Review of Generating functional and Green s functions

Σχετικά έγγραφα
6.1. Dirac Equation. Hamiltonian. Dirac Eq.

8.324 Relativistic Quantum Field Theory II

Space-Time Symmetries

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Srednicki Chapter 55

Example Sheet 3 Solutions

Higher Derivative Gravity Theories

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

2 Composition. Invertible Mappings

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Partial Differential Equations in Biology The boundary element method. March 26, 2013

EE512: Error Control Coding

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Areas and Lengths in Polar Coordinates

The Simply Typed Lambda Calculus

D Alembert s Solution to the Wave Equation

1 Classical Mechanics

derivation of the Laplacian from rectangular to spherical coordinates

Areas and Lengths in Polar Coordinates

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Second Order Partial Differential Equations

Variational Wavefunction for the Helium Atom

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

On the Galois Group of Linear Difference-Differential Equations

Geodesic Equations for the Wormhole Metric

Section 8.3 Trigonometric Equations

Solutions to Exercise Sheet 5

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Statistical Inference I Locally most powerful tests

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homework 8 Model Solution Section

Finite Field Problems: Solutions

ST5224: Advanced Statistical Theory II

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

( y) Partial Differential Equations

SPECIAL FUNCTIONS and POLYNOMIALS

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Homework 3 Solutions

Uniform Convergence of Fourier Series Michael Taylor

Math221: HW# 1 solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Tridiagonal matrices. Gérard MEURANT. October, 2008

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Physics 582, Problem Set 2 Solutions

C.S. 430 Assignment 6, Sample Solutions

1 String with massive end-points

Differential equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Every set of first-order formulas is equivalent to an independent set

Non-Abelian Gauge Fields

Section 9.2 Polar Equations and Graphs

Inverse trigonometric functions & General Solution of Trigonometric Equations

Symmetric Stress-Energy Tensor

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Matrices and Determinants

Other Test Constructions: Likelihood Ratio & Bayes Tests

Lecture 10 - Representation Theory III: Theory of Weights

Section 7.6 Double and Half Angle Formulas

Homework 3 Solutions

Concrete Mathematics Exercises from 30 September 2016

Reminders: linear functions

Lecture 13 - Root Space Decomposition II

12. Radon-Nikodym Theorem

Fractional Colorings and Zykov Products of graphs

The challenges of non-stable predicates

Notes on the Open Economy

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Approximation of distance between locations on earth given by latitude and longitude

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

6.3 Forecasting ARMA processes

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

CRASH COURSE IN PRECALCULUS

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Parametrized Surfaces

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Congruence Classes of Invertible Matrices of Order 3 over F 2

Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories

Lecture 34 Bootstrap confidence intervals

Instruction Execution Times

Math 6 SL Probability Distributions Practice Test Mark Scheme

Transcript:

Review of Generating functional and Green s functions Zhiguang Xiao March 26, 2017

Contents 1 Full Green s Function 2 Connected Green s function & Generating Functional 3 One particle irreducible Green s function 4 Amputated Green s function: G (n) Amp (x 1,..., x n ) 5 Renormalized Green s function & Bare Green s function 6 Equations For Green s Functions Schwinger-Dyson Eq. 7 Global symmetry and Ward Id. 8 Appendix: Legendre transformation and IPI(Zinn Justin)

Full Green s function G (n) (x 1, x 2,..., x n) = Ω T Φ(x 1)... Φ(x n) Ω [DΦ]Φ(x1)... Φ(x n) exp{ i ħ = S[Φ]} [DΦ] exp{ i S[Φ]} ħ Remarks: We have divided out the bubble diagrams.

Full Green s function Example. 4-point Full Green s Function: Ω T Φ(x 1)... Φ(x n) Ω

Generating functional for full Green s functions Z[J] = = [DΦ] exp{ i (S[Φ] + ħ d 4 xj(x)φ(x))} ħ [DΦ] exp{ i S[Φ]} ħ i n d 4 x... d 4 x n G (n) (x 1,..., x n)j(x 1)... J(x n) n! n=0 = Ω Ω J Ω Ω (1) G (n) (x 1,..., x n) = 1 i n δ n Z[J] δj(x 1)... J(x n) J=0 Expansion of Z[J] around J = 0, generating the full Green s functions. Z[0] = 1, G (0) = 1.

