Expansion formulae of sampled zeros and a method to relocate the zeros

Σχετικά έγγραφα
A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

HDD. Point to Point. Fig. 1: Difference of time response by location of zero.

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Fragility analysis for control systems

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

10.7 Performance of Second-Order System (Unit Step Response)

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Finite Field Problems: Solutions

CRASH COURSE IN PRECALCULUS

High order interpolation function for surface contact problem

2.153 Adaptive Control Lecture 7 Adaptive PID Control

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

C.S. 430 Assignment 6, Sample Solutions

The k-α-exponential Function

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Congruence Classes of Invertible Matrices of Order 3 over F 2

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Homomorphism in Intuitionistic Fuzzy Automata

Numerical Analysis FMN011

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Second Order RLC Filters

ER-Tree (Extended R*-Tree)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

derivation of the Laplacian from rectangular to spherical coordinates

Adaptive compensation control for a piezoelectric actuator exhibiting rate-dependent hysteresis Y. Ueda, F. Fujii (Yamaguchi Univ.

2 Composition. Invertible Mappings

A summation formula ramified with hypergeometric function and involving recurrence relation

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

Gain self-tuning of PI controller and parameter optimum for PMSM drives

0 Τα ηλεκτρικά κυκλώματα ως συστήματα Παράδειγμα Ηλεκτρ. Συστήματος πρώτης τάξης: κύκλωμα «RC» με Εξοδο

Inverse trigonometric functions & General Solution of Trigonometric Equations

EE512: Error Control Coding

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

4.6 Autoregressive Moving Average Model ARMA(1,1)

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Approximation of distance between locations on earth given by latitude and longitude

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Assignment 1 Solutions Complex Sinusoids

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Homework 3 Solutions

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Test Data Management in Practice

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Tridiagonal matrices. Gérard MEURANT. October, 2008

Fundamentals of Signals, Systems and Filtering

Homework 8 Model Solution Section

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Math221: HW# 1 solutions

ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

SPECIAL FUNCTIONS and POLYNOMIALS

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

D Alembert s Solution to the Wave Equation

Simplex Crossover for Real-coded Genetic Algolithms

Computing the Macdonald function for complex orders

Συστήματα Αυτομάτου Ελέγχου

Creative TEchnology Provider

Study of urban housing development projects: The general planning of Alexandria City

An Inventory of Continuous Distributions

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

SOLVING CUBICS AND QUARTICS BY RADICALS

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Lecture 34 Bootstrap confidence intervals

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Fuzzifying Tritopological Spaces

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

1. For each of the following power series, find the interval of convergence and the radius of convergence:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Section 7.6 Double and Half Angle Formulas

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Example Sheet 3 Solutions

Local Approximation with Kernels

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

þÿ»» ± - ±»» ± - ½É¼ ½ ±Ã»

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

Transcript:

Vol., No., /7 29 Expansion formulae of sampled zeros and a method to relocate the zeros Takuya SOGO It is known that the transfer function of sampled-data system has so-called intrinsic and discretization zeros, the latter of which are often unstable and have no counterpart for the original continuous-time system; moreover have no closed expression in terms of the continuous-time zeros and the sample time. This fact limits the application range of inversion-based feedforward compensation for digital control systems because the stability of the feedforward controller essentially depends on the stability of the sampled zeros. Fortunately, recent research has revealed that discretization zeros of sampled-data systems tend to zeros of the so-called Euler-Frobenius polynomial, the location of which has a regularity. Based on this fact and the computing power of recently emerging symbolic mathematics software, this paper presents polynomial expression formulas of all discretization zeros with respect to the sample time for general sampled-data systems. The result is applied to developing a method to relocate the zeros of sampled-data systems and stabilize inversion-based feedforward controllers. Key Words: sampled zero, feedforward control, two-degree-of-freedom control, inversion, Euler-Frobenius polynomial., 2 Fig. N m (z/d m (z DC G(s = s(s + ( τ =. 9 29 Chubu University Received June, 29 r Fig. N m (z D m (z N m (z D m (z yd + S(z R(z + + H(z = N(z D(z u y ZOH G(s y(iτ Block diagram of digital 2-degree-of-freedom control H τ (z = N(z.487z +.4679 = D(z z 2.95z +.948 z =.4679/.487 = (2.967 r N m (z D m (z =.7z z 2.2z +.5 ( rad/s,.7 N m (z/d m (z D(z/N(z Fig. 2 G(s Fig. G(s = s + 6.5 (s + (s + 2(s + (4 τ =. TR /9/ c 29 SICE

