LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, FALL 2012 Lecture 08. Fundamentals of Lidar Remote Sensing (4) Solutions for Lidar Equations

Σχετικά έγγραφα
Lecture 44. Constituent Lidar (4) Multi-wavelength Raman DIAL & DOAS and MAX-DOAS

Areas and Lengths in Polar Coordinates

Section 8.3 Trigonometric Equations

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Areas and Lengths in Polar Coordinates

The Simply Typed Lambda Calculus

Instruction Execution Times

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Calculating the propagation delay of coaxial cable

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Homework 3 Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Derivation of Optical-Bloch Equations

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

4.6 Autoregressive Moving Average Model ARMA(1,1)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Strain gauge and rosettes

5.4 The Poisson Distribution.

derivation of the Laplacian from rectangular to spherical coordinates

PARTIAL NOTES for 6.1 Trigonometric Identities

Solutions to Exercise Sheet 5

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

[1] P Q. Fig. 3.1

DuPont Suva 95 Refrigerant

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva 95 Refrigerant

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Matrices and Determinants

Homework 8 Model Solution Section

6.3 Forecasting ARMA processes

2 Composition. Invertible Mappings

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Second Order RLC Filters

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Inverse trigonometric functions & General Solution of Trigonometric Equations

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013


for fracture orientation and fracture density on physical model data

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Section 7.6 Double and Half Angle Formulas

Higher Derivative Gravity Theories

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Section 9.2 Polar Equations and Graphs

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

ΠΣΤΧΛΑΚΘ ΕΡΓΑΛΑ ΜΕΣΡΘΕΛ ΟΠΣΛΚΟΤ ΒΑΚΟΤ ΑΣΜΟΦΑΛΡΑ ΜΕ ΘΛΛΑΚΟ ΦΩΣΟΜΕΣΡΟ ΕΚΟ

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

d I λ = k λ ρ I λ ds+ j λ ρ ds Σκέδαση στην Ατμόσφαιρα Θεωρητική προσέγγιση - Γενικές ανακοινώσεις

Lecture 21: Scattering and FGR

ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Second Order Partial Differential Equations

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Artiste Picasso 9.1. Total Lumen Output: lm. Peak: cd 6862 K CRI: Lumen/Watt. Date: 4/27/2018

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Graded Refractive-Index

Srednicki Chapter 55

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Finite Field Problems: Solutions

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

the total number of electrons passing through the lamp.

Lecture 26: Circular domains

EE512: Error Control Coding

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

Section 8.2 Graphs of Polar Equations

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Probability and Random Processes (Part II)

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

CE 530 Molecular Simulation

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Spherical Coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Statistical Inference I Locally most powerful tests

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Approximation of distance between locations on earth given by latitude and longitude

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ. ιπλωµατική Εργασία. της ΘΕΟ ΟΣΟΠΟΥΛΟΥ ΕΛΕΝΗΣ ΜΣ:5411

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

If we restrict the domain of y = sin x to [ π 2, π 2

Quick Installation Guide

On a four-dimensional hyperbolic manifold with finite volume

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Transcript:

Lecture 08. Fundamentals of Lidar Remote Sensing (4) Solutions for Lidar Equations Lidar Classification with Physical Processes Solution for scattering form lidar equation Solution for Raman lidar equation Solution for differential absorption lidar equation Solution for fluorescence form lidar equation Solution for resonance fluorescence lidar Solution for Rayleigh and Mie lidar in middle atmos Summary 1

Review Lidar Equation Lidar equation is to link the expected lidar returns (N S ) to the lidar parameters (both transmitter and receiver), transmission through medium, physical interactions between light and objects, and background/noise conditions, etc. Keep in mind the big picture of a lidar system - " "Radiation source " "Radiation propagation in the medium " "Interaction of radiation with the objects " "Signal propagation in the medium " "Photons are collected, filtered and detected Can you derive a lidar equation by yourself? 2

