Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Postsynthetic modification of single Pd sites into uncoordinated polypyridine groups of a MOF as the highly efficient catalyst for Heck and Suzuki reactions Dapeng Dong, a Zhenghua Li, a Dedi Liu, a Naisen Yu, a Haiyan Zhao, a Huiying Chen* b Jia Liu a and Dongping Liu* a a Liaoning Key Laboratory of Optoelectronic Films and Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, PR China. b College of Life Science, Dalian Nationalities University, Dalian 116600, PR China. E-mail: dongping.liu@dlnu.edu.cn; chy@dlnu.edu.cn Contents (1) Fig. S1 The IR spectra of HoMOF and Pd-HoMOF. (2) Fig. S2 IR spectra of HoMOF and Pd-HoMOF demonstrating the two weak Pd N stretching observed for Pd-HoMOF. (3) Fig. S3 The TG curve of HoMOF. (4) Fig. S4 The TG curve of PdHoMOF. (5) Fig. S5 Side view of one-dimensional chain along the b-axis for compound HoMOF. (6) Fig. S6 The XRD patterns after five reaction cycles of PdHoMOF. (7) Fig. S7 The 1 H NMR analysis for 2-TriPP-COOH. (8) Scheme S1 An illustrative sketch of proposed mechanism of the Suzuki Miyaura reaction of iodobenzene in the presence of Pd-HoMOF catalyst. (9) Table S1 Crystal data and structure refinement for compound HoMOF. (10) Table S2 Selected bond lengths (Å) and angles (º) for compound HoMOF. (11) Table S3 Reusability of Pd HoMOF catalyst in the Heck reaction. Reaction time = 1 h. (12) Table S4 Optimization of Suzuki Miyaura reaction. (13) Table S5 Reusability of Pd HoMOF catalyst in the Suzuki reaction. Reaction time = 1 h. (14) The results of GC-MS for the Heck reaction catalyzed by Pd HoMOF. (15) The results of GC-MS for the Suzuki Miyaura reaction catalyzed by Pd HoMOF.
(1) Transmittance (%) 120 110 100 90 80 70 60 50 40 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm -1 ) HoMOF Pd-HoMOF Fig. S1 The IR spectra of HoMOF and Pd-HoMOF. (2) Fig. S2 IR spectra of HoMOF (black) and Pd-HoMOF (red) demonstrating the two weak Pd N stretching observed for Pd-HoMOF.
(3) Fig. S3 The TG curve of HoMOF. (4) Fig. S4 The TG curve of PdHoMOF.
(5) Fig. S5 Side view of one-dimensional chain along the b-axis for compound HoMOF. (6) 500 400 Intensity 300 200 100 0 10 20 30 40 50 2 (degree) Fig. S6 The XRD patterns after five reaction cycles of Pd-HoMOF.
(7) Fig. S7 The 1 H NMR analysis for 2-TriPP-COOH.
(8) Scheme S1 An illustrative sketch of proposed mechanism of the Suzuki Miyaura reaction of iodobenzene in the presence of Pd-HoMOF catalyst.
(9) Table S1. Crystal data and structure refinement for compound HoMOF. formula C 66 H 42 HoN 9 O 6 Fw 1221 crystal system Space group 1 Monoclinic C2/c a, Å 33.823(2) b, Å 13.7794(10) c, Å 12.2450(9) β, 109.0973(9) V, Å 3 5392.8(7) Z 4 D c, g/cm 3 1.505 (Mo K ), mm 1 1.532 min, max, 2.226, 27.484 no. total reflns. 23201 no. uniq. reflns (R int ) 6113 (278) no. obs. [I 2 (I)] 5684 no. params 373 R1,wR2 [I 2 (I)] 275, 702 R1,wR2 (all data) 312, 716 GOF 83 R 1 = Σ ( F 0 F C ) / Σ F 0, wr 2 = [Σ w ( F 0 F C ) 2 / Σ w F 02 ] 1/2. (10) Table S2. Selected bond lengths (Å) and angles (º) for compound HoMOF. Ho(1)-O(3) 2.3721(18) Ho(1)-O(1)#1 2.467(2) Ho(1)-O(3)#1 2.3721(18) Ho(1)-N(4) 2.475(2) Ho(1)-O(2)#1 2.416(2) Ho(1)-N(4)#1 2.475(2) Ho(1)-O(2) 2.416(2) Ho(1)-N(5) 2.486(3) Ho(1)-O(1) 2.467(2) O(3)-Ho(1)-O(3)#1 55.40(9) O(2)-Ho(1)-N(4) 66.86(7) O(3)-Ho(1)-O(2)#1 120.62(8) O(1)-Ho(1)-N(4) 118.72(7) O(3)#1-Ho(1)-O(2)#1 87.01(8) O(1)#1-Ho(1)-N(4) 74.85(7) O(3)-Ho(1)-O(2) 87.01(8) O(3)-Ho(1)-N(4)#1 140.34(7) O(3)#1-Ho(1)-O(2) 120.62(7) O(3)#1-Ho(1)-N(4)#1 88.65(6) O(2)#1-Ho(1)-O(2) 157(13) O(2)#1-Ho(1)-N(4)#1 66.86(7) O(3)-Ho(1)-O(1) 79.13(7) O(2)-Ho(1)-N(4)#1 100.10(8)
