College of Life Science, Dalian Nationalities University, Dalian , PR China.

Σχετικά έγγραφα
Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Electronic Supplementary Information (ESI)

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Table of Contents 1 Supplementary Data MCD

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Supporting Information

Supporting Information

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Supporting Information

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supporting information

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Electronic Supplementary Information

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Supporting Information

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supplementary material

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information

Supporting Information Synthesis of cyclometalated 1,3,5-triphenylpyrazole palladium dimer and its activity towards cross coupling reactions

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI)

Fused Bis-Benzothiadiazoles as Electron Acceptors

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

SUPPLEMENTARY MATERIAL

Supporting Information. Experimental section

IV. ANHANG 179. Anhang 178

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Electronic Supplementary Information

Supporting Information

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supporting Information

Supporting Information for

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

phase: synthesis of biaryls, terphenyls and polyaryls

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Butadiene as a Ligand in Open Sandwich Compounds

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supplementary Information

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Supporting Information

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

(M = Mn, Fe, Co, Ni, Cu and Zn)----Mimicking the M II - Substituted Quercetin 2,3-Dioxygenase

Supporting Information

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

ER-Tree (Extended R*-Tree)

Electronic Supplementary Information:

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

The Free Internet Journal for Organic Chemistry

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Supporting information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

3018 Σύνθεση του 3-φαινυλοβενζοϊκού οξέος από 3-ιωδο βενζοϊκό οξύ

Supporting Information

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Transcript:

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Postsynthetic modification of single Pd sites into uncoordinated polypyridine groups of a MOF as the highly efficient catalyst for Heck and Suzuki reactions Dapeng Dong, a Zhenghua Li, a Dedi Liu, a Naisen Yu, a Haiyan Zhao, a Huiying Chen* b Jia Liu a and Dongping Liu* a a Liaoning Key Laboratory of Optoelectronic Films and Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, PR China. b College of Life Science, Dalian Nationalities University, Dalian 116600, PR China. E-mail: dongping.liu@dlnu.edu.cn; chy@dlnu.edu.cn Contents (1) Fig. S1 The IR spectra of HoMOF and Pd-HoMOF. (2) Fig. S2 IR spectra of HoMOF and Pd-HoMOF demonstrating the two weak Pd N stretching observed for Pd-HoMOF. (3) Fig. S3 The TG curve of HoMOF. (4) Fig. S4 The TG curve of PdHoMOF. (5) Fig. S5 Side view of one-dimensional chain along the b-axis for compound HoMOF. (6) Fig. S6 The XRD patterns after five reaction cycles of PdHoMOF. (7) Fig. S7 The 1 H NMR analysis for 2-TriPP-COOH. (8) Scheme S1 An illustrative sketch of proposed mechanism of the Suzuki Miyaura reaction of iodobenzene in the presence of Pd-HoMOF catalyst. (9) Table S1 Crystal data and structure refinement for compound HoMOF. (10) Table S2 Selected bond lengths (Å) and angles (º) for compound HoMOF. (11) Table S3 Reusability of Pd HoMOF catalyst in the Heck reaction. Reaction time = 1 h. (12) Table S4 Optimization of Suzuki Miyaura reaction. (13) Table S5 Reusability of Pd HoMOF catalyst in the Suzuki reaction. Reaction time = 1 h. (14) The results of GC-MS for the Heck reaction catalyzed by Pd HoMOF. (15) The results of GC-MS for the Suzuki Miyaura reaction catalyzed by Pd HoMOF.

(1) Transmittance (%) 120 110 100 90 80 70 60 50 40 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm -1 ) HoMOF Pd-HoMOF Fig. S1 The IR spectra of HoMOF and Pd-HoMOF. (2) Fig. S2 IR spectra of HoMOF (black) and Pd-HoMOF (red) demonstrating the two weak Pd N stretching observed for Pd-HoMOF.

(3) Fig. S3 The TG curve of HoMOF. (4) Fig. S4 The TG curve of PdHoMOF.

