7.5) Phe-β, Phe-6, Phe-4 34

Pro 3 CO 171.2, C α 60.7, CH 4.34, d (8.0) Pro 3 -CO, Pro 4 -CO, Pro 3 -β, Pro 3 -γ, Pro 3 -δ β 31.1, CH 2 1.72, m; 1.87, m γ 20.0, CH 2 1.42, m; 0.58, m δ 45.9, CH 2 3.28, m Pro 4 CO 169.2, C α 59.0, CH 4.80, dd (8.8, 3.0) Pro 4 -γ β 30.1, CH 2 1.86, m; 2.22, m γ 21.6, CH 2 1.74, m δ 46.7, CH 2 3.34, m; 3.47, m Cys 5 NH 8.00, br d (10.0) Leu-CO CO 167.9, C α 48.1, CH 4.55, td (10.0, 5.1) Leu-CO, Cys 5 -CO, Cys 5 -β β 37.9, CH 2 2.58, dd (13.0, 10.0); 3.20, dd (13.0, 5.1) Cys 5 -α, Cys 5 -CO Leu NH 8.04, br d (9.9) CO 170.3, C α 50.3, CH 4.47, ddd (9.9, 8.6, 6.1) Leu-CO, Leu-β, Ile-CO β 41.0, CH 2 1.58, m Leu-α, Leu-δ, Leu-δ, Leu-CO γ 23.8, CH 1.62, m δ 21.2, CH 3 0.85, d (6.5) Leu-β, Leu-δ δ' 23.2, CH 3 0.88, d (6.6) Leu-β, Leu-δ Ile NH 8.06, br d (8.7) CO 170.5, C α 56.8, CH 4.15, t (8.5) Glp-CO, Ile-CO, Ile-β, Ile-γ, Ile-γ β 35.4, CH 1.72, m Ile-α, Ile-δ γ 24.0, CH 2 1.01, m; 1.42, m Ile-α, Ile-δ 35

γ 15.2, CH 3 0.75, d (6.8) Ile-α δ 10.2, CH 3 0.71, t (7.4) Ile-β, Ile-γ Glp NH 7.80, s Glp-CO, Glp-α, Glp-β, Glp-γ CO CO 172.2, C 177.4, C α 55.0, CH 4.09, dd (8.7, 3.6) Glp-CO, Glp-β, Glp-γ β 25.2, CH 2 1.79, m; 2.22, m Glp-CO, Glp-α γ 28.8, CH 2 2.05, m; 2.09, m Glp-α a Data extracted from HSQC and HMBC spectra. b Signal overlap prevents determination of couplings. 36

S5-2. 1 H NMR (DMSO-d 6, 600 MHz) spectrum of 5 37

S5-3. HMBC NMR (DMSO-d 6, 600 MHz) spectrum of 5 38

S5-4. HSQC NMR (DMSO-d 6, 600 MHz) spectrum of 5 39

S5-5. TOCSY NMR (DMSO-d 6, 600 MHz) spectrum of 5 40

S5-6. HRESIMS spectrum of 5 41

S5-7. HRESIMS/MS spectrum of 5 42

S6. Gombamide D (6) S6-1. 1 H NMR (DMSO-d 6, 600 MHz) spectrum of 6 43

S6-2. 13 C NMR (DMSO-d 6, 150 MHz) spectrum of 6 44

S6-3. HMBC NMR (DMSO-d 6, 600 MHz) spectrum of 6 45

S6-4. ROESY NMR (DMSO-d 6, 600 MHz) spectrum of 6 46

S6-5. HSQC NMR (DMSO-d 6, 600 MHz) spectrum of 6 47

S6-6. COSY NMR (DMSO-d 6, 600 MHz) spectrum of 6 48

S6-7. HRESIMS spectrum of 6 49

S6-8. HRESIMS/MS spectrum of 6 50

S7. (E)-2-amino-3-methyl-N-styrylbutanamide (7) S7-1. 1 H NMR (MeOH-d4, 600 MHz) spectrum of 7 51

S7-2. 13 C NMR (MeOH-d4, 600 MHz) spectrum of 7 52

S7-3. HMBC NMR (MeOH-d4, 600 MHz) spectrum of 7 53

S7-4. COSY NMR (MeOH-d4, 600 MHz) spectrum of 7 54

S7-5. HRESIMS spectrum of 7 55

S8. Marfey s analysis S8-1. Table of HPLC (C 18 ) retention times of acid hydrolysates of 1 7 using Marfey s method Amino acid Standard 1 2 3 4 5 6 7 L-Cys 20.0 19.9 19.8 20.4 19.9 20.0 20.0 D-Cys 21.2 L-Ile 21.4 21.4 21.3 21.9 20.8 21.0 D-Ile 24.2 L-Leu 21.7 21.3 21.5 21.5 D-Leu 24.3 L-Val 14.5 D-Val 19.4 19.9 19.4 L-Pro 8.8 8.5 8.5 8.8 D-Pro 11.4 L-Glu 12.4 12.3 12.4 12.3 D-Glu 14.2 L-Phe 20.9 20.8 21.0 D-Phe 23.3 56