O(3)#1-Ho(1)-O(1) 74.24(7) O(1)-Ho(1)-N(4)#1 74.85(7) O(2)#1-Ho(1)-O(1) 137.58(8) O(1)#1-Ho(1)-N(4)#1 118.72(7) O(2)-Ho(1)-O(1) 52.84(7) N(4)-Ho(1)-N(4)#1 130.14(9) O(3)-Ho(1)-O(1)#1 74.24(7) O(3)-Ho(1)-N(5) 152.30(4) O(3)#1-Ho(1)-O(1)#1 79.12(7) O(3)#1-Ho(1)-N(5) 152.30(4) O(2)#1-Ho(1)-O(1)#1 52.84(7) O(2)#1-Ho(1)-N(5) 74(6) O(2)-Ho(1)-O(1)#1 137.58(8) O(2)-Ho(1)-N(5) 74(6) O(1)-Ho(1)-O(1)#1 149.87(11) O(1)-Ho(1)-N(5) 107(6) O(3)-Ho(1)-N(4) 88.65(6) O(1)#1-Ho(1)-N(5) 107(6) O(3)#1-Ho(1)-N(4) 140.34(7) N(4)-Ho(1)-N(5) 67(5) O(2)#1-Ho(1)-N(4) 100.10(8) N(4)#1-Ho(1)-N(5) 67(5) Symmetry transformations used to generate equivalent atoms for 1: #1: -x+1,y,-z+3/2. (11) Table S3. Reusability of Pd HoMOF catalyst in the Heck reaction. Reaction time = 1 h. Reaction Runs 1 2 3 4 5 Yield (%) 99 99 99 98.3 98.0 (12) Table S4. Optimization of Suzuki Miyaura reaction. a I + B(OH) 2 Solvent Cat Entry Base Solvent T( ) Time(h) Yield(%) b 1 KOH EtOH 80 1 25.4 2 KOH H 2 O 100 1 18.4 3 KOH Dioxane 100 1 45 4 K 2 CO 3 DMF 100 1 51 5 Cs 2 CO 3 DMF 100 1 62.8 6 KOH DMF 80 1 91.6 7 KOH DMF 100 1 >99 8 KOH DMF 100 4 >99 9 c KOH DMF 100 1 none 10 d KOH DMF 100 1 90.8 a Reaction conditions: Ph I ( mmol), phenylboronic acid (0.75mmol), base (1.5 mmol), Pd HoMOF (0.4 mol% Pd). b Yield determined by GC-MS analysis. c Parent HoMOF as the catalyst. d PdCl 2 (CH 3 CN) 2 as the catalyst (0.4 mol% Pd).
(13) Table S5. Reusability of Pd HoMOF catalyst in the Suzuki reaction. Reaction time = 1 h. Reaction Runs 1 2 3 4 5 Yield (%) 99 99 99 99 99 (14) The results of GC-MS for the Heck reaction catalyzed by Pd HoMOF 1. The results of GC (up) and MS (down) for iodobenzene and methyl acrylate 2.5 (x100,000) 1/526058 1.5 (x10,000) 131 103 51 77 162 144 191 207 233 252 281 297 327 350 387 399 415 438 479 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 2. The results of GC (up) and MS (down) for 4-methyliodobenzene and methyl acrylate 1.75 1.50 1.25 2/3331764/1678576 0 0.75 0 0.25 1/120667/65562 (x10,000) 145 115 176 91 65 89 191 207 250 267 281 298 341 355 375 399 429 457 473 485 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50
3. The results of GC (up) and MS (down) for 4-iodoacetophenone and methyl acrylate 6.0 1/19771558 (x10,000) 189 161 51 102 76 131 146 205 228 267 281 297 341 355 369 401 429 458 482 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 4. The results of GC (up) and MS (down) for 4-iodonitrobenzene and methyl acrylate (x10,000) 176 130 102 207 76 51 146 190 235 267 281 298 341 355 383 401 429 448 474 489 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50
5. The results of GC (up) and MS (down) for iodobenzene and styrene (x100,000) 4.5 1/895449/470581 3.5 2.5 1.5 (x10,000) 179 89 51 152 102 115 182 207 235 252 281 309 341 355 386 401 415 452461 488 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 6. The results of GC (up) and MS (down) for 4-methyliodobenzene and styrene 1.75 1.50 1.25 2/3331764/1678576 0 0.75 0 0.25 1/120667/65562 (x10,000) 145 115 176 91 65 89 191 207 250 267 281 298 341 355 375 399 429 457 473 485 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50
7. The results of GC (up) and MS (down) for bromobenzene and methyl acrylate (x100,000) 7.0 6.0 1/1442848 (x10,000) 131 103 51 77 162 154 183 207 235 261 281 310 341 373 399 420 446 469 482 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 8. The results of GC (up) and MS (down) for 4-bromoacetophenone and methyl acrylate 2.5 2/5567014 1.5 1/156662 (x10,000) 189 161 51 102 76 131 146 205 228 251 281 297 320 344 366 389 429 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50
9. The results of GC (up) and MS (down) for 4-bromobenzaldehyde and methyl acrylate 4.5 3.5 2/9130282 2.5 1.5 1/211251 (x10,000) 103 51 77 131 190 159 147 207 249 267 281 304 341 355 385 401 415 437 462 488 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 10. The results of GC for chlorobenzene and methyl acrylate 11. The results of GC for 4-methylchlorobenzene and methyl acrylate