Physical Process Elastic Scattering by erosols and Clouds bsorption by toms and Molecules Inelastic Scattering Elastic Scattering By ir Molecules Resonance Scattering/ Fluorescence By toms Doppler Shift Device Mie Lidar DIL Raman Lidar Rayleigh Lidar Resonance Fluorescence Lidar Wind Lidar Objective erosols, Clouds: Geometry, Thickness Gaseous Pollutants Ozone Humidity (H 2 O) erosols, Clouds: Optical Density Temperature in Lower tmosphere Stratos & Mesos Density & Temp Temperature, Wind Density, Clouds in Mid-Upper tmos Wind, Turbulence Laser Induced Fluorescence Fluorescence Lidar Marine, Vegetation Reflection from Surfaces Target Lidar Laser ltimeter Topography, Target 3

Parameters in General Lidar Equation ssumptions: independent and single scattering N S (λ,r) = P L(λ L )Δt β(λ,λ L,θ,R)ΔR hc λ L [ ] N S (R) - expected received photon number from a distance R P L - transmitted laser power, λ L - laser wavelength Δt - integration time, h - Planck s constant, c - light speed β(r) - volume scatter coefficient at distance R for angle θ, ΔR - thickness of the range bin - area of receiver, T(R) - one way transmission of the light from laser source to distance R or from distance R to the receiver, η - system optical efficiency, G(R) - geometrical factor of the system, N B - background and detector noise photon counts. [ ] [ η(λ,λ L )G(R)] + N B R 2 T(λ L,R)T(λ,R) (8.1) 4

Review Lidar Equation General lidar equation with angular scattering coefficient N S (λ,r) = N L (λ L ) [ β(λ,λ L,θ,R)ΔR] N S (λ,r) = N L (λ L ) [ β T (λ,λ L,R)ΔR] R 2 T(λ L,R)T(λ,R) [ ] η(λ,λ L )G(R) [ ] + N B General lidar equation with total scattering coefficient 4πR 2 T(λ L,R)T(λ,R) [ ] η(λ,λ L )G(R) [ ] + N B General lidar equation in angular scattering coefficient β and extinction coefficient α form (4.2) (4.12) N S (λ,r) = P L(λ L )Δt [ β(λ,λ L,θ,R)ΔR] hc λ L R 2 R exp α(λ L, r ʹ )dr ʹ 0 exp R 0 α(λ, r ʹ )d r ʹ η(λ,λ L )G(R) (4.17) [ ] + N B 5

Specific Lidar Equations Lidar equation for Rayleigh lidar N S (λ,r) = P L (λ)δt ( β(λ,r)δr) hc λ R 2 T 2 (λ,r)( η(λ)g(r) )+ N B (5.17) Lidar equation for resonance fluorescence lidar N S (λ,r) = P L (λ)δt ( σ eff (λ,r)n c (z)r B (λ)δr) hc λ 4πR 2 T 2 a (λ,r)t 2 c (λ,r) Lidar equation for differential absorption lidar ( ) η(λ)g(r) ( )+ N B (4.14) off N S (λ on,r) = off NL (λ on ) [ off βsca (λ on,r)δr ] z off R 2 exp 2 α (λ on, r ʹ )dr ʹ 0 z off exp 2 σ abs (λ on, r ʹ )nc ( r ʹ )dr ʹ [ 0 η(λ off on )G(R) ] + N B (5.21-5.22) 6

Elastic Scattering Lidar: Rayleigh Lidar and Mie Lidar Strong Mie Scattering above Rayleigh Background Chapter 3 in our textbook 7

Solution for Scattering Form Lidar Equation Scattering form lidar equation N S (λ,r) = P L(λ L )Δt β(λ,λ L,R)ΔR hc λ L [ ] Solution for scattering form lidar equation R 2 T(λ L,R)T(λ,R) [ ] [ η(λ,λ L )G(R)] + N B (8.2) β(λ,λ L,R) = P L (λ L )Δt hc λ L N S (λ,r) N B ΔR R 2 T(λ L,R)T(λ,R) [ ][ η(λ,λ L )G(R)] (8.3) 8

Inelastic Scattering Lidar: Raman Lidar Raman spectra for O 2, N 2 and H 2 O under 355nm laser wavelength H 2 O in atmosphere 9

