Electronic Supplementary Information for Dalton Transactions. Supplementary Data

Σχετικά έγγραφα
Supplementary materials

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Electronic Supplementary Information (ESI)

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

IV. ANHANG 179. Anhang 178

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Dalton Transactions, 2017, Katarzyna Czerwińska et al.

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Supporting Information

Supporting Information

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Table of Contents 1 Supplementary Data MCD

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supporting Information

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Fused Bis-Benzothiadiazoles as Electron Acceptors

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting Information

Electronic Supplementary Information (ESI)

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Supporting Information

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Supporting Information

Supporting Information

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław, Poland

Supporting Information

Supplementary Material

Supporting Information

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supplementary Information for

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Supplementary information

Butadiene as a Ligand in Open Sandwich Compounds

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

L. Kaßner a, K. Nagel a, R. E. Grützner b, M. Korb c, T. Rüffer c, H. Lang c and S. Spange a

difluoroboranyls derived from amides carrying donor group Supporting Information

Supporting Information

SUPPLEMENTARY MATERIAL

ELECTRONIC SUPPLEMENTARY MATERIAL-RSC Adv.

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Electronic Supplementary Information

Electronic Supplementary Information (ESI)

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Supporting Information. for

Supporting Information

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Supporting Information

ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE

Supporting Information

Supporting Information

Supporting Information

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Switching of the Photophysical Properties of. Bodipy-derived Trans Bis(tributylphosphine) Pt(II) bisacetylide Complexes with Rhodamine

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Synthetic Control of Excited States in Cyclometalated Ir(III) Complexes using Ancillary Ligands

of the methanol-dimethylamine complex

# Institute of Chemistry of the Academy of Sciences of Republic of Moldova, Academiei Str. 3,

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Experimental. Crystal data

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Transcript:

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information for Dalton Transactions Supplementary Data Synthesis, spectroscopic, electrochemical and computational studies of rhenium(i) tricarbonyl complexes based on bidentate-coordinated 2,6- di(thiazol-2-yl)pyridine derivatives Tomasz Klemens a, Katarzyna Czerwińska a, Agata Szlapa-Kula b, Slawomir Kula b, Anna Świtlicka a, Sonia Kotowicz c, Mariola Siwy d, Katarzyna Bednarczyk c, Stanisław Krompiec b, Karolina Smolarek e, Sebastian Maćkowski e, Witold Danikiewicz f, Ewa Schab-Balcerzak c,d* and Barbara Machura a * a Department of Crystallography, Institute of Chemistry, University of Silesia, 9 th Szkolna St., 40-006 Katowice, Poland b Department of Inorganic, Organometallic Chemistry and Catalysis, Institute of Chemistry, University of Silesia, 9 th Szkolna St., 40-006 Katowice, Poland c Department of Polymer Chemistry, Institute of Chemistry, University of Silesia in Katowice, 9 th Szkolna St., 40-006 Katowice, Poland d Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 th M. Curie-Sklodowska St., 41-819 Zabrze, Poland e Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 th Grudziadzka St., 87-100 Torun, Poland f Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland. 1

Tables: Table S1. Crystal data and structure refinement details of the rhenium(i) complexes. Table S2. The selected experimental and calculated bond lengths [Å] and angles [ ] for the rhenium(i) complexes. Table S3. Short intra- and intermolecular contacts detected in the structures of complexes. rhenium(i) Table S4. The absorption maxima and molar extinction coefficient values for complexes 4, 5, 6, 8 and their terpyridine analogues. Table S5. The energies and characters of the selected spin-allowed electronic transitions for 1 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S6. The energies and characters of the selected spin-allowed electronic transitions for 2 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S7. The energies and characters of the selected spin-allowed electronic transitions for 3 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S8. The energies and characters of the selected spin-allowed electronic transitions for 4 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S9. The energies and characters of the selected spin-allowed electronic transitions for 5 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S10. The energies and characters of the selected spin-allowed electronic transitions for 6 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S11. The energies and characters of the selected spin-allowed electronic transitions for 7 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S12. The energies and characters of the selected spin-allowed electronic transitions for 8 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S13. The energies and characters of the selected spin-allowed electronic transitions for 9 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S14. The emission maxima for complexes 4, 5, 6, 8 and their terpyridine analogues. Figures: Figure S1. Representative IR spectra of complexes 2 and 5. Figure S2. Representative 1 H NMR (a) and 13 C NMR (b) spectra of complex 9. Figure S3. A view of the crystal packing showing intermolecular stacking interactions for tricarbonyl rhenium(i) complexes. Figure S4. Cyclic voltammograms of the rhenium(i) complexes. Figure S5. Absorption spectra of the rhenium(i) complexes in chloroform and acetonitrile solutions. 2