Connected Green s functions G (n) conn(x 1,..., x n) only includes connected diagrams Example: Four-point connected Green s function in ϕ 4 :

Generating functional for Connected Green s functions Generating functional for Connected Green s functions: using the full generating functional Z[J] W [J] = ħ ln Z[J] i = ħ i n i n! G (n) n=1 conn(x 1,..., x n) = 1 ħ d 4 x 1... d 4 x n G (n) conn(x 1,..., x n)j(x 1)... J(x n) 1 i n 1 δ n W [J] δj(x 1)... J(x n) J=0 We now take ħ = 1, G (n) conn(x 1,..., x n) is symmetric with respect to idential J(x i).

Symmetric factor for a connected diagram L = 1 2 µϕ µ ϕ 1 2 m2 ϕ 2 + 1 3! λϕ3 = L 0 + L 1 { Z[J] exp i V =0 [ 1 i V! P =0 1 P! ( )} d 4 1 δ xl 1 Dϕe is 0+Jϕ i δj ( ) ] 3 V 3! λ d 4 δ x iδj(x) ( 1 d 4 x(ij(x))( i (x, y))(ij(y)) 2 Combine equal terms: Permutations of vertices, cancel V!; permutations of propagators, cancel P!; permutations of δ/δj, cancel 3!; permutations of J, cancel 1/2. Overcounting must be divided symmetric factor Feynman rules already including all the contractions (permutations) for the same field, eg. ϕ 3 vertex iλ, 1/3! cancelled. ) P

Symmetric factor for a connected diagram For the coefficients with J in the generating functional, the external legs with J s permutations of external J, overcounted, should be divided; for amplitude, or greens function, extra external different δ/δj counted as different, not overcounted.

iw generates all connected GF (Srednicki chapt 9) C I connected components, n I times in one disconnected diagrams: the term in Z[J] for this diagram 1 D ni = (C I) n I S D S D = I Exchange all vertices, propagators... for n I C I components. Overcount n I! times. The full Z[J] I n I! Z[J] D ni {ni } {ni } I n I =0 exp{ C I} I exp{iw [J]} I 1 n I! (CI)n I I 1 n I! (CI)n I exp(c I) Since we normalize Z[0] = 1, all the should be =. So iw [J] = I CI, generating all the connected diagrams.

Example: 2-point conn. GF in ϕ 3 theory δ δ Ω T Φ(x 1)Φ(x 2) Ω conn = ln Z[J] iδj(x 1) iδj(x 2) ( ) δ Ω Φ(x 2) Ω J = iδj(x 1) Ω Ω J J=0 ( Ω Φ(x1)Φ(x 2) Ω J = Ω Φ(x1) Ω J Ω Ω J Ω Ω J J=0 Ω Φ(x 2) Ω J Ω Ω J ) J=0

One particle irreducible Green s function 1PI: amputated diagrams remains connected after cutting an arbitrary internal propagator. in ϕ 4 theory, 1PI 4-point function: Γ(x 1,..., x 4) =

Generating functional for 1PI We expect the Generating functional to be: 1 Γ[Φ] = d 4 x 1... d 4 x nγ (n) (x 1... x n)φ(x 1)... Φ(x n) n! n=1 Γ (n) δγ[φ] (x 1... x n) = δφ(x 1)... δφ(x n) Φ=0 In fact, there are some subtleties for the generating functional we will construct: The generating funtional generates 1PI for n 3 at Φ = 0 for vev Φ(x) = 0. for n = 2, Γ (2) (x, y) = (G (2) conn) 1, inverse propagator (as operator inverse). for n = 1,???.

