Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Σχετικά έγγραφα
Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

IV. ANHANG 179. Anhang 178

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Supporting Information

Electronic Supplementary Information (ESI)

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Supporting Information

Supporting Information

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE

Synthesis and effects of oxadiazole derivatives on tyrosinase activity and SK-MEL-28 malignant melanoma cells

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Supplementary Material

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins

Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates

Supplementary Material

Fused Bis-Benzothiadiazoles as Electron Acceptors

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supporting Information for Substituent Effects on the Properties of Borafluorenes

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Synthetic Control of Excited States in Cyclometalated Ir(III) Complexes using Ancillary Ligands

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supporting information for

Supporting Information

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Electronic Supplementary Information (ESI)

L. Kaßner a, K. Nagel a, R. E. Grützner b, M. Korb c, T. Rüffer c, H. Lang c and S. Spange a

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Enhancing the Photochemical Stability of N,C-Chelate Polyboryl Compounds: C- C Bond Formation versus C=C Bond cis, trans-isomerization

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Supporting Information

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Experimental. Crystal data

Table of Contents 1 Supplementary Data MCD

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Supporting Information

Supporting Information

Supplementary information

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Chiral α-aminoxy Acid / Achiral Cyclopropane α-aminoxy Acid Unit as a Building Block for Constructing α N O Helix

Ag-Initiated gem-difluoromethylenation of the Nitrogen Center of. Arenediazonium Salts to gem-difluoromethylene Azo Compounds

Electronic Supplementary Information

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Electronic Supplementary Information:

Supporting Information

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Controlling Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties

(M = Mn, Fe, Co, Ni, Cu and Zn)----Mimicking the M II - Substituted Quercetin 2,3-Dioxygenase

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

data reports 2-(4-Methylphenyl)-2-oxoethyl 3,4-dimethoxybenzoate Structure description Synthesis and crystallization Refinement

Supporting Information

Single Crystal X-Ray Structure Determination of Compounds 8a, 8b and 11a

Supporting Information

Supporting Information

Supporting Information

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

Supporting Information

Supporting Information

Triclinic, P1 a = (2) Å b = (3) Å c = (4) Å = (1) = (1) = (1) Data collection.

Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław, Poland

Supporting Information

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

Experimental. Crystal data. C 37 H 38 N 4 O 6 M r = Monoclinic, P2 1 a = (2) Å b = (7) Å c = (2) Å = 112.

Experimental. Crystal data. C 13 H 17 N 3 O 2 M r = Monoclinic, Cc a = (4) Å b = (4) Å c = (3) Å = 111.

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Mouhamadou Birame Diop, a * Libasse Diop a and Allen G. Oliver b

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Supporting Information

2-Carboxyquinolinium-2,4,6-trinitrobenzenesulfonatequinolinium-2-carboxylate

Supporting Information

SUPPLEMENTARY MATERIAL

Supporting Information

Reactivity of Steroidal 1-Azadienes Toward Carbonyl Compounds under Enamine Catalysis: Chiral Penta- and Hexacyclic Steroids. Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

metal-organic compounds

Transcript:

; doi:10.3390/molecules22020254 S1 of S23 Supplementary Materials: Reaction of 3-Amino-1,2,4-Triazole with Diethyl Phosphite and Triethyl Orthoformate: Acid-Base Properties and Antiosteoporotic Activities of the Products Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska 1. Spectroscopic Data N HN N NH PO 3 H 2 Compound 1 H 2 O 3 P 4.05 4.00 3.95 3.90 3.85 3.80 f1 (ppm) 3.75 3.70 3.65 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Figure S1. 1 H-NMR spectrum of compound 1.

S2 of S23 100 95 90 85 80 75 70 65 60 55 50 f1 (ppm) 45 40 35 30 25 20 15 10 5 0-5 Figure S2. 31 P-NMR spectrum of compound 1. 57 56 55 54 53 52 51 f1 (ppm) 50 49 48 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0 Figure S3. 13 C-NMR spectrum of compound 1.

S3 of S23 Figure S4. HRMS spectrum of compound 1. Figure S5. IR spectrum of compound 1.

Molecules 2017, 22, 254 Figure S6. MS spectrum with fragmentation, for compound 1 (method of ionization ( )). Figure S7. MS spectrum with fragmentation, for compound 1 (method of ionization (+)). S4 of S23

S5 of S23 Compound 2: N N N N H PO 3 H 2 PO 3 H 2 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Figure S8. 1 H-NMR spectrum of compound 2. 15.8233 Figure S9. 31 P-NMR spectrum of compound 2..

