[A 論文 ] JCOSSAR 論文集 * * * ** * Evaluation Earthquake Countermeasures for Steel Construction to Mitigate Environmental Load by Yuki MIZUTAI *, oriko TAKIYAMA *, Yoshihiro OISHI *, Kazuo TAMURA ** and Yasuhiro HAYASHI * We propose an evaluation method earthquake countermeasures for steel construction from the view point reduction in CO emission due to building. By the sensitivity analysis on the index, we obtained the following conclusions.[] The expected value CO emission can be decreased by adding the damper in addition to increasing the yield drift angle and the drift angle where is caused. [] By taking earthquake countermeasures to low layer construction like stories, we can decrease amount CO emission effectively. key words: Steel Construction, Seismic Risk, Life Cycle, Carbon Dioxide Emission, Waste 99,,.,,.,. (CO ) (CH ),. CO. CO.3 ). CO,, )., CO..,,9, (%),, Damage probability building P fvi (v) () CO emission due to seismic ground motion SCE (v) () CO emission due to building E i () Seismic hazard f ( v, t ) (7) Expected CO emission due to seismic ground motion EX CO (t ) (3) Decrease EX CO by earthquake countermeasure RD CO (t ) () Fig. Evaluation flow eatrhquake countermeasures 7 3)..,, CO, CO., ),, CO. ) CO, CO EX CO EX CO RD CO.,, Fig.., v CO SCE(v). SCE ( v) = P i fvi E i (), i, 3 Table ). P fvi v i, Table Damage assumed at each level i Damage level Damage situation i Major It is in danger the collapse or the collapse. The danger the collapse is low though the frame a Moderate building is d, and the transformation corner between the inclination and the residual layer is seen. Minor There is little in the frame a building. + 3 Received * -, Dept. Architecture and Architectural Eng., Kyoto Univ., ishikyo-ku, Kyoto ** 7-, Dept. Architecture and Civil Eng., Chiba Institute Tech., arashino-shi, Chiba - 33 -
. E i CO,, E wi, E di, E ri, (). E i = E wi + E di + E ri (), CO EX CO (3). ) = ( SCE( v) f ( v, t EX CO ( t )) dv (3), t, f (v, t ) v, 3. RD CO,, EXB CO EXA CO., RD CO CO. RD CO (t ) = EXB CO (t ) EXA CO (t ) () v P fvi.,,, R., Fig.. [] H e, M e.,,,, H e, M e. H e = (+)H / 3 () M e = 3M (+)/{(+)} (), H,, M., µ. µ =M e / M (7) (), (7)., Bi-linear.. MgC y Q = d H er ( d < H e ) (a) y Q=Mg ( d > H e ) (b), d, g. /. (9) ). = α / (9), α =3. [] 7). S ae, h. () Q,. Sae( T, h) = Q /( M e Fh ) (), h, F h h,. / h =γ ( /D f )+ h (D f ) () F h =(+h)/(+h) (), D f,. D f = R / (3), D f hγ. )., d, T. T = π µ H ery C g ( R < ) (a) y µ d T = π C yg ( R > ) (b) [3], Table. v n. v n =,,, (cm/ s)., S a., Table o.-, h =., v n = (cm/s)s a Fig. 3. [] [] S ae [3] S a, v n, R Building [] Restoring force characteristic Q Mg [] Equivalent-performance response spectrum S ae S ae [] Calculation maximum response drift angle R S a, S ae R T Input Seismic Ground Motion [3] Acceleration response spectrum waves S a [] Calculation probability from distribution function R -P fv major -P fv moderate P fv major -P fv minor -P fv moderate -P fv major R minor R moderate R major Fig. Evaluation flow probability buldings S a T v = v n T Repeat this operations v n =,,, (cm/s) [] Damage probability P fvi to the maximum velocity ground motion P fvi Moderate Minor Major v R - 3 -