Construct Γ from W Legendre transformation: 1 Recall the classcial mechanics: From Lagrangian to Hamiltonian L(q, q) H(q, p), we define p solve q = q(p, q) and insert into H(q, p) p q L[q, q(p, q)]. We change from q, q to p, q formalism. 2 For J[x] 0, (L[q, q] W [J], q J,) we define classical field: L[q, q] q, φ cl (x) = Ω Φ(x) Ω J Ω Ω J = δw [J] δj(x). φ cl (x) is a functional of J(x). Solve J(x) = J x[φ cl ]. 3 define Γ[φ cl ] W [J[φ cl ]] Γ is the generating functional we need. d 4 xj[φ cl ]φ cl (x),

Generating functional Γ Γ[φ cl ] W [J[φ cl ]] d 4 xj[φ cl ]φ cl (x), φ cl (x) = Ω Φ(x) Ω J Ω Ω J = δw [J] δj(x). 1 δγ[φ cl ] δφ cl = = J(x) 2 if J = 0, φ cl = Ω Φ(x) Ω Ω Ω d 4 y δj(y) δw [J] δφ cl (x) δj(y) J(x) δw [J] = δj[x] ϕ c, the v.e.v. of Φ. J=0 δγ[φ cl ] δφ cl (x) = 0 ϕc gives the equation of motion for ϕ c, the vev for Φ. 3 Γ[φ cl ] is also called Quantum Effective Action. 4 Vacuum preserves Poincaré symmetry, and no SSB, ϕ c = 0. 5 Perturbation theory: perturbation around φ = ϕ c = 0. Γ (1) = δγ[φ cl] δφ cl ϕc = 0. d 4 y δj(y) δφ cl (x) φ cl(y)

Generating functional Γ 1 n = 2, from J = δγ[φ cl] δφ cl δ (4) (y x) = δj(x) δj(y) = δ2 Γ[φ cl ] δj(y)δφ cl (x) = d 4 z δφ cl(z) δ 2 Γ[φ cl ] δj(y) δφ cl (z)δφ cl (x) = d 4 δ 2 W [J] δ 2 Γ[φ cl ] z δj(y)δj(z) δφ cl (z)δφ cl (x) [ ] Γ (2) δ 2 Γ[φ cl ] 1 (x, y) = δφ cl (x)δφ cl (y) = δ2 W [J] φcl =ϕ c δj(x)δj(y) J=0 2 in momentum space: iγ (2) inverse propagator. G (2) (k 2 )Γ (2) (k 2 ) = i G (2) (k 2 i ) = k 2 m 2 M(k 2 ) Γ (2) (k 2 ) = k 2 m 2 M(k 2 ) = [ ig (2) conn] ( 1) (x,y)

Generating functional Γ 1 Expand around ϕ c 1 Γ[Φ] = d 4 x 1... d 4 x nγ (n) (x 1... x n)(φ(x 1) ϕ c)... (Φ(x n) ϕ c) n! n=2 2 n = 3, G (3) iδw [J] (x, y, z) = (iδj(x))(iδj(y))(iδj(z)) J=0 = ig (2) (x x )ig (2) (y y )ig (2) (z z ) x,y,z δ 3 Γ[φ cl ] δφ cl (x )δφ cl (y )δφ cl (z ) iγ (3) (x, y, z) is 1PI. 3 for general n, iγ (n) (x 1,..., x n) = i δ n Γ[φ cl ] δφ cl (x 1 )...δφ cl (x n) ϕc is 1PI, for n 3. ϕc

Amputated Green s function: G (n) Amp (x 1,..., x n ) G (n) conn(x 1,..., x n) = d 4 y 1... d 4 y ng (2) (x 1, y 1)... G (2) (x n, y n)g (n) Amp (y1,..., yn) In general, amputated Green s function is not 1PI. In momentum space: G (n) conn(p 1,..., p n) = G (2) (p 1)... G (2) (n) (p n) G Amp (p1,..., pn)

Renormalized Green s function & Bare Green s function Bare field Φ B(x) and renormalized field Φ R(x): Φ B(x) = Z 1/2 Φ R(x) Bare Green s function: G (n) B (x1,..., xn) Ω ΦB(x1)... ΦB(xn) Ω If Φ s are different, differnt Z s are used. = (Z 1/2 ) n Ω Φ R(x 1)... Φ R(x n) Ω = Z n/2 G (n) (x1,..., xn) R Generating functional for Bare. S B = d 4 xl[φ B] = d 4 xl R[Φ R] + L ct = S R + S ct (2) Z B[J B] = [DΦB] exp{i(s[φ B] + d 4 xj B(x)Φ B(x))} [DΦB] exp{is[φ B]} (3) G (n) 1 δ n Z B[J B] B (x1,..., xn) = i n δj B(x 1)... J B(x n) JB =0