Figure S6. Experimental and theoretical absorption spectra of 1-9 complexes in acetonitrile solution. Figure S7. HOMO-5 to HOMO molecular orbitals of 1-9 complexes. Figure S8. LUMO to LUMO+5 molecular orbitals of 1-9 complexes. Figure S9. Isodensity surface electron spin density for the complexes 1 9 at their T 1 state geometry. Blue and green colours show regions of positive and negative spin density values, respectively. Figure S10. Isodensity surface plots of the HSOMO and LSOMO for the complexes 1 9 at their T 1 TDDFT state geometry. Blue and grey colours show regions of positive and negative spin density values, respectively. Figure S11. Luminescent properties of 1-9 complexes in solid state, low temperature glass matrix (EtOH:MeOH, 4:1 v/v), acetonitrile and chloroform solutions. Figure S12. PL spectra of [ReCl(CO) 3 (R n -dtpy)] complexes as film registered under various excitation wavelength ( ex ). 3

Table S1. Crystal data and structure refinement details of the rhenium(i) complexes. 3 4 5 7 8 9 Empirical formula C 19 H 10 ClN 4 O 3 S 2 Re C 18 H 9 ClN 3 O 3 S 3 Re C 22 H 11 ClN 3 O 3 S 4 Re C 20 H 11 ClN 3 O 4 S 2 Re C 19 H 12 ClN 4 O 3 S 2 Re C 28 H 20 ClN 4 O 4 ReS 2 Formula weight 628.08 633.11 715.23 643.09 630.10 762.25 Temperature [K] 298.0(2) 298.0(2) 298.0(2) 298.0(2) 298.0(2) 298.0(2) Wavelength [Å] 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 Crystal system monoclinic orthorhombic monoclinic monoclinic monoclinic monoclinic Space group P2 1 /c Pbca I2/a P2 1 /n P2 1 /n P2 1 /n Unit cell dimensions [Å, ] a = 11.2580(4) a = 11.6598(3) a = 16.4100(5) a = 11.1652(11) a = 10.3501(3) a = 13.6914(6) b = 11.3920(4) b = 16.1704(6) b = 10.5443(4) b = 15.9975(12) b = 11.0261(5) b = 14.0788(8) c = 15.8305(5) c = 20.9566(6) c = 28.2940(9) c = 12.8167(12) c = 18.3976(7) c = 15.8901(6) = 101.048(3) = 92.541(3) = 109.094(11) = 93.019(3) = 107.775(4) Volume [Å 3 ] 1992.65(12) 3951.2(2) 4891.0(3) 2163.3(4) 2096.64(14) 2916.7(3) Z 4 8 8 4 4 4 Density (calculated) 2.094 2.129 1.943 1.975 1.996 1.736 [Mg/m 3 ] Absorption coefficient [mm - 6.472 6.629 5.450 5.966 6.152 4.441 1 ] F(000) 1200 2416 2752 1232 1208 1488 Crystal size [mm] 0.09 x 0.09 x 0.04 0.07 x 0.06 x 0.03 0.11 x 0.06 x 0.03 0.20 x 0.15 x 0.04 0.18 x 0.07 x 0.03 0.25 x 0.16 x 0.05 range for data collection 3.41 to 25.05 3.49 to 25.05 3.64 to 25.05 3.36 to 25.05 3.43 to 25.05 3.44 to 25.05 [ ] Index ranges -13 h 13-13 k 12-16 l 18-13 h 10-19 k 12-24 l 23-19 h 19-12 k 10-28 l 33-12 h 13-19 k 16-15 l 14-12 h 10-13 k 11-21 l 21-13 h 16-16 k 16-18 l 16 Reflections collected 11078 12761 11272 11778 9529 14010 Independent reflections 3522 (R int = 3486 (R int = 0.0395) 4323 (R int = 0.0243) 3823 (R int = 0.0560) 3686 (R int = 0.0440) 5159 (R int = 0.0606) 0.0339) Completeness to 2 =50º 99.8 99.8 99.7 99.7 99.8 99.7 [%] Max. and min. transmission 1.000 and 0.403 1.000 and 0.403 1.000 and 0.476 1.000 and 0.101 1.000 and 0.286 1.000 and 0.375 Data / restraints / 3522 / 0 / 271 3486/ 0 / 262 4323 / 0 / 339 3823/ 0 / 280 3686 / 0 / 272 5159 / 0 / 362 parameters Goodness-of-fit on F 2 1.194 1.027 1.044 1.030 0.999 1.041 Final R indices [I>2 (I)] R 1 = 0.0268 wr 2 = 0.0704 R 1 = 0.0282 wr 2 = 0.0577 R 1 = 0.0220 wr 2 = 0.0482 R 1 = 0.0408 wr 2 = 0.0982 R 1 = 0.0358 wr 2 = 0.0763 R 1 = 0.471 wr 2 = 0.1139 R indices (all data) R 1 = 0.0340 wr 2 = 0.0726 R 1 = 0.0449 wr 2 = 0.0621 R 1 = 0.0278 wr 2 = 0.0506 R 1 = 0.0538 wr 2 = 0.1050 R 1 = 0.0465 wr 2 = 0.0814 R 1 = 0. 0674 wr 2 = 0.1257 4