y 2 T. SICE Vol. No. xxx 29 u 4 2 2.5.5 2 2.5.5 4 4.5 5 Table Zeros of the Euler-Frobenius polynomial n m zeros 2 2, ( 2 4 5 2 6,, ( 5 2 6.. odd λ i,, λ i(i /2, λ i(i /2,, λ i (λ i < < λ i(i /2 < even λ i,, λ i(i 2/2,, λ i(i 2/2,, λ i (λ i < < λ i(i 2/2 < Fig. 2 Step response of the feedforward block N m(z/d m(z D(z/N(z for G(s = s(s+.8.6.4.2.5.5 2 2.5.5 4 4.5 5 Fig. Response of G(s = for the feedforward input s(s+ H τ (z =.5(z +.(z.522 (z.95(z.89(z.74 (5 z =. G(s = K(s q (s q m (s p (s p 2 (s p n (6 m < n τ H τ (z = N τ (z D τ (z = C τ {z γ (τ} {z γ n (τ} (z e p τ (z e p 2τ (z e p nτ (7 e p iτ p i {γ (τ,, γ n (τ} n m q i τ γ i(τ = + q iτ + q2 i τ 2 2 + O(τ (i =,, m (8 τ 2 4 n m n m τ 5 Euler-Frobenius 6 n m (8 2. H τ (z τ 5, 6 τ H τ (z τ n m K(z m B n m(z (n m!(z n (9 B n m (z n m Euler-Frobenius B n m(z = b n m z n m +b n m 2 z n m 2 + +b n m n m b n m k = ( k ( k l l n m n m + k l l= Euler-Frobenius B n m(z 2 ( ( Table 7 2 5 8 Euler-Frobenius

τ τ (7 N τ (z τ G(s/s G(s/s p = {p,, p n} r l = G(s(s p l /s s=pl {r,, r n } H τ (z = τ n m {F (z + τf (z + τ 2 F 2 (z + } (z e p τ (z e pnτ (2 F k (z = c(k, j = : A (n m + k! n l= r l 29 n c(k, j( j z n j ( j= n {,,, n}\{l} j {i,, i j } (p i + + p ij n m+k (4 G(s/s 2 p ɛ p p + ɛ 2 F k (z (4 2 Euler-Frobenius 2 Euler-Frobenius B n m (z λ τ λ γ(τ γ(τ = λ + ατ + βτ 2 + O(τ (5 α = F(λ F (λ (6 β = α2 F (λ + 2αF (λ + 2F 2 (λ 2F (λ (7 F k (z ( : F ( λ + ατ + βτ 2 + O(τ 2 MATLAB Symbolic Math Toolbox (http://www-mech.chubu.ac.jp/mech Labs/T Sogo/ + τf ( λ + ατ + βτ 2 + O(τ + τ 2 F 2 ( λ + ατ + βτ 2 + O(τ + O(τ = (8 τ τ = αf (λ + F (λ = (9 2βF (λ + α 2 F (λ + 2αF (λ + 2F 2(λ = (2 F (z = K(z m B n m(z/(n m! Euler-Frobenius B n m (z = 7 F (λ (6 (7 2 (5 n m = 2 G(s = (s p (s p 2 (2 H τ (z γ(τ τ B 2 (z 2 γ(τ = + p p2 τ 2 ( p p 2 2 τ 2 + O(τ (22 ( (22 p = p + ɛ = ɛ τ =., p =, p 2 = (22 2.96722.967 ( p 2 G(s = s(s p 2 (2 γ(. p 2. p 2 2.55 (24 p 2 γ(. (Fig. 2 (Fig. p 2 = (24.72 H τ (z =.6788(z +.78 (z (z.679 (25 Fig. 2 Fig. 4 5