Renormalized Green s function & Bare Green s function Renormalized Green s funct: define J R = Z 1/2 J B, J BΦ B = J RΦ R [DΦR] exp{i(s R[Φ R] + S ct + d 4 xj R(x)Φ R(x))} Z R[J R] = Z B[J B] = [DΦR] exp{is[φ R] + S ct} G (n) 1 δ n Z R[J R] R (x1,..., xn) = i n δj R(x 1)... J R(x n) JR =0 = 1 δ n Z B[J B] i n Z n/2 δj B(x 1)... J B(x n) = Z n/2 G (n) (x1,..., xn) B JB =0 Similar for Connected Green s function. For on-shell renormalization scheme: in momentum space, near physical pole G (2) i R (p2 ) p 2 m 2 ph + iϵ G (2) iz B (p2 ) p 2 m 2 ph + iϵ

Renormalized & Bare Amputated Green s function Amputated Green s funct: G (n) B,conn (x 1,..., x n) = G (n) R,conn (x 1,..., x n) = using G (n) B d 4 y 1... d 4 y ng (2) B (x 1, y 1 )... G (2) (xn, yn)g(n) B B,Amp (y 1,..., y n) d 4 y 1... d 4 y ng (2) R (x 1, y 1 )... G (2) (xn, yn)g(n) R R,Amp (y 1,..., y n) (x1,..., xn) = Zn/2 G (n) (x1,..., xn), G(2) R G (n) B,Amp (y1,..., yn) = Z n/2 G (n) R,Amp (y1,..., yn) B = ZG(2) R : Bare & Renormalized 1PI: similar as before J R = Z 1/2 J B Γ B[φ B,cl ] W B[J B[φ B,cl ]] d 4 xj B[φ B,cl ]φ B,cl (x) = W R[J R[φ R,cl ]] d 4 xj R[φ R,cl ]φ R,cl (x) Γ R[φ R,cl ] φ B,cl = δwb[jb] = Z 1/2 δw R[J R] = Z 1/2 φ R,cl (x) δj B δj R Γ (n) R (x1,..., xn) = δ n Γ R[φ R,cl ] δφ R,cl (x 1)... δφ R,cl (x = n) Zn/2 Γ (n) B (x1,..., xn)

Equations For Green s Functions Schwinger-Dyson Eq. Consider path integral:(bare fields) Z[J] = [Dϕ]e i(s[ϕ]+ d 4 yj a (y)ϕ a (y)). Change the integration variable: ϕ a ϕ a (x) = ϕ a (x) + δϕ a (x), the integral is invariant. Assume [Dϕ] = [Dϕ ]. Just like d(x + a) = dx. 0 = δz[ϕ] = [Dϕ ]e i(s[ϕ ]+ d 4 yj a (y)ϕ a (y)) ( ) = d 4 x [Dϕ]e i(s[ϕ]+ d 4 yj a (y)ϕ a (y)) δs i δϕ a (x) + ij(x) δϕ a (x) [Dϕ]e i(s[ϕ]+ d 4 yj a (y)ϕ a (y)) Take n functional derivative w.r.t ij aj (x j), set J = 0 [ 0 = [Dϕ]e is d 4 δs n x i δϕ a ϕ ai (x i ) (x) i=1 n + ϕ ai (x 1 )... δ a,aj δ 4 (x x j )... ϕ an (x n) δϕ a(x). j=1 Since δϕ(x) is arbitrary, 0 = Ω it δs δϕ a (x) + n ϕ ai (x i ) Ω i=1 n Ω Tϕ ai (x 1 )... δ a,aj δ 4 (x x j )... ϕ an (x n) Ω j=1