Largest diff. peak and 0.759 and -0.590 0.720 and -0.624 0.360 and -0.699 1.444 and -1.604 1.510 and -1.331 1.353 and -0.581 hole[eå -3 ] CCDC numbers 1552300 1552301 1552302 1552303 1552304 1552305 5

Table S2. The selected experimental and calculated bond lengths [Å] and angles [ ] for the rhenium(i) complexes. 3 4 5 experimental calculated experimental calculated experimental calculated Bond lengths Re(1) C(1) 1.916(8) 1.921 1.940(6) 1.921 1.922(4) 1.920 Re(1) C(2) 1.907(6) 1.902 1.885(6) 1.902 1.902(4) 1.902 Re(1) C(3) 1.908(7) 1.904 1.912(6) 1.904 1.891(4) 1.904 Re(1) N(1) 2.161(5) 2.169 2.164(4) 2.169 2.149(3) 2.169 Re(1) N(2) 2.239(4) 2.262 2.226(4) 2.261 2.241(2) 2.260 Re(1) Cl(1) 2.4817(15) 2.499 2.4851(13) 2.500 2.4836(8) 2.500 C(1) O(1) 1.162(8) 1.149 1.135(6) 1.150 1.146(4) 1.150 C(2) O(2) 1.145(7) 1.152 1.156(6) 1.152 1.145(4) 1.153 C(3) O(3) 1.134(7) 1.154 1.145(6) 1.154 1.158(4) 1.154 Bond angles C(2) Re(1) C(1) 89.0(2) 86.81 86.9(2) 86.79 90.15(15) 86.79 C(3) Re(1) C(1) 89.0(2) 89.59 88.4(2) 89.58 88.68(15) 89.57 C(3) Re(1) C(2) 87.7(2) 88.70 89.6(2) 88.72 88.39(14) 88.71 C(1) Re(1) N(1) 173.49(19) 174.08 174.84(18) 174.24 176.05(12) 174.28 C(2) Re(1) N(1) 95.2(2) 96.44 96.20(19) 96.41 93.08(12) 96.44 C(3) Re(1) N(1) 96.1(2) 95.41 95.77(18) 95.26 93.69(13) 95.21 C(1) Re(1) N(2) 101.51(18) 102.15 102.50(18) 102.26 101.72(12) 102.22 C(2) Re(1) N(2) 169.0(2) 170.08 169.22(18) 170.05 166.02(12) 170.09 C(3) Re(1) N(2) 95.66(19) 95.54 96.0(2) 95.42 99.14(12) 95.41 N(1) Re(1) N(2) 74.08(15) 74.27 74.09(14) 74.23 74.79(9) 74.24 C(1) Re(1) Cl(1) 90.41(17) 90.99 91.71(16) 91.08 93.35(11) 91.12 C(2) Re(1) Cl(1) 94.40(19) 93.54 92.46(16) 93.53 92.85(11) 93.51 C(3) Re(1) Cl(1) 177.81(17) 177.71 177.98(18) 177.68 177.62(10) 177.71 N(1) Re(1) Cl(1) 84.30(12) 83.89 84.02(11) 83.96 84.22(8) 83.98 N(2) Re(1) Cl(1) 82.39(11) 82.17 82.03(10) 82.27 79.24(6) 82.31 Bond lengths 7 8 9 experimental calculated experimental calculated experimental calculated 6