(5) Fig. S5 Side view of one-dimensional chain along the b-axis for compound HoMOF. (6) 500 400 Intensity 300 200 100 0 10 20 30 40 50 2 (degree) Fig. S6 The XRD patterns after five reaction cycles of Pd-HoMOF.

(7) Fig. S7 The 1 H NMR analysis for 2-TriPP-COOH.

(8) Scheme S1 An illustrative sketch of proposed mechanism of the Suzuki Miyaura reaction of iodobenzene in the presence of Pd-HoMOF catalyst.

(9) Table S1. Crystal data and structure refinement for compound HoMOF. formula C 66 H 42 HoN 9 O 6 Fw 1221 crystal system Space group 1 Monoclinic C2/c a, Å 33.823(2) b, Å 13.7794(10) c, Å 12.2450(9) β, 109.0973(9) V, Å 3 5392.8(7) Z 4 D c, g/cm 3 1.505 (Mo K ), mm 1 1.532 min, max, 2.226, 27.484 no. total reflns. 23201 no. uniq. reflns (R int ) 6113 (278) no. obs. [I 2 (I)] 5684 no. params 373 R1,wR2 [I 2 (I)] 275, 702 R1,wR2 (all data) 312, 716 GOF 83 R 1 = Σ ( F 0 F C ) / Σ F 0, wr 2 = [Σ w ( F 0 F C ) 2 / Σ w F 02 ] 1/2. (10) Table S2. Selected bond lengths (Å) and angles (º) for compound HoMOF. Ho(1)-O(3) 2.3721(18) Ho(1)-O(1)#1 2.467(2) Ho(1)-O(3)#1 2.3721(18) Ho(1)-N(4) 2.475(2) Ho(1)-O(2)#1 2.416(2) Ho(1)-N(4)#1 2.475(2) Ho(1)-O(2) 2.416(2) Ho(1)-N(5) 2.486(3) Ho(1)-O(1) 2.467(2) O(3)-Ho(1)-O(3)#1 55.40(9) O(2)-Ho(1)-N(4) 66.86(7) O(3)-Ho(1)-O(2)#1 120.62(8) O(1)-Ho(1)-N(4) 118.72(7) O(3)#1-Ho(1)-O(2)#1 87.01(8) O(1)#1-Ho(1)-N(4) 74.85(7) O(3)-Ho(1)-O(2) 87.01(8) O(3)-Ho(1)-N(4)#1 140.34(7) O(3)#1-Ho(1)-O(2) 120.62(7) O(3)#1-Ho(1)-N(4)#1 88.65(6) O(2)#1-Ho(1)-O(2) 157(13) O(2)#1-Ho(1)-N(4)#1 66.86(7) O(3)-Ho(1)-O(1) 79.13(7) O(2)-Ho(1)-N(4)#1 100.10(8)