Equations For Green s Functions Schwinger-Dyson Eq. Schwinger-Dyson Eq. 0 = Ω it δs δϕ a (x) + n ϕ ai (x i ) Ω i=1 n Ω Tϕ ai (x 1 )... δ a,aj δ 4 (x x j )... ϕ an (x n) Ω j=1 δs δϕ(x) = 0, the classical EOM. Free scalar: ( 2 x + m 2 )ϕ = 0 Two point function, scalar: i( 2 x + m 2 ) Ω T ϕ(x)ϕ(y) ω = δ 4 (x y) For x x i, Ω it δs n ϕ δϕ a ai (x i) Ω = 0. (x) For more detailed discussion, see Itzykson and Zuber,Quantum field theory, or Arxiv:1008.4337, Swanson, A primer on functional methods and the Schwinger-Dyson Equation. i=1

Global symmetry and Ward Id. Noether theorem: Continuous symmetry conserved current. Classical global continuous symmetry: ϕ a ϕ a (x) = ϕ a (x) + iα ϕ a (x), α : an infinitesimal constant. L[ϕ (x)] = L[ϕ(x)] + iα µk µ If α α(x), depends on x, only nonzero in a finite region δl = L[ϕ (x)] L[ϕ(x)] = L L ϕ a (x) iα(x) ϕa (x) + ( µϕ a (x)) i(α(x) µ ϕa (x) + ( µα(x)) ϕ a (x))) = iα(x) µk µ L + i( µα(x)) ( µϕ a (x)) ϕa (x) = i µα(x) j µ + iα(x) µk µ For ϕ satisfying EOM 0 = δs[ϕ] = i d 4 x µα(x) j µ + α(x) µk µ (integrate by part) = i d 4 x α(x) µ( j µ + K µ ) = d 4 xα(x) µj µ Since α(x) is arbitrary, define J µ = i(j µ K µ ), we have conserved current: µj µ = 0. Current conservation is a local property: α(x) can be non-zero in any arbitrary small region. Charge conservation is a global property.

Global symmetry and Ward Id. Consider correlation function: n i=1 ϕ(xi) = 1 Z [Dϕ] n i=1 ϕ(xi)eis[ϕ]. A global symmetric trans: ϕ a ϕ a (x) = ϕ a (x) + iα ϕ a (x), S[ϕ] = S[ϕ ]. α α(x), S[ϕ ] = S[ϕ] d 4 xα(x) µj µ. n n 0 = [Dϕ ] ϕ (x i )e is[ϕ ] [Dϕ] ϕ(x i )e is[ϕ] i=1 ( n = [Dϕ] ϕ (x i )e is[ϕ ] i=1 i=1 ) n ϕ(x i )e is[ϕ] i=1 i=1 ( n n ) = [Dϕ] ϕ(x 1 )... iα(x i ) ϕ(x i )... ϕ(x n) i d 4 xα(x) µj µ ϕ(x i ) e is[ϕ] i µ TJ µ (x) n ϕ(x i) = i=1 In momentum space: ϕ(x) = k µ TJ µ (k) i=1 n Tϕ(x 1)... δ 4 (x x i)(i ϕ(x i))... ϕ(x n) i=1 n ϕ(k i) = i=1 d 4 k (2π) 4 e ik x φ(k). (outgoing) n Tϕ(k 1)... i ϕ(k i + k)... ϕ(k n) i=1 For S-Matrix: from LSZ, for each external leg, lim p 2 m 2 p2 m 2 +iϵ Zi, there is no on-shell pole for leg ϕ i(k + k i), the right hand side 0, k µm µ = 0

Global symmetry and Ward Id. QED: consider U(1) symmetry ψ e ieα ψ, J µ = e ψγ µ ψ, correlation funtion J µ (k)ψ( (p + k)) ψ(p), Ward Id: k µ J µ (k)ψ( (p + k)) ψ(p) ( =ie ψ( p) ψ(p) ψ( (p + k)) ψ(p ) + k) where S(p + k)[ ik µγ µ (p + k, p)]s(p) = S(p) S(p + k), S(p) = ψ( p) ψ(p) = i p/ m Σ(p). ik µγ µ (p + k, p) = S 1 (p + k) S 1 (p). Γ µ (p + k, p) Z 1 1 γµ as k µ 0, S(p) i Z 2 p/ m, at around p2 = m 2, k 0 iz 1 1 k/ = iz 1 2 k/ Z 1 = Z 2 Note: ( ψγ µ ψ)ψ( (p + k)) ψ(p) γ µ αβ ψ( (p + k)) ψ αψ β ψ(p), no minus sign