Re(1) C(1) 1.900(7) 1.920 1.916(6) 1.922 1.925(9) 1.922 Re(1) C(2) 1.927(9) 1.902 1.924(8) 1.904 1.903(9) 1.904 Re(1) C(3) 1.909(9) 1.903 1.902(7) 1.903 1.935(9) 1.903 Re(1) N(1) 2.166(5) 2.170 2.167(4) 2.169 2.150(6) 2.169 Re(1) N(2) 2.234(6) 2.259 2.230(5) 2.261 2.228(5) 2.262 Re(1) Cl(1) 2.485(2) 2.500 2.4762(16) 2.497 2.4794(19) 2.496 C(1) O(1) 1.152(8) 1.150 1.158(7) 1.150 1.140(9) 1.149 C(2) O(2) 1.105(10) 1.153 1.124(9) 1.152 1.141(10) 1.151 C(3) O(3) 1.127(9) 1.154 1.133(8) 1.155 1.111(9) 1.154 Bond angles C(2) Re(1) C(1) 88.1(3) 86.78 87.8(3) 86.64 87.4(4) 86.66 C(3) Re(1) C(1) 88.9(3) 89.53 89.9(3) 90.30 91.9(3) 90.44 C(3) Re(1) C(2) 88.9(3) 88.69 90.2(3) 88.28 87.6(4) 88.30 C(1) Re(1) N(1) 175.6(3) 174.34 173.0(2) 174.43 172.6(3) 174.26 C(2) Re(1) N(1) 95.1(3) 96.42 97.6(2) 96.69 95.9(3) 96.73 C(3) Re(1) N(1) 94.3(3) 95.19 94.3(2) 94.25 94.8(3) 94.28 C(1) Re(1) N(2) 101.7(3) 102.21 99.4(2) 102.03 101.7(3) 101.96 C(2) Re(1) N(2) 169.2(3) 170.09 168.9(2) 169.91 169.8(3) 169.94 C(3) Re(1) N(2) 95.7(3) 95.46 98.2(2) 96.73 96.7(3) 96.73 N(1) Re(1) N(2) 74.9(2) 74.28 74.59(18) 74.27 74.57(19) 74.27 C(1) Re(1) Cl(1) 90.5(2) 91.18 92.70(19) 91.19 89.5(2) 90.99 C(2) Re(1) Cl(1) 94.7(3) 93.44 91.9(2) 92.93 93.9(3) 92.78 C(3) Re(1) Cl(1) 176.3(2) 177.78 176.73(19) 178.13 178.0(2) 178.26 N(1) Re(1) Cl(1) 86.15(15) 83.99 82.89(13) 84.19 83.66(14) 84.23 N(2) Re(1) Cl(1) 80.85(14) 82.34 79.39(11) 81.86 81.54(14) 82.00 7

Table S3. Short intra- and intermolecular contacts detected in the structures of rhenium(i) complexes. D H A D H H A D A [Å] D H A [ ] 3 C(4) H(4) O(2)#1 0.93 2.55 3.301(8) 138.5 C(10) H(10) N(4) 0.93 2.43 2.765(7) 101.3 C(14) H(14) N(4)#2 0.93 2.59 3.508(8) 167.6 C(16) H(16) Cl(1)#3 0.93 2.69 3.620(6) 173.2 4 C(8) H(8) Cl(1)#4 0.93 2.81 3.736(5) 172.7 C(10) H(10) S(3) 0.93 2.67 3.085(5) 108.1 C(13) H(13) S(3)#5 0.93 2.87 3.725(6) 153.6 C(16) H(16) Cl(1)#4 0.93 2.69 3.620(5) 175.6 5 C(4) H(4) N(3)#6 0.93 2.62 3.272(5) 127.7 C(8) H(8) S(1) 0.93 2.87 3.229(3) 104.3 C(10) H(10) S(3) 0.93 2.73 3.128(3) 106.5 7 C(5) H(5) Cl(1)#7 0.93 2.82 3.481(8) 129.3 C(15) H(15) O(4) 0.93 2.55 2.873(10) 100.4 C(15) H(15) Cl(1)#8 0.93 2.67 3.565(7) 162.8 C(16) H(16) O(1)#9 0.93 2.49 3.268(9) 141.0 8 C(8) H(8) S(1) 0.93 2.86 3.222(6) 104.0 C(13) H(13) S(1)#10 0.93 2.87 3.456(7) 122.0 C(14) H(14) N(3)#11 0.93 2.61 3.522(8) 168.0 C(17) H(17) O(3)#12 0.93 2.60 3.449(9) 153.0 C(19) H(19B) Cl(1)#13 0.96 2.72 3.555(7) 145.0 C(19) H(19C) Cl(1)#14 0.96 2.68 3.634(8) 171.0 9 O(4) H(4O) S(1) 0.84 2.50 3.323(17) 166.9 O(4) H(4P) N(3)#15 0.91 2.35 3.235(17) 164.6 C(8) H(8) S(1) 0.93 2.85 3.231(7) 105.8 C(14) H(14) Cl(1)#7 0.93 2.82 3.603(13) 142.2 C(27) H(27B) O(1)#16 0.97 2.56 3.281(11) 131.8 Symmetry codes: #1: -x,1-y,-z, #2: 1-x,2-y,1-z, #3: 1-x,-1/2+y,1/2-z, #4: -1/2+x,1/2-y,2-z; #5: 1-x,1-y,2-z, #6: -1/2+x,1-y,z; #7: 1/2-x,-1/2+y,1/2- z; #8: 1-x,-y,1-z; #9: 1/2+x,1/2-y,1/2+z, #10: -1/2+x,1/2-y,-1/2+z, #11: 5/2-x,1/2+y,1/2-z; #12: 1/2+x,1/2-y,-1/2+z; #13: 1+x,y,z, #14: 3-x,-y,1-z; #15: 1-x,2-y,-z; #16: x,y,-1+z; 8