S6 of S23 57 56 55 54 f1 (ppm) 53 52 51 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0 Figure S10. 13 C-NMR spectrum of compound 2. Figure S11. HRMS spectrum of compound 2.

Molecules 2017, 22, 254 S7 of S23 Figure S12. IR spectrum of compound 2. Figure S13. MS spectrum with fragmentation, for compound 2 (method of ionization ( )).

S8 of S23 Figure S14. MS spectrum with fragmentation, for compound 2 (method of ionization (+)). D H N N N NH PO 3 H 2 Compound 2 after prolonged (several days) storage in D2O/NaOD solution: H 2 O 3 P 3.64 3.60 3.56 f1 (ppm) 3.52 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0-0.5-1.0 Figure S15. 1 H-NMR spectrum of compound 2 after prolonged (several days) storage in D2O/NaOD solution.

S9 of S23 1.00 19.08 2.19 2.95 1.00 2.61 1.18 3.40 1.00 19.08 2.19 2.95 1.00 21.7335 21.5473 17.5800 16.7838 15.8957 14.1132 13.9269 21.7335 21.5473 17.5800 16.7838 15.8957 14.1132 13.9269 10.0314 6.3779 4.2104 Figure S16. 31 P-NMR spectrum of a representative example of crude reaction mixture. 0.07 0.02 0.03 0.54 1.00 0.08 0.15 0.42 0.20 0.57 0.36 0.68 1.74 0.42 0.58 0.94 0.40 0.69 0.49 0.43 8.2701 7.7908 7.7316 7.4702 7.4193 7.3491 7.2434 4.0625 4.0438 4.0256 4.0071 3.9600 3.9140 3.8674 3.8586 3.8407 3.8225 3.8044 3.7912 3.7702 3.7519 3.7194 3.6993 3.6911 3.6703 3.6514 3.6333 3.6239 3.5841 3.5348 3.4968 3.4855 3.4745 3.4566 3.1535 3.1353 3.1172 3.0992 1.3602 1.3420 1.3238 1.2528 1.2346 1.2210 1.2029 1.1943 1.1759 1.1579 1.0928 1.0747 1.0566 1.0125 0.9948 0.9770 0.7871 0.7695 0.7518 Figure S17. 1 H-NMR spectrum of a representative example of crude reaction mixture.

S10 of S23 0.07 0.02 0.03 0.54 1.00 0.08 0.15 8.2701 7.7908 7.7316 7.4702 7.4193 7.3491 7.2434 Figure S18. 1 H-NMR spectrum of a representative example of crude reaction mixture (aromatic range). 0.42 0.20 0.57 0.36 0.68 1.74 0.42 4.0625 4.0438 4.0256 4.0071 3.9600 3.9140 3.8674 3.8586 3.8407 3.8225 3.8044 3.7912 3.7702 3.7519 3.7194 3.6993 3.6911 3.6703 3.6514 3.6333 3.6239 3.5841 3.5348 3.4968 3.4855 3.4745 3.4566 3.1535 3.1353 3.1172 3.0992 Figure S19. 1 H-NMR spectrum of a representative example of crude reaction mixture (aliphatic (ethyl) range).

S11 of S23 0.58 0.94 0.40 0.69 0.49 0.43 1.3602 1.3420 1.3238 1.2528 1.2346 1.2210 1.2029 1.1943 1.1759 1.1579 1.0928 1.0747 1.0566 1.0125 0.9948 0.9770 0.7871 0.7695 0.7518 Figure S20. 1 H-NMR spectrum of a representative example of crude reaction mixture (aliphatic (methyl) range). H-P correletion {7.2379,3.6996} {5.8180,3.7032} 2 4 6 {3.9446,9.5243} {3.8588,9.5288} 8 10 {3.7771,13.4717} {3.6849,13.4064} 12 {3.6910,15.4195} {3.5689,17.0738} {2.9658,16.2325} 14 16 {3.4747,17.0684} 18 {3.7730,21.1697} {3.6864,21.1823} {1.0208,20.1103} 20 22 24 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f2 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Figure S21. H-P correlation spectrum of a representative example of crude reaction mixture.