. [] v n, [] R R P (R < R ). R R i i P fvi. P fv = P( R R ) Pfv = P( R R) - P( R R) () Pfv = P( R R) - P( R R) [] v n P fvi. 3 9), (3) v f ( v, t ).,, t v P(V > v ; t ), (). { P ( V v; t } P ( V > v; t ) = k > ) () k, P k (V > v; t )k.,,, Fig.. v, f ( v, t ) (7). f v, t ) = dp( V v; t ) / dv (7) ( > 3, CO E i, Table 3.,., Table 3, CO E, i a i (%),. E i = a / E () i 3 CO E w CO E w, (9) (m ) W (t-waste/ m ), CO D (t- CO /t-waste). E w = W D/ (9), W CO D. 3 W, 3 ). 3 Table (), (m ) Fig.., ), ( (m) ), (m ) 9, Table () 3.,,., I, Table Outline input earthquake motion o. Date earthquake Peak value ame earthquake Observation point Component occurrence A (cm/s/s) V (cm/s) 9// Matsushiro Matsushiro S 3 9. 9// Matsushiro Ochiai S3E 7. 3 9// Tokachi-oki Hachinohe S 3. 97// Miyagiken-oki Tohoku Univ. S. 97//7 Chibaken Toho-oki Katsuura S 9.7 97//7 Chibaken Toho-oki Kisaradu S 3. 7 97//7 Chibaken Toho-oki Kisaradu EW 37. 99/7/9 Izu-hanto Toho-oki Ito E 3 37.9 9 993// Kushiro-oki Kushiro EW 99 9.9 99// Kushiro-oki emuro EW.9 993/7/ Hokkaido ansei-oki Suttsu S.3 99// Hokkaido Toho-oki Kushiro EW 7.9 3 99// Hokkaido Toho-oki emuro EW 33 3.7 99// Sanriku Haruka-oki Hachinohe S 7. 99// Sanriku Haruka-oki Aomori EW.9 99//7 South Hyogo Kobe Marine prefecture Observatory S. 7 99//7 South Hyogo prefecture Osaka Gas Fukiai 37W 3.3 9// Imperial Valley El Centro S 3 33. 9 99//3 Olympia Olympia EW 3.9 9/7/ Kern County Taft EW 7 7. 97//9 San Fernando Pacoima Dam SW,. 99//7 orthridge ewhall 3D 7 7. 3 99//7 orthridge Sylmar 3D 7. 99//7 orthridge Tarzana 9D,7.3 S a (cm/s/s) Exceedance probability in 3 years. Period (s) Fig. 3Acceleration response spectrum input earthquake motion. h=. v n =(cm/s) Tokyo Osaka. Maximum velocity ground motion v (cm/s) Fig. Seismic hazard curve - 3 -
.,, ),, W =(t-waste/m ). 3 CO D W, 3 ). 3 CO Table (), CO Fig.. 3, D =.77(t-CO /t-waste). 3 CO E d CO D, 3 ). 3 CO Table (3), (m ) CO Fig. 7.,, CO 3). 3, E d =. (t-co /m ). 33 CO E r (CASBEE), CO,, (m ) ). CASBEE CO 3. CASBEE, Table 3Analysis condition environmental load Contents Variable Unit Value Amount waste W t-waste/m,, CO emission due to disposal waste D t-co /t-waste.77 CO emission due to disposal waste E w t-co /m W D / CO emission due to demolition E d t-co /m. CO emission due to rebuilding E r t-co /m CO emission due to building E t-co /m E w +E d + E r, CO, CASBEE, CO E r =(t-co /m ).,,,, CO EX CO. 3, RD CO., CO.,, H, H e, µ, htable.. (9) α 3 T e Fig..,,. i a i R i Table, 7, (A). /.,,.,, W,, (t/m ) EX CO Fig. 9. CO E i E wi %,., i a i Table EX CO Fig.. a, t =. (%) EX CO., EX CO Fig..,.,, t =,.,,, CO. Building Total floor area (m ) umber stories Amount waste Amount waste for each area (t/m ) Table Amount CO emission due to demolition ) Outline () Waste () CO emission due to waste disposal (3) CO emission due to demolition Carrying out materials Intermediate process Summation CO emission for each waste (t/twaste) Building frame demolition Carrying temporary material Unloading materials Common denominator Summation CO emission for each area (t/m ) A - B W=B /A C C X =C +C D =X /B C3 C C C Y =C 3+C +C +C E d =Y /A J, 3,9. 3. 7. 33.. 9..9 9.. 7..7 I,,9.3..... 7... 3.. H,7 3 7,7.97. 3...7.9...7..7 Average - 37.3 - - -.77 - - - - -. - 3 -