y 4 T. SICE Vol. No. xxx 29 Fig. 4 u 5 4 2.5.5 2 2.5.5 4 4.5 5 Step response of the feedforward block N m (z/d m (z D(z/N(z for G(s = s(s+ (p, q n m = 2 (2 p p 2 G (s = (s p (s p 2 s q s p (29 G (s q γ (τ = + q τ + q 2 τ 2 /2 + O(τ 2 4 2 γ 2 (τ = + κτ 2 κ2 τ 2 + O(τ (.8 κ = q p p 2 p ( p =, p 2 = τ =..6.4 γ (. + q. + q 2.5 ( γ 2 (. + κ. κ 2.5 (2.2.5.5 2 2.5.5 4 4.5 5 Fig. 5 Response of G(s = n m = G(s = (s p (s p 2 (s p for the feedforward input s(s+ (26 Euler-Frobenius B (z Table λ = 2 ( 2 2 γ(τ = λ τ λ 2 + 8λ + (p + p 2 + p H.875(z +.74(z.887 τ (z = ( 8 λ + 2 (z (z.948(z.679 τ 2 { (κ 4κ 64(λ + 2 2 λ 4 + (72κ 48κ 2 λ Fig. 2 Fig. 6 + (62κ 268κ 2 λ 2 7 + ( 84κ 944κ 2 λ 5κ 66κ 2 } + O(τ (27 n m = 2 (4 κ = p 2 + p 2 2 + p 2 κ 2 = p p 2 + p 2 p + p p τ 2 n m = 2 p,p 2,p 2. G(s G(s s q s p (28 κ = q p + q ( p e p. 2 < q < p < (2 < κ < 2 κ 2 κ ( ( ( q 2 q (q, p = ( 2, (2.745 (5 G (s = (s q (s p (s p 2 (s p s q 2 s p 4 (4 q i (i =, 2 γ i (τ = + q i τ + q 2 i τ 2 /2 + O(τ 2 4 2 γ (τ = + κτ 2 κ2 τ 2 + O(τ (5

29 5 5 4 κ = ( m i= q i i= p i / n 6 (7 2 (MAT- LAB/Symbolic Math Toolbox 2. u 2 4. Fig. 6.5.5 2 2.5.5 4 4.5 5 Step response of the feedforward block N m (z/d m (z D(z/N(z for G (s = s(s+ s+2 s+ y.8.6.4.2.5.5 2 2.5.5 4 4.5 5 τ Euler- Frobenius τ Fig. 7 Response of G (s = s(s+ s+2 for the feedforward s+ input κ = q +q 2 p p 2 p p 4 τ =. γ 2(. q 2 2 < q 2 < γ (. < κ < 2 (q 2, p 4 (4 κ = q 2 p 4.5 (q 2, p 4 = ( /2, H τ (z =.77(z +.74(z.95(z.522 (z.95(z.89(z.74(z.68 (6 n m = 2 (2 (29 (4 2 (22 ( (5 n m = 2 n m = 2 (6 γ(τ γ(τ = + κτ 2 κ2 τ 2 + O(τ (7 T. Chen and B. Francis. Optimal sampled-data control systems. Springer, 995. 2,,. -V., Vol. 44, No. 4, pp. 22 2, 2. K. J. Åström and B. Wittenmark. Adaptive control. Addison-Wesley, 2nd edition, 995. 4 T. Hagiwara. Analytic study on the intrinsic zeros of sampled-data systems. IEEE Transactions on Automatic Control, Vol. 4, No. 2, pp. 26 26, 996. 5 K. J. Åström, P. Hagander, and J. Sternby. Zeros of sampled systems. Automatica, Vol. 2, No., pp. 8, 984. 6 S. R. Weller, W. Moran, B. Ninness, and A. D. Pollington. Sampling zeros and the Euler-Frobenius polynomials. IEEE Transaction on Automatic Control, Vol. 46, No. 2, pp. 4 4, 2. 7 S. L. Sobolev. On the roots of Euler polynomials. Soviet Math. Dokl., Vol. 8, No. 4, 977. 8 F. Dubeau. On the roots of orthogonal polynomials and Euler-Frobenius polynomials. Journal of Mathematical Analysis and Applications, Vol. 96, pp. 84 98, 995. 9 T. Hagiwara and M. Araki. Stability of the limiting zeros of sampled-data systems with zero and first-order holds. Int. J. Control, Vol. 58, No. 6, pp. 25 46, 99. G. F. Franklin, J. D. Powell, and M. L. Workman. Digital Control of Dynamic Systems. Addison-Wesley, 998. m 2 2 i= q n i > i= p i 9