S12 of S23 Figure S22. HRMS spectrum of a representative example of crude reaction mixture. 2. Spectroscopic Titrations Compound 1 Compound 2 1.0 ph range: 1.57-11.75 increases with ph increase 1.0 ph range 2.04-11.18 0.8 decreases with ph increase 0.8 (A) Absorbance 0.6 0.4 increases with ph increase Absorbance 0.6 0.4 increases with ph increase shifts with ph increase 0.2 0.2 0.0 210 220 230 240 250 260 270 Wavelength [nm] 0.0 210 220 230 240 250 260 270 Wavelength [nm] (B) Molar Absorbance 20000 15000 10000 5000 L HL H 2 L H 3 L H 4 L H 5 L not detected Molar Absorbance 10000 8000 6000 4000 2000 L not detected HL H 2 L H 3 L H 4 L H 5 L not detected 0 210 220 230 240 250 260 270 Wavelength [nm] 0 210 220 230 240 250 260 270 Wavelength [nm] Figure S23. (A) Absorption spectrophotometric titration vs. ph of free compounds plotted in chosen ph values; (B) electronic spectra of species calculated in HypSpec.

S13 of S23 shift 31 P [ppm] 17 16 15 14 13 12 shift 1 H [ppm] 8.50 8.25 8.00 7.75 7.50 7.25 2 4 6 8 10 12 14 2 4 6 8 10 12 14 ph * ph * (A) (B) Figure S24. 31 P (A) and 1 Haromatic (B) NMR titration curves as a function of ph performed for compound 1. Concentration of the compound: [L] = 4 10 2. * not corrected for D2O. 3. Relevant Crystallographic Data for the Molecules and the Full Geometrical Information Table S1. Crystal data and structure refinement for compound 2. Identification Code 121_a Empirical formula C10 H30 Ca N8 O16 P4 Formula weight 682.38 Temperature 100.0 (1) K Wavelength 0.71073 A Crystal system, space group Triclinic, P-1 a = 10.6815 (4) A, α = 60.518 (5)deg Unit cell dimensions b = 12.5015 (6) A, β = 66.986 (4)deg c = 12.6155 (5) A, γ = 69.072 (4)deg Volume 1320.90 (12) A 3 Z, Calculated density 2, 1.716 Mg/m 3 Absorption coefficient 0.566 mm 1 F(000) 708 Crystal size 0.2 0.1 0.1 mm Theta range for data collection 3.132 25.999 Limiting indices 13 h 13, 12 k 15, 15 l 15 Reflections collected/unique 8995/5080 [R(int) = 0.0797] Completeness to θ = 25.242 98.40% Refinement method Full-matrix least-squares on F 2 Data/restraints/parameters 5080/64/420 Goodness-of-fit on F 2 1.033 Final R indices [I > 2σ(I)] R1 = 0.0790, wr2 = 0.1307 R indices (all data) R1 = 0.1673, wr2 = 0.1644 Extinction coefficient n/a Largest diff. peak and hole 0.656 and 0.766 e A 3

S14 of S23 Table S2. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (A^2 10^3) for 121_a (compound 2). X Y Z U(eq) Ca(1) 12,706(1) 4111(1) 5360(1) 18(1) P(10A) 10,846(2) 5748(2) 2879(2) 15(1) P(10B) 15,703(2) 2146(2) 6301(2) 20(1) P(14A) 11,386(2) 2806(2) 4194(2) 17(1) P(14B) 16,320(2) 4155(2) 3564(2) 17(1) N(1A) 11,402(6) 3004(5) 96(5) 19(1) N(2A) 11,718(6) 3357(5) 830(5) 19(1) N(4A) 9396(6) 3685(5) 1169(5) 17(1) N(8A) 10,205(6) 4285(5) 2266(5) 18(1) N(1B) 19,244(6) 71(5) 2852(5) 22(1) N(2B) 18,126(6) 787(5) 3410(5) 21(1) N(4B) 20,151(6) 848(5) 3515(5) 17(1) N(8B) 18,069(5) 1971(5) 4441(5) 18(1) O(11A) 9320(5) 6216(4) 3109(4) 19(1) O(12A) 11,548(5) 6653(5) 1518(4) 27(1) O(13A) 11,477(5) 5609(4) 3841(4) 20(1) O(15A) 11,735(5) 1713(4) 3864(5) 24(1) O(16A) 12,406(5) 2785(4) 4751(4) 21(1) O(17A) 9844(4) 2821(4) 5084(4) 18(1) O(11B) 16,299(5) 777(5) 7072(4) 31(1) O(12B) 14,188(5) 2466(4) 6465(4) 22(1) O(13B) 16,216(5) 2902(5) 6688(5) 30(1) O(15B) 16,744(5) 4191(5) 2223(4) 23(1) O(16B) 14,783(5) 4729(4) 3883(4) 20(1) O(17B) 17,268(5) 4704(4) 3690(4) 20(1) O(18) 15,481(9) 772(7) 7014(8) 92(3) O(19) 13,343(10) 7763(9) 1028(10) 102(3) O(20) 4590(18) 5097(18) 985(13) 81(5) O(21) 4970(30) 3290(30) 1580(30) 68(7) O(22) 4508(8) 2924(8) 794(9) 54(2) O(23) 4198(16) 466(11) 5186(13) 61(4) C(3A) 10,463(7) 3773(6) 1447(6) 18(2) C(5A) 10,062(8) 3200(6) 309(6) 22(2) C(6A) 12,529(8) 2531(6) -809(6) 24(2) C(7A) 13,346(8) 1271(7) -157(7) 38(2) C(9A) 11,267(7) 4244(6) 2756(6) 15(2) C(3B) 18,736(7) 1228(6) 3807(6) 19(2) C(5B) 20,413(8) 104(6) 2920(6) 22(2) C(6B) 18,979(9) 595(7) 2293(7) 36(2) C(7B) 18,382(9) 295(8) 1193(8) 44(2) C(9B) 16,581(7) 2479(6) 4633(6) 17(2) U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