S8-2. Table of HPLC (C 4 ) retention times for L-Ile and L-allo-Ile of 1 5 using Marfey s method Amino acid Standard 1 2 3 4 5 L-Ile 40.6 40.4 40.6 40.2 40.5 40.5 L-allo-Ile 39.5 120 Marfey 160min 25C #4 Marfey 160min DLallo UV_VIS_1 mau WVL:235 nm L-allo-Ile D-allo-Ile 50 0-60 min 20,0 30,0 40,0 50,0 60,0 70,0 80,0 S8-2-1. HPLC chromatogram of derivatized L- and D-allo-Ile standards 160 100 Marfey 160min 25C #3 Marfey 160min DLallo+LIle 2 UV_VIS_1 mau WVL:235 nm L-allo-Ile/L-Ile D-allo-Ile 0-60 min 20,0 30,0 40,0 50,0 60,0 70,0 80,0 S8-2-2. HPLC chromatogram of derivatized D-allo-Ile, L-allo-Ile, and L-Ile standards 57

S9. Structures of known compounds S9-1. Structures of known compounds, including 1H-indole-3-carbaldehyde (8), 1H-indole-3-carboxylic acid (9), 6-bromo-1H-indole-3-carbaldehyde (10), 6-bromo-1H-indole-3-carboxylic acid (11), methyl 6- bromo-1h-indole-3-carboxylate (12), ethyl 6-bromo-1H-indole-3-carboxylate (13), 7-bromo-4(1H)- quinolinone (14), (3-(2-(4-hydroxyphenyl)-2-oxoethyl)-5,6-dihydropyridin-2(1H)-one) (15), 2- deoxythymidine (16), and 4-hydroxybenzoic acid (17). 58

S10. Bioactivity results S10-1. Cytotoxicity effects of 1 3 on human lymphoma and leukemia cell lines, measured by MTT assay. (A) Ramos (Burkitt s lymphoma), (B) Jurkat J16 (acute T cell leukemia), (C) Nomo-1 (acute myeloid leukemia) and (D) HL-60 (acute promyelocytic leukemia) cells were seeded at a density of 5 10 5 cells/ml and incubated with increasing concentrations of 1, 2 and 3, respectively. Cells treated with DMSO (0.1% v/v) for 24 h were used as the negative control. After an incubation period of 24 h cell viability was monitored using the MTT assay as described in methods. Relative viability in DMSOtreated control cells was set to 100%. Data points shown are the mean of triplicates, error bars = SD. Viability and IC 50 values (IC 50 = half maximal inhibitory concentration) were calculated using Prism 6 (GraphPad Software). 59

S10-2. Table of antibacterial activity of new 1 7 and known (8 17) compounds reported as minimal inhibitory concentration (MIC) a Compound Staphylococcus aureus ATCC 29213 Enterococcus faecium BM 4147-1 Escherichia coli ATCC 25922 Klebsiella pneumoniae ATCC 12657 Enterobacter aerogenes ATCC 13048 Pseudomonas aeruginosa ATCC 27853 Acinetobacter baumannii 09987 Mycobacterium tuberculosis H37Rv 1 6.3 12.5 > 100 > 100 > 100 > 100 > 100 100 2 n.i. b n.i. n.i. n.i. n.i. n.i. n.i. n.i. 3 6.3 c 12.5 > 100 > 100 > 100 > 100 > 100 100 4 > 50 > 50 > 100 > 100 > 100 > 100 > 100 > 100 5 n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. 6 17 > 50 > 50 > 100 > 100 > 100 > 100 > 100 n.i. ciprofloxacin 0.12 2 0.01 0.25 0.01 0.25 0.03 n.i. doxycycline 0.5 4 2 2 4 n.i. n.i. n.i. vancomycin 1 4 > 64 > 64 > 64 > 64 > 64 n.i. a MIC values are reported for test compounds in µm and for reference antibiotics in µg/ml and indicate the lowest concentration fully inhibiting visible bacterial growth. b n.i. : not investigated. c Growth reduction was already observed at 3.1 µm 60