6 T. SICE Vol. No. xxx 29 99 995 2 2 27 27 4 (UCSB IEEE + ( 2 r l z n 2 + + ( n r l {,,, n}\{l} (p i + p i2 µ 2 {i, i 2 } {,,, n}\{l} n {i,, i n} (p i + + p in µ (A. 5 l= H(z = r lz n + τ µ F µ= µ (n m (z n (z k= ep kτ (A. 8 (A. 9 A. { [ ]} Z L rl = r lz (A. s p l z e p lτ L [ ] Z { } τ z { [ ]} G(s H(z = ( z Z L s (A. 2 G(s/s = r l= l/(s p l n H(z = z r l z (A. z z e p lτ l= l= = (z r l (z k {,,,n}\{l} ep kτ n (z k= ep kτ l= = r l (z k {,,,n}\{l} ep kτ n (z k= ep kτ (A. 4 (A. 5 p = (A. 5 r l k {,,,n}\{l} =r l z n r l z n (z e p kτ (A. 6 i {,,,n}\{l} + ( 2 r l z n 2 + + ( n r l z = r l z n + µ= {,,, n}\{l} e p iτ e (p i +p i2 τ 2 {i, i 2 } {,,, n}\{l} e (p i + +p in τ n {i,, i n } τ µ µ! r lz n i {,,,n}\{l} (A. 7 p µ i 5 (A. 2 ρ > p i (i =,, n L [G(s/s] = ρ+i ρ i G(s/sest ds Z {f(t} = k= f(kτz k H(z = ( z = ( z = ( z = ( z z k k= ρ+i k= ρ i ρτ+i ρτ i z k ρ+i ρ i G(s s eskτ ds z G(s z e sτ s ds ( z w dw z e G w τ w ρτ+i ( w G τ ρτ i e wk dw w (A. w = sτ ( ( w τ n m ( q τ/w ( q m τ/w G = K τ w ( p τ/w ( p n τ/w H(z lim τ τ = ( n m z z k Γ = ( z Z { L [ = K (n m! K dw w n m ewk w k= ]} s n m s (z m B n m(z (A. (z n 5 Γ Z z (A. 9 H(z τ = Φn m(τ, z + τ k F k= k (z n m n (z k= ep kτ Φ n m (τ, z = l= r lz n + F (n m (z τ n m + + F (z τ (A. 2 + F (n m(z τ n m (A.

l= r lz n + F (n m (z z = z ( (A. 2 z = z τ (A. F (n m (z l= r l l= r l = F (n m (z F (n m (z z = z ( z n ( τ (A. F (n m (z z n F (n m (z F k (n m (z (k =,, n m (A. 4 (A. 2 (2 29 7