S15 of S23 Table S3. Bond lengths [A] and angles [deg] for 121_a (compound 2). Symmetry transformations used to generate equivalent atoms: #1 x + 2, y + 1, z + 1; #2 x + 3, y + 1, z + 1; #3 x + 1, y, z + 1. Atoms Distance Ca(1)-O(11A) #1 2.273(5) Ca(1)-O(12B) 2.292(5) Ca(1)-O(16A) 2.295(5) Ca(1)-O(17B) #2 2.331(5) Ca(1)-O(16B) 2.359(5) Ca(1)-O(13A) 2.363(5) Ca(1)-P(10B) 3.489(2) Ca(1)-P(14A) 3.528(2) Ca(1)-P(10A) #1 3.561(2) P(10A)-O(11A) 1.483(5) P(10A)-O(13A) 1.518(5) P(10A)-O(12A) 1.574(5) P(10A)-C(9A) 1.841(6) P(10A)-Ca(1) #1 3.561(2) P(10B)-O(12B) 1.476(5) P(10B)-O(11B) 1.533(5) P(10B)-O(13B) 1.571(5) P(10B)-C(9B) 1.832(6) P(14A)-O(16A) 1.498(5) P(14A)-O(15A) 1.501(5) P(14A)-O(17A) 1.589(5) P(14A)-C(9A) 1.830(6) P(14B)-O(17B) 1.502(5) P(14B)-O(16B) 1.516(5) P(14B)-O(15B) 1.552(4) P(14B)-C(9B) 1.839(7) N(1A)-C(5A) 1.302(9) N(1A)-N(2A) 1.385(7) N(1A)-C(6A) 1.478(8) N(2A)-C(3A) 1.326(8) N(4A)-C(5A) 1.337(8) N(4A)-C(3A) 1.368(8) N(8A)-C(3A) 1.362(8) N(8A)-C(9A) 1.465(8) N(8A)-H(8AA) 0.8600 N(1B)-C(5B) 1.301(9) N(1B)-N(2B) 1.386(7) N(1B)-C(6B) 1.474(9) N(2B)-C(3B) 1.327(8) N(4B)-C(5B) 1.358(8) N(4B)-C(3B) 1.368(8) N(8B)-C(3B) 1.351(8) N(8B)-C(9B) 1.456(8) N(8B)-H(8BA) 0.8600 O(11A)-Ca(1) #1 2.273(5) O(12A)-H(12A) 0.837(10) O(15A)-H(15A) 0.841(10) O(17A)-H(17A) 0.840(10) O(11B)-H(11B) 1.03(9)