Local gauge symmetry and Ward Id. in generating functional formulation L = 1 4 (F i 0,µν) 2 + i( ψ 0 /ψ 0 + ie 0 q 1 ψ0 A/ 0,µ ψ 0 ) m ψ,0 ψ0 ψ 0 1 2ξ 0 ( µa µ 0 )2 = Z 3 1 4 (F i µν )2 + iz ψ 2 ( ψ /ψ + ieq 1 Z ψ 1 Z ψ 2 e 0 = e Z 1 = e Z 2 Z 1/2 3 Z 1/2 3. Only depends on Z 3. ψa/ψ) mz ψ 0 ψψ 1 2ξ ( µaµ ) 2 Bare gauge trans: ψ 0 e iαq 1 ψ 0, A 0,µ A 0,µ 1 e 0 µα. Renormalized gauge trans: ψ e iαq 1 ψ, A µ A µ 1 µα. ē = Zψ 1 e = e ē Z ψ 2 Consistent with A 0,µ = Z 1/2 3 A µ. the gauge fixing term is not invariant. We will see that there is no counterterm for gauge fixing ξ term.

iqeᾱ δz δz iqe iδᾱ iδα α µ j µz 1 2 µ δz ξ 0 iδj µ = 0 Local gauge symmetry and Ward Id. in generating functional formulation Adding source term for bare fields: (omit the subscript 0.) (α, ᾱ : grassman variables.) L[A, j, α, ᾱ] = L + ᾱψ + ψα + j µa µ Under gauge transformations A A = A µ + 1 µϵ, ψ e ψ = e iϵq 1 ψ: source terms and gauge fixing terms not invariant, all others including the path integral measure are inv. Z[A, ψ; j, α, ᾱ] =N [dad ψdψ] exp{is[a, ψ, ψ] + i (ᾱψ + ψα + j µa µ )} (rename ) =N (Gauge inv) =N 0 = δz =N [dad ψdψ] =N [dad ψdψ] [da d ψ { dψ ] exp [dad ψdψ] { exp i S[A, ψ, ψ] + i 1 µa µ νa ν} 2ξ 0 is[a, ψ, ψ ] + i (ᾱψ + ψ α + j µa µ ) (ᾱψ + ψ } α + j µa µ ) ( i ᾱδψ + δ ψα + j µδa µ 1 µa µ νδa ν) exp{is +... } ξ 0 ( dx ϵ(x) iqᾱψ + iq ψα 1 e µ j µ 1 2 µa µ) exp{... } eξ 0 iqeᾱψ + iqe ψα µ j µ 1 ξ 0 2 µa µ j,α,ᾱ = 0

Local gauge symmetry and Ward Id. in generating functional formulation iqeᾱ δz δz iqe iδᾱ iδα α µ j µz 1 2 µ δz ξ 0 iδj = 0 µ In connected Green Functional iqeᾱ δw δᾱ In 1PI generating functional: + iqe δw δα α + µ j µ + 1 ξ 0 2 µ δw δj µ = 0 iqe δγ ψ c + iqe δψ ψ δγ c c δ ψ + µ c where Γ = W j µa µ ᾱψ ψα, A µ c = δw δj µ, j µ = δγ δa cµ, δγ δa µ c δw ψc = δᾱ, α = δγ δ ψ c, + 1 ξ 0 2 µ A cµ = 0 ψc = δw δα ; ᾱ = δγ δψ c.

Local gauge symmetry and Ward Id. in generating functional formulation δγ iqe δψ ψc(z) + iqe ψ δγ c(z) c(z) δ ψ + δγ c(z) µ δa µ c (z) + 1 2 µ A cµ(z) = 0 ξ 0 δ ψ c(x) ψ c(y), Aµ c, ψ c, ψ c 0,: δγ δγ δγ iqe δψ c(x)δ ψ δ(x z) + iqe c(y) δψ c(x)δ ψ δ(y z) + µ c(y) δa µ c (z)δψ c(x)δ ψ = 0 c(y) iqe( is 1 (x, y)δ(x z) + is 1 (x, y)δ(y z)) + iqe µ z Γ µ(z, x, y) = 0 ik µγ µ (p + k, p) = S 1 (p + k) S 1 (p)

