Evaluation of Earthquake Countermeasures for Steel Construction to Mitigate Environmental Load

Σχετικά έγγραφα
CONSULTING Engineering Calculation Sheet

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

5.4 The Poisson Distribution.

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

5.0 DESIGN CALCULATIONS

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Math 6 SL Probability Distributions Practice Test Mark Scheme

,,, (, ) , ;,,, ; -

; +302 ; +313; +320,.

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Approximation of distance between locations on earth given by latitude and longitude

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

(Mechanical Properties)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Thin Film Chip Resistors

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Homework 8 Model Solution Section

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Second Order RLC Filters

Oscillatory Gap Damping

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

* * E mail : matsuto eng.hokudai.ac.jp. Zeiss

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 5 : Financial Ratios

Supplementary Appendix

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Electrolyzed-Reduced Water as Artificial Hot Spring Water

Hydrologic Process in Wetland

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Math221: HW# 1 solutions

Trigonometric Formula Sheet

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%


Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

Forced Pendulum Numerical approach

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Conductivity Logging for Thermal Spring Well

Journal of the Institute of Science and Engineering. Chuo University

1) Formulation of the Problem as a Linear Programming Model

Investigation of ORP (Oxidation-Reduction Potential) Measurement on Sulfur Springs and Its Application on Hot Spring Waters in Nozawa Onsen

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

10.7 Performance of Second-Order System (Unit Step Response)

Second Order Partial Differential Equations

Probability and Random Processes (Part II)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Management of Climate changes in Evrotas River, Southern Greece

Design Method of Ball Mill by Discrete Element Method

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in


Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

6.4 Superposition of Linear Plane Progressive Waves

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Solution to Review Problems for Midterm III


HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Areas and Lengths in Polar Coordinates

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Homework 3 Solutions

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Section 8.3 Trigonometric Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Summary of the model specified

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Project: Brimsmore, Ye... Job no: C08127 Designed By kristian Checked By Network W Network Design Table for OUTFALL B.SWS

Influence of Flow Rate on Nitrate Removal in Flow Process

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

THICK FILM LEAD FREE CHIP RESISTORS

Assalamu `alaikum wr. wb.

[1] P Q. Fig. 3.1

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Focal Mechanism Solutions of Micro- and Small Earthquakes Occurred in the Western Kanagawa Area Situated in the Izu Collision Zone

Thick Film Array Chip Resistor

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Accumulation of Soil Arsenic by Panax notoginseng and Its Associated Health Risk

Biodiesel quality and EN 14214:2012

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Transcript:

[A 論文 ] JCOSSAR 論文集 * * * ** * Evaluation Earthquake Countermeasures for Steel Construction to Mitigate Environmental Load by Yuki MIZUTAI *, oriko TAKIYAMA *, Yoshihiro OISHI *, Kazuo TAMURA ** and Yasuhiro HAYASHI * We propose an evaluation method earthquake countermeasures for steel construction from the view point reduction in CO emission due to building. By the sensitivity analysis on the index, we obtained the following conclusions.[] The expected value CO emission can be decreased by adding the damper in addition to increasing the yield drift angle and the drift angle where is caused. [] By taking earthquake countermeasures to low layer construction like stories, we can decrease amount CO emission effectively. key words: Steel Construction, Seismic Risk, Life Cycle, Carbon Dioxide Emission, Waste 99,,.,,.,. (CO ) (CH ),. CO. CO.3 ). CO,, )., CO..,,9, (%),, Damage probability building P fvi (v) () CO emission due to seismic ground motion SCE (v) () CO emission due to building E i () Seismic hazard f ( v, t ) (7) Expected CO emission due to seismic ground motion EX CO (t ) (3) Decrease EX CO by earthquake countermeasure RD CO (t ) () Fig. Evaluation flow eatrhquake countermeasures 7 3)..,, CO, CO., ),, CO. ) CO, CO EX CO EX CO RD CO.,, Fig.., v CO SCE(v). SCE ( v) = P i fvi E i (), i, 3 Table ). P fvi v i, Table Damage assumed at each level i Damage level Damage situation i Major It is in danger the collapse or the collapse. The danger the collapse is low though the frame a Moderate building is d, and the transformation corner between the inclination and the residual layer is seen. Minor There is little in the frame a building. + 3 Received * -, Dept. Architecture and Architectural Eng., Kyoto Univ., ishikyo-ku, Kyoto ** 7-, Dept. Architecture and Civil Eng., Chiba Institute Tech., arashino-shi, Chiba - 33 -