S16 of S23 O(13B)-H(13B) 0.88(8) O(15B)-H(15B) 0.82(7) O(17B)-Ca(1) #2 2.331(5) O(18)-H(18A) 0.843(10) O(18)-H(18B) 0.841(10) O(19)-H(19A) 0.848(10) O(19)-H(19B) 0.854(10) O(20)-H(20A) 0.839(10) O(20)-H(20B) 0.840(10) O(20)-H(21D) 1.23(18) O(21)-O(22) 1.56(3) O(21)-H(21C) 0.839(11) O(21)-H(21D) 0.840(10) O(22)-H(22A) 0.841(10) O(22)-H(22B) 0.844(10) O(23)-O(23) #3 1.73(3) O(23)-H(23A) 0.840(10) O(23)-H(23B) 0.842(10) C(5A)-H(5AB) 0.93 C(6A)-C(7A) 1.491(9) C(6A)-H(6AA) 0.9700 C(6A)-H(6AB) 0.9700 C(7A)-H(7AA) 0.9600 C(7A)-H(7AB) 0.9600 C(7A)-H(7AC) 0.9600 C(9A)-H(9AA) 0.9800 C(5B)-H(5BA) 0.9300 C(6B)-C(7B) 1.496(10) C(6B)-H(6BA) 0.9700 C(6B)-H(6BB) 0.9700 C(7B)-H(7BA) 0.9600 C(7B)-H(7BB) 0.9600 C(7B)-H(7BC) 0.9600 C(9B)-H(9BA) 0.9800 O(11A) #1-Ca(1)-O(12B) 98.32(16) O(11A) #1-Ca(1)-O(16A) 87.76(16) O(12B)-Ca(1)-O(16A) 88.68(16) O(11A) #1-Ca(1)-O(17B) #2 82.68(16) O(12B)-Ca(1)-O(17B) #2 89.53(16) O(16A)-Ca(1)-O(17B) #2 169.92(17) O(11A) #1-Ca(1)-O(16B) 169.68(16) O(12B)-Ca(1)-O(16B) 83.59(16) O(16A)-Ca(1)-O(16B) 102.44(17) O(17B) #2-Ca(1)-O(16B) 87.20(16) O(11A) #1-Ca(1)-O(13A) 90.91(16) O(12B)-Ca(1)-O(13A) 165.95(16) O(16A)-Ca(1)-O(13A) 81.08(16) O(17B) #2-Ca(1)-O(13A) 102.20(16) O(16B)-Ca(1)-O(13A) 89.22(16) O(11A) #1-Ca(1)-P(10B) 115.07(12) O(12B)-Ca(1)-P(10B) 17.58(12) O(16A)-Ca(1)-P(10B) 94.50(12)

S17 of S23 O(17B) #2-Ca(1)-P(10B) 86.69(12) O(16B)-Ca(1)-P(10B) 66.14(11) O(13A)-Ca(1)-P(10B) 153.56(12) O(11A) #1-Ca(1)-P(14A) 80.88(12) O(12B)-Ca(1)-P(14A) 105.20(12) O(16A)-Ca(1)-P(14A) 17.19(11) O(17B) #2-Ca(1)-P(14A) 159.30(12) O(16B)-Ca(1)-P(14A) 108.50(12) O(13A)-Ca(1)-P(14A) 65.68(12) P(10B)-Ca(1)-P(14A) 111.69(5) O(11A) #1-Ca(1)-P(10A) #1 14.86(12) O(12B)-Ca(1)-P(10A) #1 113.13(12) O(16A)-Ca(1)-P(10A) #1 87.00(12) O(17B) #2-Ca(1)-P(10A) #1 84.59(12) O(16B)-Ca(1)-P(10A) #1 161.24(12) O(13A)-Ca(1)-P(10A) #1 76.12(12) P(10B)-Ca(1)-P(10A) #1 129.94(6) P(14A)-Ca(1)-P(10A) #1 76.34(5) O(11A)-P(10A)-O(13A) 115.8(3) O(11A)-P(10A)-O(12A) 107.8(3) O(13A)-P(10A)-O(12A) 110.2(3) O(11A)-P(10A)-C(9A) 108.2(3) O(13A)-P(10A)-C(9A) 110.5(3) O(12A)-P(10A)-C(9A) 103.7(3) O(11A)-P(10A)-Ca(1) #1 23.15(18) O(13A)-P(10A)-Ca(1) #1 99.72(18) O(12A)-P(10A)-Ca(1) #1 130.8(2) C(9A)-P(10A)-Ca(1) #1 101.0(2) O(12B)-P(10B)-O(11B) 115.7(3) O(12B)-P(10B)-O(13B) 114.2(3) O(11B)-P(10B)-O(13B) 103.0(3) O(12B)-P(10B)-C(9B) 108.5(3) O(11B)-P(10B)-C(9B) 107.3(3) O(13B)-P(10B)-C(9B) 107.7(3) O(12B)-P(10B)-Ca(1) 27.97(18) O(11B)-P(10B)-Ca(1) 142.1(2) O(13B)-P(10B)-Ca(1) 105.2(2) C(9B)-P(10B)-Ca(1) 87.5(2) O(16A)-P(14A)-O(15A) 114.4(3) O(16A)-P(14A)-O(17A) 113.9(3) O(15A)-P(14A)-O(17A) 105.3(3) O(16A)-P(14A)-C(9A) 109.7(3) O(15A)-P(14A)-C(9A) 107.8(3) O(17A)-P(14A)-C(9A) 105.2(3) O(16A)-P(14A)-Ca(1) 26.93(17) O(15A)-P(14A)-Ca(1) 141.2(2) O(17A)-P(14A)-Ca(1) 100.34(17) C(9A)-P(14A)-Ca(1) 92.8(2) O(17B)-P(14B)-O(16B) 116.1(3) O(17B)-P(14B)-O(15B) 111.7(3) O(16B)-P(14B)-O(15B) 108.2(3) O(17B)-P(14B)-C(9B) 106.6(3)