Local gauge symmetry and Ward Id. in generating functional formulation eg: δ δj ν (z) iqeᾱ δw δᾱ α,ᾱ,j µ 0 + iqe δw δα α + µ j µ + 1 ξ 0 2 µ δw δj µ = 0 : x µ (g µνδ(x y)) + 1 2 µ δw x = 0 ξ 0 δj µ (x)δj ν (y) j µ =0 δw =i TAµ(x)Aν(y) = δj µ (x)δj ν ig(2) (y) We then have: =i d 4 k µν (x y) = i e ik (x y) G (2) (2π) 4 [ d 4 k ( ) e ik (x y) g (2π) 4 µν kµkν A(k 2 ) + B(k 2 ) kµkν k 2 k 2 ik ν + ib(k 2 ) ikνk2 G (2) µν (k) = ξ 0 = 0 B(k 2 ) = iξ0 k 2 ( ) g µν kµkν A(k 2 ) + iξ0 k 2 k 2 k µk ν k 2 ( ) Notice: Free photon propagator: G (2) µν = i g k 2 µν kµkν iξ 0k µk ν. k 2 k 4 µν (k) ] The ξ 0 term is not renormalized. Renormalized propagator G R(2) µν = Z 1 3 G(2) µν, ξ = ξ 0Z 1 3.

the Legendre transformation and IPI Consider the action: S ϵ(ϕ) = 1 2 dx dyϕ(x) [ K(x, y) + ϵ ] ϕ(y) + V (ϕ) ϵ: a small parameter, expanded to the first order Propagator ϵ(x, y) : ϵ(x, z) [ K(z, y) + ϵ ] dz = δ(x y) ϵ(x, y) = (x, y) ϵη(x)η(y) + O(ϵ 2 ), η(x) = (x, z)dz Expand the Feynman diagrams w.r.t ϵ, (using ϵ(x, y)): the ϵ 1 order terms, replace (x, y) η(x)η(y), cut one internal propagator. Higher order term: irreducible when cut 2,3,...,lines. 1PI ϵ 1 term is connected

the Legendre transformation and IPI The generating functional Z ϵ[j] = [dϕ] exp{i(s ϵ + Jϕ)} = (1 + i 1 2 ϵ δ δ ) dx dy [dϕ] exp{i(s + Jϕ)} + O(ϵ 2 ) iδj(x) iδj(y) = (1 + i 1 2 ϵ δ δ ) dx dy exp{iw [J]} + O(ϵ 2 ) iδj(x) iδj(y) ( = 1 + i 1 ( 2 ϵ δ δ δ dx dx dy ( =Z[J] 1 + i 1 ( 2 ϵ dx δj(x) W [J] ) 2 + i 2 ϵ δ ) 2 δj(x) W [J] i + 2 ϵ iδj(x) iδj(y) δ δ dx dy iδj(x) iδj(y) ) iw [J] exp{iw [J]} ) iw [J] + O(ϵ 2 ) W ϵ[j] =W [J] + i 1 ( 2 ϵ dx δ ) 2 δj(x) W [J] i + 2 ϵ δ δ dx dy iw [J] iδj(x) iδj(y) The second term just means the disconnectness of the W [J] after cutting a propagator.

the Legendre transformation and IPI Legendre transformation: Γ ϵ[φ cl ] W ϵ[j[φ cl ]] d 4 xj[φ cl ]φ cl (x), φ cl (x) = Ω Φ(x) Ω J Ω Ω J = δwϵ[j] δj(x). Γ ϵ ϵ = dx J(x) φcl ϵ φ cl (x) + Wϵ φcl ϵ + J = Wϵ ϵ J dx δwϵ δj(x) J(x) ϵ φcl Thus, Γ ϵ[φ cl ] =Γ[φ cl ] + iϵ 2 [ ( ) 2 dxφ cl (x) + ( δ 2 iγ[j] ) 1 dx dy + O(ϵ )] 2 δφ cl (x)δφ cl (y) The first term in the ϵ term is just from the term ϵϕ 2 we added in the action and the second term contains just connected diagrams. Thus, Γ[φ cl ] is 1PI.