Table S4. The absorption maxima and molar extinction coefficient values for complexes 4, 5, 6, 8 and their terpyridine analogues. Complex Ligand (medium) /nm (ε/ dm 3 mol-1 cm -1 ) terpy MeCN 381.0 (4400), 321.2 (13200), 258.3 (12700), 193.7 (14900) 4 dtpy MeCN 382.5 (5600), 330.7 (18720), 298.3 (13480), 263.1 (10880) terpy CHCl 3 407.4 (23800), 333.1 (91300), 292.2 (97100), 260.0 (85700) dtpy CHCl 3 433.1 (5000), 350.2 (22300), 321.4 (16200), 281.4 (13000) terpy MeCN 406.3 (19800), 313.7 (14900), 257.4 (16300), 219.7 (23700) 5 dtpy MeCN 419.5 (30320), 329.9 (22000), 264.0 (20080) terpy CHCl 3 427.9 (74900), 326.6 (57600), 260.2 (69700) dtpy CHCl 3 431.3 (24480), 335.9 (19520), 296.0 (19480) terpy MeCN 383.7 (7800), 315.1 (45300), 279.3 (57600), 244.4 (60900) 6 dtpy MeCN 395.8 (5000), 327.7 (16160), 247.0 (12000) terpy CHCl 3 402.7 (24700), 334.3 (96000), 302.4 (88500), 260.9 (76200) dtpy CHCl 3 418.9 (6440), 336.3 (30520), 305.9 (25160), 261.6 (15920) terpy MeCN 383.8 (22200), 351.9 (21100), 301.3 (31400), 253.3 (28600), 221.9 (37800) 8 dtpy MeCN 399.3 (10960), 356.0 (14400), 316.2 (21120), 250.9 (14640) terpy CHCl 3 408.2 (34600), 367.2 (42600), 314.1 (71500), 260.8 (77700) dtpy CHCl 3 411.9 (11640), 363.1 (15640), 324.4 (21160), 257.9 (16920) 9