. E i CO,, E wi, E di, E ri, (). E i = E wi + E di + E ri (), CO EX CO (3). ) = ( SCE( v) f ( v, t EX CO ( t )) dv (3), t, f (v, t ) v, 3. RD CO,, EXB CO EXA CO., RD CO CO. RD CO (t ) = EXB CO (t ) EXA CO (t ) () v P fvi.,,, R., Fig.. [] H e, M e.,,,, H e, M e. H e = (+)H / 3 () M e = 3M (+)/{(+)} (), H,, M., µ. µ =M e / M (7) (), (7)., Bi-linear.. MgC y Q = d H er ( d < H e ) (a) y Q=Mg ( d > H e ) (b), d, g. /. (9) ). = α / (9), α =3. [] 7). S ae, h. () Q,. Sae( T, h) = Q /( M e Fh ) (), h, F h h,. / h =γ ( /D f )+ h (D f ) () F h =(+h)/(+h) (), D f,. D f = R / (3), D f hγ. )., d, T. T = π µ H ery C g ( R < ) (a) y µ d T = π C yg ( R > ) (b) [3], Table. v n. v n =,,, (cm/ s)., S a., Table o.-, h =., v n = (cm/s)s a Fig. 3. [] [] S ae [3] S a, v n, R Building [] Restoring force characteristic Q Mg [] Equivalent-performance response spectrum S ae S ae [] Calculation maximum response drift angle R S a, S ae R T Input Seismic Ground Motion [3] Acceleration response spectrum waves S a [] Calculation probability from distribution function R -P fv major -P fv moderate P fv major -P fv minor -P fv moderate -P fv major R minor R moderate R major Fig. Evaluation flow probability buldings S a T v = v n T Repeat this operations v n =,,, (cm/s) [] Damage probability P fvi to the maximum velocity ground motion P fvi Moderate Minor Major v R - 3 -

. [] v n, [] R R P (R < R ). R R i i P fvi. P fv = P( R R ) Pfv = P( R R) - P( R R) () Pfv = P( R R) - P( R R) [] v n P fvi. 3 9), (3) v f ( v, t ).,, t v P(V > v ; t ), (). { P ( V v; t } P ( V > v; t ) = k > ) () k, P k (V > v; t )k.,,, Fig.. v, f ( v, t ) (7). f v, t ) = dp( V v; t ) / dv (7) ( > 3, CO E i, Table 3.,., Table 3, CO E, i a i (%),. E i = a / E () i 3 CO E w CO E w, (9) (m ) W (t-waste/ m ), CO D (t- CO /t-waste). E w = W D/ (9), W CO D. 3 W, 3 ). 3 Table (), (m ) Fig.., ), ( (m) ), (m ) 9, Table () 3.,,., I, Table Outline input earthquake motion o. Date earthquake Peak value ame earthquake Observation point Component occurrence A (cm/s/s) V (cm/s) 9// Matsushiro Matsushiro S 3 9. 9// Matsushiro Ochiai S3E 7. 3 9// Tokachi-oki Hachinohe S 3. 97// Miyagiken-oki Tohoku Univ. S. 97//7 Chibaken Toho-oki Katsuura S 9.7 97//7 Chibaken Toho-oki Kisaradu S 3. 7 97//7 Chibaken Toho-oki Kisaradu EW 37. 99/7/9 Izu-hanto Toho-oki Ito E 3 37.9 9 993// Kushiro-oki Kushiro EW 99 9.9 99// Kushiro-oki emuro EW.9 993/7/ Hokkaido ansei-oki Suttsu S.3 99// Hokkaido Toho-oki Kushiro EW 7.9 3 99// Hokkaido Toho-oki emuro EW 33 3.7 99// Sanriku Haruka-oki Hachinohe S 7. 99// Sanriku Haruka-oki Aomori EW.9 99//7 South Hyogo Kobe Marine prefecture Observatory S. 7 99//7 South Hyogo prefecture Osaka Gas Fukiai 37W 3.3 9// Imperial Valley El Centro S 3 33. 9 99//3 Olympia Olympia EW 3.9 9/7/ Kern County Taft EW 7 7. 97//9 San Fernando Pacoima Dam SW,. 99//7 orthridge ewhall 3D 7 7. 3 99//7 orthridge Sylmar 3D 7. 99//7 orthridge Tarzana 9D,7.3 S a (cm/s/s) Exceedance probability in 3 years. Period (s) Fig. 3Acceleration response spectrum input earthquake motion. h=. v n =(cm/s) Tokyo Osaka. Maximum velocity ground motion v (cm/s) Fig. Seismic hazard curve - 3 -

.,, ),, W =(t-waste/m ). 3 CO D W, 3 ). 3 CO Table (), CO Fig.. 3, D =.77(t-CO /t-waste). 3 CO E d CO D, 3 ). 3 CO Table (3), (m ) CO Fig. 7.,, CO 3). 3, E d =. (t-co /m ). 33 CO E r (CASBEE), CO,, (m ) ). CASBEE CO 3. CASBEE, Table 3Analysis condition environmental load Contents Variable Unit Value Amount waste W t-waste/m,, CO emission due to disposal waste D t-co /t-waste.77 CO emission due to disposal waste E w t-co /m W D / CO emission due to demolition E d t-co /m. CO emission due to rebuilding E r t-co /m CO emission due to building E t-co /m E w +E d + E r, CO, CASBEE, CO E r =(t-co /m ).,,,, CO EX CO. 3, RD CO., CO.,, H, H e, µ, htable.. (9) α 3 T e Fig..,,. i a i R i Table, 7, (A). /.,,.,, W,, (t/m ) EX CO Fig. 9. CO E i E wi %,., i a i Table EX CO Fig.. a, t =. (%) EX CO., EX CO Fig..,.,, t =,.,,, CO. Building Total floor area (m ) umber stories Amount waste Amount waste for each area (t/m ) Table Amount CO emission due to demolition ) Outline () Waste () CO emission due to waste disposal (3) CO emission due to demolition Carrying out materials Intermediate process Summation CO emission for each waste (t/twaste) Building frame demolition Carrying temporary material Unloading materials Common denominator Summation CO emission for each area (t/m ) A - B W=B /A C C X =C +C D =X /B C3 C C C Y =C 3+C +C +C E d =Y /A J, 3,9. 3. 7. 33.. 9..9 9.. 7..7 I,,9.3..... 7... 3.. H,7 3 7,7.97. 3...7.9...7..7 Average - 37.3 - - -.77 - - - - -. - 3 -