O(3)#1-Ho(1)-O(1) 74.24(7) O(1)-Ho(1)-N(4)#1 74.85(7) O(2)#1-Ho(1)-O(1) 137.58(8) O(1)#1-Ho(1)-N(4)#1 118.72(7) O(2)-Ho(1)-O(1) 52.84(7) N(4)-Ho(1)-N(4)#1 130.14(9) O(3)-Ho(1)-O(1)#1 74.24(7) O(3)-Ho(1)-N(5) 152.30(4) O(3)#1-Ho(1)-O(1)#1 79.12(7) O(3)#1-Ho(1)-N(5) 152.30(4) O(2)#1-Ho(1)-O(1)#1 52.84(7) O(2)#1-Ho(1)-N(5) 74(6) O(2)-Ho(1)-O(1)#1 137.58(8) O(2)-Ho(1)-N(5) 74(6) O(1)-Ho(1)-O(1)#1 149.87(11) O(1)-Ho(1)-N(5) 107(6) O(3)-Ho(1)-N(4) 88.65(6) O(1)#1-Ho(1)-N(5) 107(6) O(3)#1-Ho(1)-N(4) 140.34(7) N(4)-Ho(1)-N(5) 67(5) O(2)#1-Ho(1)-N(4) 100.10(8) N(4)#1-Ho(1)-N(5) 67(5) Symmetry transformations used to generate equivalent atoms for 1: #1: -x+1,y,-z+3/2. (11) Table S3. Reusability of Pd HoMOF catalyst in the Heck reaction. Reaction time = 1 h. Reaction Runs 1 2 3 4 5 Yield (%) 99 99 99 98.3 98.0 (12) Table S4. Optimization of Suzuki Miyaura reaction. a I + B(OH) 2 Solvent Cat Entry Base Solvent T( ) Time(h) Yield(%) b 1 KOH EtOH 80 1 25.4 2 KOH H 2 O 100 1 18.4 3 KOH Dioxane 100 1 45 4 K 2 CO 3 DMF 100 1 51 5 Cs 2 CO 3 DMF 100 1 62.8 6 KOH DMF 80 1 91.6 7 KOH DMF 100 1 >99 8 KOH DMF 100 4 >99 9 c KOH DMF 100 1 none 10 d KOH DMF 100 1 90.8 a Reaction conditions: Ph I ( mmol), phenylboronic acid (0.75mmol), base (1.5 mmol), Pd HoMOF (0.4 mol% Pd). b Yield determined by GC-MS analysis. c Parent HoMOF as the catalyst. d PdCl 2 (CH 3 CN) 2 as the catalyst (0.4 mol% Pd).

(13) Table S5. Reusability of Pd HoMOF catalyst in the Suzuki reaction. Reaction time = 1 h. Reaction Runs 1 2 3 4 5 Yield (%) 99 99 99 99 99 (14) The results of GC-MS for the Heck reaction catalyzed by Pd HoMOF 1. The results of GC (up) and MS (down) for iodobenzene and methyl acrylate 2.5 (x100,000) 1/526058 1.5 (x10,000) 131 103 51 77 162 144 191 207 233 252 281 297 327 350 387 399 415 438 479 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 2. The results of GC (up) and MS (down) for 4-methyliodobenzene and methyl acrylate 1.75 1.50 1.25 2/3331764/1678576 0 0.75 0 0.25 1/120667/65562 (x10,000) 145 115 176 91 65 89 191 207 250 267 281 298 341 355 375 399 429 457 473 485 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50

3. The results of GC (up) and MS (down) for 4-iodoacetophenone and methyl acrylate 6.0 1/19771558 (x10,000) 189 161 51 102 76 131 146 205 228 267 281 297 341 355 369 401 429 458 482 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 4. The results of GC (up) and MS (down) for 4-iodonitrobenzene and methyl acrylate (x10,000) 176 130 102 207 76 51 146 190 235 267 281 298 341 355 383 401 429 448 474 489 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50

5. The results of GC (up) and MS (down) for iodobenzene and styrene (x100,000) 4.5 1/895449/470581 3.5 2.5 1.5 (x10,000) 179 89 51 152 102 115 182 207 235 252 281 309 341 355 386 401 415 452461 488 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 6. The results of GC (up) and MS (down) for 4-methyliodobenzene and styrene 1.75 1.50 1.25 2/3331764/1678576 0 0.75 0 0.25 1/120667/65562 (x10,000) 145 115 176 91 65 89 191 207 250 267 281 298 341 355 375 399 429 457 473 485 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50

7. The results of GC (up) and MS (down) for bromobenzene and methyl acrylate (x100,000) 7.0 6.0 1/1442848 (x10,000) 131 103 51 77 162 154 183 207 235 261 281 310 341 373 399 420 446 469 482 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 8. The results of GC (up) and MS (down) for 4-bromoacetophenone and methyl acrylate 2.5 2/5567014 1.5 1/156662 (x10,000) 189 161 51 102 76 131 146 205 228 251 281 297 320 344 366 389 429 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50

9. The results of GC (up) and MS (down) for 4-bromobenzaldehyde and methyl acrylate 4.5 3.5 2/9130282 2.5 1.5 1/211251 (x10,000) 103 51 77 131 190 159 147 207 249 267 281 304 341 355 385 401 415 437 462 488 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 10. The results of GC for chlorobenzene and methyl acrylate 11. The results of GC for 4-methylchlorobenzene and methyl acrylate