S18 of S23 O(16B)-P(14B)-C(9B) 108.4(3) O(15B)-P(14B)-C(9B) 105.3(3) C(5A)-N(1A)-N(2A) 110.6(5) C(5A)-N(1A)-C(6A) 129.2(6) N(2A)-N(1A)-C(6A) 120.1(6) C(3A)-N(2A)-N(1A) 101.7(5) C(5A)-N(4A)-C(3A) 102.8(6) C(3A)-N(8A)-C(9A) 124.1(6) C(3A)-N(8A)-H(8AA) 117.9 C(9A)-N(8A)-H(8AA) 117.9 C(5B)-N(1B)-N(2B) 111.3(5) C(5B)-N(1B)-C(6B) 129.8(6) N(2B)-N(1B)-C(6B) 118.9(6) C(3B)-N(2B)-N(1B) 102.5(5) C(5B)-N(4B)-C(3B) 104.1(6) C(3B)-N(8B)-C(9B) 121.3(6) C(3B)-N(8B)-H(8BA) 119.4 C(9B)-N(8B)-H(8BA) 119.4 P(10A)-O(11A)-Ca(1) #1 142.0(3) P(10A)-O(12A)-H(12A) 109.5 P(10A)-O(13A)-Ca(1) 142.6(3) P(14A)-O(15A)-H(15A) 109.5 P(14A)-O(16A)-Ca(1) 135.9(3) P(14A)-O(17A)-H(17A) 109.5 P(10B)-O(11B)-H(11B) 109.5 P(10B)-O(12B)-Ca(1) 134.4(3) P(10B)-O(13B)-H(13B) 109.5 P(14B)-O(15B)-H(15B) 109.5 P(14B)-O(16B)-Ca(1) 138.6(3) P(14B)-O(17B)-Ca(1) #2 142.5(3) H(18A)-O(18)-H(18B) 105(3) H(19A)-O(19)-H(19B) 103(3) H(20A)-O(20)-H(20B) 106(3) H(20A)-O(20)-H(21D) 157(10) H(20B)-O(20)-H(21D) 51(10) O(22)-O(21)-H(21C) 109(10) O(22)-O(21)-H(21D) 120(10) H(21C)-O(21)-H(21D) 106(3) O(21)-O(22)-H(22A) 117(9) O(21)-O(22)-H(22B) 106(8) H(22A)-O(22)-H(22B) 105(3) O(23) #3-O(23)-H(23A) 117(10) O(23) #3-O(23)-H(23B) 64(10) H(23A)-O(23)-H(23B) 105(3) N(2A)-C(3A)-N(8A) 124.8(7) N(2A)-C(3A)-N(4A) 114.2(6) N(8A)-C(3A)-N(4A) 120.9(6) N(1A)-C(5A)-N(4A) 110.7(6) N(1A)-C(5A)-H(5AB) 124.7 N(4A)-C(5A)-H(5AB) 124.7 N(1A)-C(6A)-C(7A) 112.0(6) N(1A)-C(6A)-H(6AA) 109.2