Table S5. The energies and characters of the selected spin-allowed electronic transitions for 1 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Experimental absorption ; nm (ε; M -1 cm -1 ) 408.4 (1560) 335.8 (3780) 291.4 (4800) Major contribution (%) Calculated transitions Character E [ev] λ [nm] Oscillator strength H L (98%) * 2.60 476.16 0.0026 H-1 L (96%) 2.84 436.02 0.0985 H-2 L (97%) MLCT/LC 3.10 399.71 0.0088 H L+1 (98%) 3.31 374.54 0.0179 H-1 L+1 (96%) 3.46 358.21 0.0067 H-3 L (91%) LC/ILCT 3.66 338.52 0.2511 H-2 L+1 (96%) MLCT/LC/ILCT 3.82 324.80 0.0036 H-4 L (88%) LC 4.09 303.01 0.0748 H-8 L (57%), H-3 L+1 (19%), H-7 L (14%) H-3 L+1 (44%), H-8 L (22%), H-7 L (13%), H-6 L (12%) LLCT/LC/MLCT LC/ILCT LLCT/LC/ILCT/MLCT LC/ILCT LLCT/LC/MLCT LLCT/LC/ILCT/MLCT ILCT 4.34 285.43 0.1270 4.36 284.36 0.2332 H-4 L+1 (79%) LC/ILCT 4.62 268.19 0.1589 H-2 L+2 (48%), MLCT/ILCT/LC 4.76 260.40 0.1484 266.2 (5540) H-10 L (19%), LC/ILCT/LLCT H-9 L (14%) LC/ILCT/LLCT * mixed MLCT/LLCT state Table S6. The energies and characters of the selected spin-allowed electronic transitions for 2 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Experimental absorption ; nm (ε; M -1 cm -1 ) Major contribution (%) Calculated transitions Character E [ev] λ [nm] Oscillator strength H L (98%) 2.65 468.27 0.0027 387.1 (4800) H-1 L (97%) 2.88 430.53 0.1046 H-2 L (97%) MLCT/LC 3.14 394.35 0.0088 H L+1 (98%) 3.35 369.94 0.0166 H-1 L+1 (96%) 3.50 354.14 0.0105 326.2 (24240) H-3 L (90%) LC 3.71 334.24 0.2676 H-2 L+1 (96%) MLCT/LC/ILCT 3.86 321.44 0.0052 H-5 L (89%) LC/ILCT 4.13 299.95 0.2079 302.5 (36560) H-3 L+1 (83%) LC/ILCT 4.35 285.08 0.2726 H-4 L+1 (79%) LC/ILCT/LLCT 4.61 268.89 0.2246 H-3 L+2 (82%) LC/ILCT 5.25 235.95 0.0628 H-10 L+1(66%) LC/ILCT 5.55 223.31 0.0587 220.4 (31120) H-5 L+2 (23%), H-11 L+1 (15%), H-13 L (13%) LC/ILCT ILCT/LLCT/LC LC 5.74 215.82 0.0554 Table S7. The energies and characters of the selected spin-allowed electronic transitions for 3 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Experimental absorption Calculated transitions 10

; nm (ε; M -1 cm -1 ) 394.3 (3000) 331.4 (8960) 290.7 (15000) 266.2 (12960) (%) strength H L (98%) 2.63 472.26 0.0025 H-1 L (97%) 2.86 433.87 0.1126 H-2 L (96%) MLCT/LC 3.12 397.54 0.0100 H L+1 (98%) 3.34 370.83 0.0207 H-1 L+1 (94%) 3.48 355.80 0.0060 H-3 L (88%) LC 3.65 339.84 0.2545 H-2 L+1 (96%) MLCT/LC 3.84 322.48 0.0055 H-4 L (50%), ILCT/LC/LLCT 4.07 304.62 0.3048 H-5 L (40%) LC H-3 L+1 (71%) LC/ILCT 4.31 287.42 0.2168 H-4 L+1 (54%), H-5 L+1 (12%), H-1 L+4 (10%) H-2 L+2 (68%), H-1 L+5 (10%) ILCT/LC/LLCT LC MLCT/d-d/LLCT MLCT/LC/ILCT d-d/mlct/llct 4.58 270.72 0.1626 4.79 258.65 0.604 Table S8. The energies and characters of the selected spin-allowed electronic transitions for 4 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Experimental absorption ; nm (ε; M -1 cm -1 ) Major contribution (%) Calculated transitions Character E [ev] λ [nm] Oscillator strength H L (98%) 2.67 464.03 0.0033 382.5 (5600) H-1 L (97%) 2.88 430.78 0.1545 H-2 L (96%) MLCT 3.16 391.81 0.0103 H L+1 (97%) 3.36 368.78 0.0263 H-1 L+1 (94%) 3.48 356.36 0.0197 330.7 (18720) H-3 L (85%) ILCT/LC 3.60 344.60 0.3607 H-4 L (76%) LC 3.71 334.13 0.1906 298.3 (13480) H-3 L+1 (84%) ILCT/LC 4.07 304.48 0.3200 H-6 L (86%) ILCT 4.25 291.70 0.0769 263.1 (10880) H-5 L+1 (83%) LC 4.68 265.10 0.1150 Table S9. The energies and characters of the selected spin-allowed electronic transitions for 5 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Experimental absorption ; nm (ε; M -1 cm -1 ) Major contribution (%) Calculated transitions Character E [ev] λ [nm] Oscillator strength H-1 L (63%), 2.64 469.47 0.1176 H L (30%) ILCT/LC H L (58%), ILCT/LC 2.73 454.40 0.6561 419.5 (30320) H-1 L (34%) H-2 L (84%) 2.99 414.38 0.1712 H-3 L (94%) MLCT/LC/ILCT 3.15 393.95 0.0100 H L+1 (89%) ILCT/LC 3.23 383.42 0.1887 H-1 L+1 (90%) 3.35 370.46 0.0044 H-2 L+1 (94%) 3.54 349.70 0.0341 329.9 (22000) H-4 L (90%) LC/ILCT 3.67 337.48 0.2401 H L+2 (91%) ILCT/LC 3.96 313.10 0.1043 264.0 (20080) H-6 L+1 (31%), LC/ILCT 4.62 268.09 0.1254 11