Solution for Raman Lidar Equation Raman lidar equations for gas of interest (8.4) and reference gas (8.5) P cra (R,λ cra ) = E oη λcra R 2 O(R,λ cra )β cra (R,λ 0,λ cra )exp R [ α(r,λ 0 ) +α(r,λ cra ) 0 ]dr Solution for Raman lidar equations { } { } P RefRa (R,λ RefRa ) = E oη λrefra R 2 O(R,λ RefRa )β RefRa (R,λ 0,λ RefRa )exp R [ α(r,λ 0 ) +α(r,λ RefRa ) 0 ]dr P cra (R,λ cra ) P RefRa (R,λ RefRa ) = η λ cra η λrefra N cra (R) dσ cra dω (π,λ 0,λ cra ) N RefRa (R) dσ RefRa dω (π,λ 0,λ RefRa ) Mixing Ratio = N cra(r) N RefRa (R) (8.4) (8.5) exp{ R α(r,λ cra )dr} 0 exp{ R α(r,λ RefRa )dr} 0 (8.6) 10

Differential bsorption Lidar (DIL) This is a nice schematic, but in reality, light cannot turn as drawn! Collis and Russell in Laser monitoring of the atmosphere 11

Differential bsorption/scattering Form For the laser with wavelength λ on on the molecular absorption line [ ] N S (λ on,r) = N L (λ on ) β sca (λ on,r)δr R 2 exp 2 σ abs (λ on, r ʹ )n c ( r ʹ )dr ʹ exp[ 2 R α (λ on, r ʹ 0 )dr ʹ ] [ R ] 0 η(λ on )G(R) [ ] + N B (8.7) For the laser with wavelength λ off off the molecular absorption line [ ] N S (λ off,r) = N L (λ off ) β sca (λ off,r)δr R 2 exp 2 σ abs (λ off, r ʹ )n c ( r ʹ )dr ʹ exp[ 2 R α (λ off, r ʹ 0 )dr ʹ ] [ R ] 0 η(λ off )G(R) [ ] + N B (8.8) 12

Differential bsorption/scattering Form The ratio of photon counts from these two channels is a function of the differential absorption and scattering: N S (λ on,r) N B = N L(λ on )β sca (λ on,r) N S (λ off,r) N B N L (λ off )β sca (λ off,r) R 0 η(λ on ) η(λ off ) { } exp 2 [ α (λ on, r ʹ ) α (λ off, r ʹ ) ]d r ʹ (8.9) { } R 0 exp 2 [ σ abs (λ on, r ʹ ) σ abs (λ off, r ʹ ) ]n c ( r ʹ )dr ʹ Δσ = σ abs (λ on ) σ abs (λ off ) (8.10) 13

Solution for Differential bsorption Lidar Equation Solution for differential absorption lidar equation n c (R) = 1 2Δσ d dr ln N L(λ on )β sca (λ on,r) N L (λ off )β sca (λ off,r) η(λ on ) η(λ off ) ln N S(λ on,r) N B N S (λ off,r) N B R 2 [ α (λ on, r ʹ ) α (λ off, r ʹ )]dr ʹ 0 (8.11) Δσ = σ abs (λ on ) σ abs (λ off ) (8.10) 14

Resonance Fluorescence Lidar Resonance Fluorescence Profile on an Fe meteor trail measured by lidar [Chu et al., 2000] 15

Solution for Fluorescence Form Lidar Equation Fluorescence form lidar equation N S (λ,r) = P L (λ)δt ( σ eff (λ,r)n c (R)R B (λ)δr) hc λ 4πR 2 T 2 a (λ,r)t 2 c (λ,r) Solution for fluorescence form lidar equation ( ) η(λ)g(r) ( ) + N B (8.12) n c (R) = P L (λ)δt hc λ N S (λ,r) N B ( σ eff (λ)r B (λ)δr) 4πR 2 η(λ)t 2 a (λ,r)t 2 c (λ,r)g(r) ( ) (8.13) 16

Solution for Resonance Fluorescence Lidar Equation Resonance fluorescence and Rayleigh lidar equations N S (λ,z) = P L(λ)Δt ( σ eff (λ,z)n c (z)r B (λ)δz) hc λ N R (λ,z R ) = P L (λ)δt σ R (π,λ)n R (z R )Δz hc λ ( ) Rayleigh normalization n c (z) n R (z R ) = N S(λ,z) N B N R (λ,z R ) N B z 2 z R 2 4πz 2 z R 2 4πσ R (π,λ) σ eff (λ,z)r B (λ) Solution for resonance fluorescence 2 2 T a (λ)tc (λ,z) ( ) η(λ)g(z) ( )+ N B T a 2 (λ,z R )( η(λ)g(z R ))+ N B 2 T a (λ,zr )G(z R ) 2 2 T a (λ,z)tc (λ,z)g(z) (8.12) (8.14) (8.15) n c (z) = n R (z R ) N S (λ,z) N B N R (λ,z R ) N B 2 z 4πσ R (π,λ) R σ eff (λ,z)r B (λ) 1 2 T c (λ,z) z 2 (8.16) 17