S19 of S23 C(7A)-C(6A)-H(6AA) 109.2 N(1A)-C(6A)-H(6AB) 109.2 C(7A)-C(6A)-H(6AB) 109.2 H(6AA)-C(6A)-H(6AB) 107.9 C(6A)-C(7A)-H(7AA) 109.5 C(6A)-C(7A)-H(7AB) 109.5 H(7AA)-C(7A)-H(7AB) 109.5 C(6A)-C(7A)-H(7AC) 109.5 H(7AA)-C(7A)-H(7AC) 109.5 H(7AB)-C(7A)-H(7AC) 109.5 N(8A)-C(9A)-P(14A) 108.9(4) N(8A)-C(9A)-P(10A) 107.0(4) P(14A)-C(9A)-P(10A) 117.4(3) N(8A)-C(9A)-H(9AA) 107.7 P(14A)-C(9A)-H(9AA) 107.7 P(10A)-C(9A)-H(9AA) 107.7 N(2B)-C(3B)-N(8B) 125.3(6) N(2B)-C(3B)-N(4B) 113.1(6) N(8B)-C(3B)-N(4B) 121.7(6) N(1B)-C(5B)-N(4B) 109.0(6) N(1B)-C(5B)-H(5BA) 125.5 N(4B)-C(5B)-H(5BA) 125.5 N(1B)-C(6B)-C(7B) 111.9(6) N(1B)-C(6B)-H(6BA) 109.2 C(7B)-C(6B)-H(6BA) 109.2 N(1B)-C(6B)-H(6BB) 109.2 C(7B)-C(6B)-H(6BB) 109.2 H(6BA)-C(6B)-H(6BB) 107.9 C(6B)-C(7B)-H(7BA) 109.5 C(6B)-C(7B)-H(7BB) 109.5 H(7BA)-C(7B)-H(7BB) 109.5 C(6B)-C(7B)-H(7BC) 109.5 H(7BA)-C(7B)-H(7BC) 109.5 H(7BB)-C(7B)-H(7BC) 109.5 N(8B)-C(9B)-P(10B) 111.3(5) N(8B)-C(9B)-P(14B) 108.2(4) P(10B)-C(9B)-P(14B) 114.5(3) N(8B)-C(9B)-H(9BA) 107.5 P(10B)-C(9B)-H(9BA) 107.5 P(14B)-C(9B)-H(9BA) 107.5 Table S4. Anisotropic displacement parameters (A 2 10 3 ) for 121_a (compound 2). U11 U22 U33 U23 U13 U12 Ca(1) 16(1) 16(1) 18(1) 9(1) 3(1) 1(1) P(10A) 17(1) 14(1) 13(1) 6(1) 2(1) 2(1) P(10B) 22(1) 21(1) 13(1) 5(1) 4(1) 3(1) P(14A) 17(1) 14(1) 19(1) 10(1) 3(1) 3(1) P(14B) 19(1) 15(1) 11(1) 6(1) 3(1) 1(1) N(1A) 28(4) 11(3) 10(3) 4(2) 1(3) 1(3) N(2A) 21(3) 15(3) 12(3) 5(2) 0(3) 0(3) N(4A) 28(3) 12(3) 8(3) 3(2) 2(3) 6(3) N(8A) 17(3) 18(3) 15(3) 10(3) 1(3) 1(3)

S20 of S23 N(1B) 37(4) 4(3) 16(3) 3(2) 5(3) 1(3) N(2B) 30(4) 11(3) 14(3) 4(3) 2(3) 2(3) N(4B) 16(3) 11(3) 10(3) 1(2) 2(2) 3(2) N(8B) 13(3) 20(3) 22(3) 15(3) 6(3) 5(2) O(11A) 19(3) 16(2) 22(3) 10(2) 5(2) 1(2) O(12A) 33(3) 29(3) 17(3) 8(2) 2(2) 15(3) O(13A) 20(3) 16(3) 21(3) 10(2) 4(2) 1(2) O(15A) 22(3) 25(3) 28(3) 15(2) 9(2) 0(2) O(16A) 23(3) 16(3) 19(3) 9(2) 7(2) 4(2) O(17A) 23(3) 15(3) 18(3) 12(2) 3(2) 4(2) O(11B) 29(3) 28(3) 20(3) 6(2) 4(2) 4(2) O(12B) 22(3) 18(3) 16(3) 3(2) 1(2) 3(2) O(13B) 40(3) 27(3) 24(3) 11(3) 6(3) 9(3) O(15B) 25(3) 25(3) 10(3) 2(2) 1(2) 5(2) O(16B) 22(3) 16(3) 12(2) 2(2) 1(2) 1(2) O(17B) 19(3) 19(3) 19(3) 8(2) 2(2) 1(2) O(18) 146(8) 39(4) 108(7) 10(4) 72(6) 27(5) O(19) 115(7) 99(6) 106(7) 34(6) 35(6) 44(6) O(20) 80(11) 134(12) 43(8) 23(9) 11(7) 61(9) O(21) 78(15) 77(15) 63(14) 35(12) 5(11) 34(12) O(22) 43(5) 56(6) 57(6) 18(5) 10(4) 14(4) O(23) 69(10) 36(8) 84(10) 37(7) 33(9) 15(7) C(3A) 24(4) 12(4) 11(4) 2(3) 3(3) 4(3) C(5A) 33(5) 16(4) 15(4) 5(3) 7(3) 5(3) C(6A) 35(5) 18(4) 13(4) 10(3) 1(3) 3(3) C(7A) 38(5) 27(5) 21(4) 7(4) 7(4) 4(4) C(9A) 19(4) 11(3) 13(4) 5(3) 5(3) 1(3) C(3B) 29(4) 8(3) 13(4) 4(3) 6(3) 7(3) C(5B) 24(4) 13(4) 18(4) 7(3) 4(3) 7(3) C(6B) 56(6) 26(4) 26(5) 17(4) 2(4) 9(4) C(7B) 54(6) 41(5) 36(5) 22(4) 9(5) 4(5) C(9B) 16(4) 13(3) 18(4) 8(3) 4(3) 5(3) The anisotropic displacement factor exponent takes the form: 2 pi 2 [ h 2 a* 2 U11 +... + 2 h k a* b* U12 ]. Table S5. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (A 2 10 3 ) for 121_a (compound 2). X Y Z U(eq) H(8AA) 9367 4655 2511 21 H(8BA) 18,533 2148 4738 21 H(12A) 12,250(50) 6790(60) 1534(16) 40 H(15A) 11,020(20) 1640(40) 3800(70) 36 H(17A) 9680(20) 3250(50) 5480(50) 26 H(11B) 15,940(70) 190(50) 6950(60) 47 H(13B) 15,800(70) 3700(70) 6390(70) 45 H(15B) 17,590(80) 4080(70) 1950(40) 35 H(18A) 14,700(60) 450(80) 7380(100) 110 H(18B) 15,510(100) 1551(17) 7400(90) 110 H(19A) 13,770(100) 8270(70) 950(110) 122 H(19B) 13,750(110) 7050(40) 1480(110) 122 H(20A) 4500(200) 5870(30) 540(150) 97 H(20B) 5250(150) 4760(150) 530(140) 97 H(21C) 5700(200) 2740(180) 1800(300) 82