H-3 L+2 (25%), H L+3 (15%) H-4 L+2 (51%), H-9 L+1 (12%), H-3 L+4 (10%) MLCT/ILCT/LC ILCT/LC LC/ILCT LLCT/LC/ILCT/MLCT d-d/mlct/lc 5.02 246.96 0.1227 Table S10. The energies and characters of the selected spin-allowed electronic transitions for 6 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Experimental absorption ; nm (ε; M -1 cm -1 ) 395.8 (5000) 327.7 (16160) 247.0 (12000) Major contribution (%) Calculated transitions Character E [ev] λ [nm] Oscillator strength H L (98%) 2.69 460.70 0.0036 H-1 L (96%) 2.89 428.53 0.1630 H-2 L (89%) MLCT/LC 3.18 389.53 0.0114 H L+1 (97%) 3.37 367.63 0.0230 H-3 L (77%) ILCT/LC/MLCT 3.54 349.94 0.3546 H-4 L (78%) LC 3.74 331.56 0.2208 H-3 L+1 (86%) ILCT/LC/MLCT 4.00 310.25 0.3508 H-5 L+1 (84%) LC 4.69 264.05 0.0996 H-2 L+2 (49%), MLCT/LC 4.86 255.09 0.0746 H-2 L+4 (24%) d-d/lc H-4 L+2 (86%) LC 5.32 233.21 0.0732 Table S11. The energies and characters of the selected spin-allowed electronic transitions for 7 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Experimental absorption ; nm (ε; M -1 cm -1 ) 398.8 (22320) 366.9 (27360) 331.4 (23920) 260.3 (19200) Major contribution (%) Calculated transitions Character E [ev] λ [nm] Oscillator strength H-1 L (66%), 2.61 475.91 0.0295 H L (29%) ILCT/MLCT H L (53%), ILCT/MLCT 2.75 451.18 0.4880 H-1 L (32%), H-2 L (13%) /ILCT H-2 L (75%), H L (15%) /ILCT ILCT/MLCT 3.04 408.40 0.2568 H-3 L (90%) MLCT/LC 3.11 398.71 0.0312 H L+1 (69%), ILCT/MLCT 3.40 364.72 0.2176 H-1 L+1 (23%) H-1 L+1 (71%), 3.47 357.18 0.0498 H L+1 (16%) ILCT/MLCT H-4 L (76%), LC/ILCT 3.63 341.26 0.2251 H-2 L+1 (15%) /ILCT H-2 L+1 (78%), /ILCT 3.71 333.85 0.2594 H-4 L (10%) LC/ILCT H-3 L+2 (77%) MLCT/LC/ILCT 4.69 264.60 0.0479 H-5 L+1 (75%) LC/ILCT 4.73 262.18 0.1296 Table S12. The energies and characters of the selected spin-allowed electronic transitions for 8 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Experimental absorption Calculated transitions 12