12. The results of GC (up) and MS (down) for 4-chlorobenzaldehyde and methyl acrylate 1.75 1.50 1/2975681 1.25 0 0.75 0 2/701303 0.25 (x10,000) 103 51 77 131 190 159 147 207 249 267 281 297 341 355 385 401 415 446 459 497 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 (15) The results of GC-MS for the Suzuki Miyaura reaction catalyzed by Pd HoMOF 1. The results of GC (up) and MS (down) for iodobenzene and phenylboronic acid 8.0 7.0 6.0 1/18545355 (x10,000) 154 76 51 128 207 182 228 251 102 281 159 297 320 343 366 389 412 435 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 2. The results of GC (up) and MS (down) for 4-methyliodobenzene and phenylboronic acid
8.0 7.0 1/22152471 6.0 (x10,000) 168 152 82 63 91 115 182 207 228 251 281 297 320 343 366 389 412 435 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 3. The results of GC (up) and MS (down) for 4-methoxyiodobenzene and phenylboronic acid 7.5 1/32394265 2.5 (x10,000) 184 115 141 169 63 76 92 206 228 251 277 297 320 343 366 395 412 435 460 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 4. The results of GC (up) and MS (down) for 4-iodoacetophenone and phenylboronic acid 7.5 1/30004341 2.5 (x10,000) 181 152 196 76 63 90 127 205 228 251 274 297 320 343 366 389 412 435 458 482 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50
5. The results of GC (up) and MS (down) for 4-iodonitrobenzene and phenylboronic acid 8.0 7.0 6.0 1/19165347 (x10,000) 152 199 169 76 115 63 102 205 228 251 274 302 321 348 367 389 412 435 458 486 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 6. The results of GC (up) and MS (down) for bromobenzene and phenylboronic acid 3.5 1/6919028 2.5 1.5 (x10,000) 154 76 51 102 128 159 191 207 228 251 281 297 341 366 389 413 435 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 7. The results of GC (up) and MS (down) for 4-methylbromobenzene and phenylboronic acid 1.5 2/3367880 1/999668 3/303755
(x10,000) 168 152 63 82 91 115 191 207 250 267 281 314 341 355 383 400 416 443 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 8. The results of GC (up) and MS (down) for 4-methoxybromobenzene and phenylboronic acid 2/8583643 1/1266395 3/336651 (x10,000) 184 115 141 169 63 76 92 207 228 251 281 297 320 343 366 389 412 435 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 9. The results of GC (up) and MS (down) for 4-bromobenzaldehyde and phenylboronic acid 1.25 (x10,000,000) 1/34717589 0 0.75 0 0.25 (x10,000) 181 76 152 51 102 127 207 237 269 281 311320 345 387 412 435 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 10. The results of GC (up) and MS (down) for 4-bromoacetophenone and phenylboronic acid
(x10,000,000) 0 0.75 1/46361206 0 0.25 (x10,000) 181 152 196 76 63 90 127 207 228 251 281 297 320 343 367 389 412 435 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 11. The results of GC (up) and MS (down) for chlorobenzene and phenylboronic acid 0 1/1820221 0.75 0 0.25 (x10,000) 154 76 51 102 128 165 191 207 229 267 281 304 341 355 367 389 429 459 490 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 12. The results of GC (up) and MS (down) for 4-methylchlorobenzene and phenylboronic acid 1.50 1.25 2/2710194 0 0.75 0 0.25 1/845349 3/250081 (x10,000) 168 152 82 115 500 63 91 191 207 237 267 281 297 327 343 372 399 415 437 476 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 13. The results of GC (up) and MS (down) for 4-chlorobenzaldehyde and phenylboronic acid
(x10,000,000) 1.1 2/27815175 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1 1/439903 (x10,000) 181 152 76 51 102 127 207 237 269 281 311 327 345 387 419 449458 493 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47