12. The results of GC (up) and MS (down) for 4-chlorobenzaldehyde and methyl acrylate 1.75 1.50 1/2975681 1.25 0 0.75 0 2/701303 0.25 (x10,000) 103 51 77 131 190 159 147 207 249 267 281 297 341 355 385 401 415 446 459 497 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 (15) The results of GC-MS for the Suzuki Miyaura reaction catalyzed by Pd HoMOF 1. The results of GC (up) and MS (down) for iodobenzene and phenylboronic acid 8.0 7.0 6.0 1/18545355 (x10,000) 154 76 51 128 207 182 228 251 102 281 159 297 320 343 366 389 412 435 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 2. The results of GC (up) and MS (down) for 4-methyliodobenzene and phenylboronic acid

8.0 7.0 1/22152471 6.0 (x10,000) 168 152 82 63 91 115 182 207 228 251 281 297 320 343 366 389 412 435 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 3. The results of GC (up) and MS (down) for 4-methoxyiodobenzene and phenylboronic acid 7.5 1/32394265 2.5 (x10,000) 184 115 141 169 63 76 92 206 228 251 277 297 320 343 366 395 412 435 460 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 4. The results of GC (up) and MS (down) for 4-iodoacetophenone and phenylboronic acid 7.5 1/30004341 2.5 (x10,000) 181 152 196 76 63 90 127 205 228 251 274 297 320 343 366 389 412 435 458 482 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50

5. The results of GC (up) and MS (down) for 4-iodonitrobenzene and phenylboronic acid 8.0 7.0 6.0 1/19165347 (x10,000) 152 199 169 76 115 63 102 205 228 251 274 302 321 348 367 389 412 435 458 486 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 6. The results of GC (up) and MS (down) for bromobenzene and phenylboronic acid 3.5 1/6919028 2.5 1.5 (x10,000) 154 76 51 102 128 159 191 207 228 251 281 297 341 366 389 413 435 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 7. The results of GC (up) and MS (down) for 4-methylbromobenzene and phenylboronic acid 1.5 2/3367880 1/999668 3/303755

(x10,000) 168 152 63 82 91 115 191 207 250 267 281 314 341 355 383 400 416 443 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 8. The results of GC (up) and MS (down) for 4-methoxybromobenzene and phenylboronic acid 2/8583643 1/1266395 3/336651 (x10,000) 184 115 141 169 63 76 92 207 228 251 281 297 320 343 366 389 412 435 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 9. The results of GC (up) and MS (down) for 4-bromobenzaldehyde and phenylboronic acid 1.25 (x10,000,000) 1/34717589 0 0.75 0 0.25 (x10,000) 181 76 152 51 102 127 207 237 269 281 311320 345 387 412 435 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 10. The results of GC (up) and MS (down) for 4-bromoacetophenone and phenylboronic acid

(x10,000,000) 0 0.75 1/46361206 0 0.25 (x10,000) 181 152 196 76 63 90 127 207 228 251 281 297 320 343 367 389 412 435 458 481 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 11. The results of GC (up) and MS (down) for chlorobenzene and phenylboronic acid 0 1/1820221 0.75 0 0.25 (x10,000) 154 76 51 102 128 165 191 207 229 267 281 304 341 355 367 389 429 459 490 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 12. The results of GC (up) and MS (down) for 4-methylchlorobenzene and phenylboronic acid 1.50 1.25 2/2710194 0 0.75 0 0.25 1/845349 3/250081 (x10,000) 168 152 82 115 500 63 91 191 207 237 267 281 297 327 343 372 399 415 437 476 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 13. The results of GC (up) and MS (down) for 4-chlorobenzaldehyde and phenylboronic acid

(x10,000,000) 1.1 2/27815175 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1 1/439903 (x10,000) 181 152 76 51 102 127 207 237 269 281 311 327 345 387 419 449458 493 5 7 10 12 15 17 20 22 25 27 30 32 35 37 40 42 45 47