; nm (ε; M -1 cm -1 ) 399.3 (10960) 356.0 (14400) 316.2 (21120) 250.9 (14640) Major contribution Oscillator Character E [ev] λ [nm] (%) strength H L (50%), /ILCT 2.79 445.05 0.0176 H-1 L (46%) H-1 L (53%), 2.93 423.70 0.2238 H L (38%) /ILCT H-2 L (80%) /ILCT/LC 3.22 385.28 0.0521 H-3 L (90%) MLCT/LC 3.28 377.69 0.0104 H L+1 (77%), /ILCT 3.53 351.02 0.1765 H-1 L+1 (18%) H-1 L+1 (80%), 3.59 345.01 0.0650 H L+1 (15%) /ILCT H-4 L (70%), LC 3.80 326.56 0.2199 H-2 L+1 (22%) /ILCT/LC H-2 L+1 (74%), /ILCT/LC 3.86 321.02 0.2564 H-4 L (20%) LC H-7 L (54%), /LC 4.51 274.80 0.1228 H-4 L+1 (37%) LC H-8 L (59%), /LC 4.62 268.37 0.0608 H-4 L+1 (7%) LC H L+2 (41%), /ILCT 4.64 267.33 0.0643 H L+4 (21%) d-d/ilct/lc H-6 L+1 (75%) LC/ 4.85 255.67 0.0665 H-3 L+3 (28%), d-d/lc 4.87 254.57 0.0684 H-1 L+4 (12%), d-d/llct/lc H L+3 (8%), d-d/ilct/lc H-2 L+2 (7%), /ILCT/LC H-2 L+4 (7%) d-d/llct/ilct/lc Table S13. The energies and characters of the selected spin-allowed electronic transitions for 9 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Experimental absorption ; nm (ε; M -1 cm -1 ) 410.8 (15720) 318.4 (22480) Major contribution (%) H-7 L (29%) 290.4 (21600) H-2 L+2 (26%), H L+3 (12%), H-5 L+1 (9%) Calculated transitions Character E [ev] λ [nm] Oscillator strength H-1 L (54%), 2.78 445.29 0.1040 H L (40%) ILCT H L (49%), ILCT 2.86 433.72 0.2617 H-1 L (44%) H-2 L (53%), /ILCT 3.06 404.64 0.0103 H-3 L (35%) /ILCT H-4 L (95%) MLCT/LC/ILCT 3.28 377.43 0.0101 H-3 L (53%), H-2 L (33%) /ILCT /ILCT 3.32 373.49 0.0067 H L+1 (83%) ILCT 3.41 363.45 0.3384 H-5 L (82%) LC/ILCT/MLCT 3.80 326.29 0.2804 H L+2 (47%), LC/ILCT 4.01 309.48 0.0739 H-4 L+1 (17%), MLCT/LC/ILCT H-3 L+1 (16%), /ILCT H-2 L+1 (12%) /ILCT H-6 L (45%), ILCT/LC 4.26 290.97 0.1620 LC/ILCT/ /LC/ILCT ILCT/LC LC/ILCT/MLCT 4.41 281.38 0.1099 13

262.3 (22040) 245.1 (27720) 236.1 (31400) 229.3 (31200) H-5 L+1 (66%) LC/ILCT/MLCT 4.43 280.00 0.3530 H-2 L+2 (21%), /LC/ILCT 4.60 269.70 0.2884 H L+3 (11%), ILCT/LC H-9 L (7%), LLCT/LC/ILCT H-3 L+2 (7%), /LC/ILCT H-3 L+5 (7%), d-d/ilct/mlct H-1 L+5 (7%) d-d/ H L+5 (32%), H L+4 (15%), H L+6 (14%) H L+7 (36%), H-1 L+7 (12%), H-1 L+9 (6%) H-1 L+7 (22%), H L+7 (14%), H-1 L+6 (11%), H L+9 (9%) ILCT/LMCT ILCT/LMCT ILCT/LC ILCT/LC ILCT/LC ILCT/LC 5.04 246.03 0.1313 5.34 232.28 0.0789 5.36 231.13 0.1058 Table S14. The emission maxima for complexes 4, 5, 6, 8 and their terpyridine analogues. Complex Medium Ligand [nm] terpy 664 MeCN dtpy 744 4 terpy 675 CHCl 3 dtpy 734 5 6 8 MeCN terpy 516 dtpy 682, 739 CHCl 3 terpy 484 dtpy 691, 735 MeCN terpy 663 dtpy 720 CHCl 3 terpy 675 dtpy 731 MeCN terpy 646 dtpy 716 CHCl 3 terpy 656 dtpy 717 14

2 5 Figure S1. Representative IR spectra of complexes 2 and 5. 15

(a) Figure S2. Representative 1 H NMR (a) and 13 C NMR (b) spectra of complex 9. (b) 16

3 4 17

5 7 18

9 Figure S3. A view of the crystal packing showing intermolecular stacking interactions for tricarbonyl rhenium(i) complexes. 19

Figure S4. Cyclic voltammograms of the rhenium(i) complexes. (1) (2) (3) 20

(4) (5) (6) 21

(7) (8) (9) 22

Figure S5. Absorption spectra of the rhenium(i) complexes in chloroform and acetonitrile solutions. Complex ACN CHCl 3 1 2 3 4 23

5 6 7 8 24

9 25

Figure S6. Experimental and theoretical absorption spectra of 1-9 complexes in acetonitrile solution. 1 2 3 4 5 6 7 8 9 26

27