3, Fig. (a), k, (b) k,., α =3 ( =.3) (a), (b) α = ( =.) P fvi EX CO Fig., 3., (a), (b) RD CO Fig.. (a) CO, t =,.7., (b), R, CO t =,.,.,, R i, R i Table 9 (B), (C) RD CO Fig.. R i (C), t =,.,. C. C = hk / ω (h=., ω ) () (a), (b).c, C RD CO Fig., 7., R i (a) (A), (b) (C). (a), (b) CO, (b), C EX CO (%).,, R i.,, =,,,. EX CO Fig.., t = ( ),,..,.,. Fig., α 3, t = RD CO Fig. 9., R i Table Analysis condition building Contents Variable Unit Value umber stories -,,, Story height H (m) 3. Equivalent height H e (m) formula () Effective mass ratio µ - formula (7) Damping factor h ' -. Table Setup condition dismantlement ratio for each level Major Case (Standard) Moderate 3 Minor 3 Table 7Threshold maximun drift angle R i for each level Case Major Moderate (A) (Standard) / /3 (B) (C) / Minar / /9 Amount waste (t/m ) J I H Weight Metoripolitan calculation area Fig. Amount waste due to demolition for each (m ) floor area -) Amount CO emission (t-co /t-waste) J I H Amount CO emission J I H Fig. CO emission due to disposal for Fig. 7CO emission due to demolition each waste ) for each (m ) floor area ) (t-co /m ) atural period T e (s) 3.. = = = α =3 =/ =....3....7 Base-shear coefficient Fig. Relationship between and T e EX CO = =.3 W=(t/m ) W=(t/m ) W=(t/m ) Period t (year) Fig. 9EX CO with changing amount waste W EX CO = =.3 Period t (year) Fig. EX CO with changing setup condition dismantlement ratio each level - 37 -

, (a) k, (b),,. R i Table 7, Fig.,., R i (A) (C),.. (a), (b).c, C t = RD CO, Fig.,., R i (a) (A), (b) (C)., (b),., t =., 3 (%). CO EX CO RD CO,.,,, k,. k, t = CO.7. CO, R i, CO.,,. =,,,,., =.,,,,.,.. ), http://ds.data.jma.go.jp/ghg/ kanshi/ghgp/co.html (..) ) STOP THE, http://www.env.go.jp/earth/ondanka/stop/full.pdf (..) 3),,, 9.3 ),,,, Vol. 7, o.3, pp-,. ) 997,, 99 ),,,,,, Vol., o. 9, pp77-, 9. 7),,pp-,. ),,,,, 9),. ),. ), ( ), 7 ), p7,.3 3),,,,. ) CASBEE, http://www.ibec.or.jp/casbee/cas_home/ cas_home.htm (..) EX CO Tokyo Osaka = =.3 Q Mg 3 Mg Q Mg Cy 3 Mg Period t (year) Fig. Expected CO Emissions EX CO in 3 Regions =/ R =/ /9 R (a)increase in stuffiness k (b)increase in yield drift angle Fig. Two method to increase - 3 -

Damage probability P fvi.... = Major Moderate Minor =.3 =/ Damage probability P fvi.... = Major Moderate Minor =. R =/ y Period t (year) Period t (year) Period t (year) (a) =.3 (b) =. (a) (c) =. (b) Fig. 3Damage probability building P fvi Damage probability P fvi.... = Major Moderate Minor =. R =/9 y RD CO = =.3. method (a) method (b) RD CO = =.3. =//9 (A) (B) (C) RD CO = =.3..C C Period t (year) Fig. RD CO due to method (a) or (b) in RD CO.C C = =.3. =//9 Period t (year) Fig. 7RD CO with adding damper, using method (b) in EX CO Period t (year) Fig. RD CO with changing R i, using method (b) in α =3 : Period t (year) Fig. EX CO with changing number stories in RD CO Period t (year) Fig. RD CO with adding damper, using method (a) in t = years method (a) method (b) Fig. 9RD CO due to method (a) or (b) in RD CO (A) (B) (C) t = years RD CO.C C t = years RD CO.C C t = years Fig. RD CO with changing R i, using method (b) in Fig. RD CO with adding damper, using method (a) in Fig. RD CO with adding damper, using method (b) in - 39 -