3, Fig. (a), k, (b) k,., α =3 ( =.3) (a), (b) α = ( =.) P fvi EX CO Fig., 3., (a), (b) RD CO Fig.. (a) CO, t =,.7., (b), R, CO t =,.,.,, R i, R i Table 9 (B), (C) RD CO Fig.. R i (C), t =,.,. C. C = hk / ω (h=., ω ) () (a), (b).c, C RD CO Fig., 7., R i (a) (A), (b) (C). (a), (b) CO, (b), C EX CO (%).,, R i.,, =,,,. EX CO Fig.., t = ( ),,..,.,. Fig., α 3, t = RD CO Fig. 9., R i Table Analysis condition building Contents Variable Unit Value umber stories -,,, Story height H (m) 3. Equivalent height H e (m) formula () Effective mass ratio µ - formula (7) Damping factor h ' -. Table Setup condition dismantlement ratio for each level Major Case (Standard) Moderate 3 Minor 3 Table 7Threshold maximun drift angle R i for each level Case Major Moderate (A) (Standard) / /3 (B) (C) / Minar / /9 Amount waste (t/m ) J I H Weight Metoripolitan calculation area Fig. Amount waste due to demolition for each (m ) floor area -) Amount CO emission (t-co /t-waste) J I H Amount CO emission J I H Fig. CO emission due to disposal for Fig. 7CO emission due to demolition each waste ) for each (m ) floor area ) (t-co /m ) atural period T e (s) 3.. = = = α =3 =/ =....3....7 Base-shear coefficient Fig. Relationship between and T e EX CO = =.3 W=(t/m ) W=(t/m ) W=(t/m ) Period t (year) Fig. 9EX CO with changing amount waste W EX CO = =.3 Period t (year) Fig. EX CO with changing setup condition dismantlement ratio each level - 37 -
, (a) k, (b),,. R i Table 7, Fig.,., R i (A) (C),.. (a), (b).c, C t = RD CO, Fig.,., R i (a) (A), (b) (C)., (b),., t =., 3 (%). CO EX CO RD CO,.,,, k,. k, t = CO.7. CO, R i, CO.,,. =,,,,., =.,,,,.,.. ), http://ds.data.jma.go.jp/ghg/ kanshi/ghgp/co.html (..) ) STOP THE, http://www.env.go.jp/earth/ondanka/stop/full.pdf (..) 3),,, 9.3 ),,,, Vol. 7, o.3, pp-,. ) 997,, 99 ),,,,,, Vol., o. 9, pp77-, 9. 7),,pp-,. ),,,,, 9),. ),. ), ( ), 7 ), p7,.3 3),,,,. ) CASBEE, http://www.ibec.or.jp/casbee/cas_home/ cas_home.htm (..) EX CO Tokyo Osaka = =.3 Q Mg 3 Mg Q Mg Cy 3 Mg Period t (year) Fig. Expected CO Emissions EX CO in 3 Regions =/ R =/ /9 R (a)increase in stuffiness k (b)increase in yield drift angle Fig. Two method to increase - 3 -
Damage probability P fvi.... = Major Moderate Minor =.3 =/ Damage probability P fvi.... = Major Moderate Minor =. R =/ y Period t (year) Period t (year) Period t (year) (a) =.3 (b) =. (a) (c) =. (b) Fig. 3Damage probability building P fvi Damage probability P fvi.... = Major Moderate Minor =. R =/9 y RD CO = =.3. method (a) method (b) RD CO = =.3. =//9 (A) (B) (C) RD CO = =.3..C C Period t (year) Fig. RD CO due to method (a) or (b) in RD CO.C C = =.3. =//9 Period t (year) Fig. 7RD CO with adding damper, using method (b) in EX CO Period t (year) Fig. RD CO with changing R i, using method (b) in α =3 : Period t (year) Fig. EX CO with changing number stories in RD CO Period t (year) Fig. RD CO with adding damper, using method (a) in t = years method (a) method (b) Fig. 9RD CO due to method (a) or (b) in RD CO (A) (B) (C) t = years RD CO.C C t = years RD CO.C C t = years Fig. RD CO with changing R i, using method (b) in Fig. RD CO with adding damper, using method (a) in Fig. RD CO with adding damper, using method (b) in - 39 -