Rayleigh and Mie Lidar for Middle tmosphere Detection ltitude (km) 100 90 80 70 60 50 [Chu et al., GRL, 2001] PMC PMC Courtesy of Pekka Parviainen Polar mesospheric clouds (PMC), also noctilucent clouds (NLC), are thin scattering layers of nanometer-sized water ice particles, occurring around 80-87 km in the high-latitude summer mesopause region. 40 1 10 Volume backscatter coefficient β (10 9 m -1 sr -1 ) Polar mesospheric clouds Noctilucent clouds Chapter 5 in our textbook 18

Solution for Rayleigh and Mie Lidars Rayleigh and Mie (middle atmos) lidar equations N S (λ,z) = P L(λ)Δt 2 ( β R (z) + β aerosol (z))δz hc λ z 2 T a (λ,z) ( η(λ)g(z) )+ N B N R (λ,z R ) = P L (λ)δt ( β R (z R )Δz) hc λ 2 z T a 2 (λ,z R )( η(λ)g(z R ))+ N B R Rayleigh normalization β R (z) + β aerosol (z) β R (z R ) = N S (λ,z) N B N R (λ,z R ) N B z 2 2 z T 2 a (λ,zr )G(z R ) 2 R T a (λ,z)g(z) (8.17) (8.18) (8.19) For Rayleigh scattering at z and z R β R (z) β R (z R ) = σ R (z)n atm (z) σ R (z R )n atm (z R ) = n atm (z) (8.20) n atm (z R ) 19

Solution (Continued) Solution for Mie scattering in middle atmosphere N β aerosol (z) = β R (z R ) S (λ,z) N B z 2 N R (λ,z R ) N 2 B z n atm (z) R n atm (z R ) (8.21) β R (λ,z R,π) = 2.938 10 32 P(z R ) T(z R ) 1 λ 4.0117 ( m 1 sr 1 ) (5.14) Rayleigh normalization when aerosols are not present β R (z) β R (z R ) = N S (λ,z) N B N R (λ,z R ) N B z 2 2 z T 2 a (λ,zr )G(z R ) 2 R T a (λ,z)g(z) (8.22) Solution for relative number density in Rayleigh lidar RND(z) = n atm (z) n atm (z R ) = β R (z) β R (z R ) = N S (λ,z) N B N R (λ,z R ) N B z 2 z R 2 (8.23) 20

Rayleigh Backscatter Cross Section It is common in lidar field to calculate the Rayleigh backscatter cross section using the following equation dσ m (λ) dω = 5.45 550 λ 4 10 32 ( m 2 sr 1 ) (5.16) where λ is the wavelength in nm. The Rayleigh backscatter cross section can also be estimated from the Rayleigh backscatter coefficient β Rayleigh (λ,z,θ = π) = 2.938 10 32 P(z) T(z) 1 dσ m (λ) dω = β Rayleigh (λ,z,π) n atmos (z) λ 4.0117 ( m 2 sr 1 ) ( m 1 sr 1 ) where λ is the wavelength in meter, P in mbar, T in Kelvin. (8.24) (5.14) 21

Summary Physical processes in the interaction between radiation and objects classify lidars into different kinds, each possessing unique features and lidar equations along with certain applications. Solutions of lidar equations can be obtained by solving the lidar equations directly if all the lidar parameters and atmosphere conditions are well known. Solutions for three forms of lidar equations are shown: scattering form, fluorescence form, and differential absorption form, along with a few specific lidar types. However, system parameters and atmosphere conditions may vary frequently and are NOT well known to experimenters. good solution is to perform Rayleigh normalization to cancel out most of the system and atmosphere parameters so that the essential and known parts can be solved. 22