S21 of S23 H(21D) 5200(300) 3990(110) 1300(400) 82 H(22A) 3840(70) 2550(80) 1170(90) 65 H(22B) 4220(100) 3610(60) 230(80) 65 H(23A) 4200(190) 1150(80) 5160(130) 73 H(23B) 4500(200) 550(140) 4430(50) 73 H(5AB) 9628 3027 84 26 H(6AA) 13,147 3119 1339 29 H(6AB) 12,132 2478 1349 29 H(7AA) 13,731 1317 388 58 H(7AB) 14,084 1008 773 58 H(7AC) 12,747 676 336 58 H(9AA) 12,162 4200 2125 18 H(5BA) 21,287 315 2611 26 H(6BA) 18,339 1139 2930 43 H(6BB) 19,843 1118 2019 43 H(7BA) 19,010 838 562 66 H(7BB) 17,506 789 1468 66 H(7BC) 18,245 171 842 66 H(9BA) 16,208 2056 4377 21 Table S6. Torsion angles ( ) for 121_a (compound 2). Symmetry transformations used to generate equivalent atoms: #1 x + 2, y + 1, z + 1; #2 x + 3, y + 1, z + 1; #3 x + 1, y, z + 1. C(5A)-N(1A)-N(2A)-C(3A) 0.7(7) C(6A)-N(1A)-N(2A)-C(3A) 177.0(5) C(5B)-N(1B)-N(2B)-C(3B) 0.3(7) C(6B)-N(1B)-N(2B)-C(3B) 179.5(6) O(13A)-P(10A)-O(11A)-Ca(1) #1 49.4(5) O(12A)-P(10A)-O(11A)-Ca(1) #1 173.2(4) C(9A)-P(10A)-O(11A)-Ca(1) # 175.2(5) O(11A)-P(10A)-O(13A)-Ca(1) 117.8(4) O(12A)-P(10A)-O(13A)-Ca(1) 119.6(4) C(9A)-P(10A)-O(13A)-Ca(1) 5.6(5) Ca(1)#1-P(10A)-O(13A)-Ca(1) 100.2(4) O(15A)-P(14A)-O(16A)-Ca(1) 175.0(3) O(17A)-P(14A)-O(16A)-Ca(1) 63.9(4) C(9A)-P(14A)-O(16A)-Ca(1) 53.8(5) O(11B)-P(10B)-O(12B)-Ca(1) 164.0(3) O(13B)-P(10B)-O(12B)-Ca(1) 76.7(4) C(9B)-P(10B)-O(12B)-Ca(1) 43.4(5) O(17B)-P(14B)-O(16B)-Ca(1) 117.4(4) O(15B)-P(14B)-O(16B)-Ca(1) 116.2(4) C(9B)-P(14B)-O(16B)-Ca(1) 2.4(5) O(16B)-P(14B)-O(17B)-Ca(1) #2 19.5(5) O(15B)-P(14B)-O(17B)-Ca(1) #2 144.2(4) C(9B)-P(14B)-O(17B)-Ca(1) #2 101.3(4) N(1A)-N(2A)-C(3A)-N(8A) 177.1(6) N(1A)-N(2A)-C(3A)-N(4A) 1.0(7) C(9A)-N(8A)-C(3A)-N(2A) 11.5(10) C(9A)-N(8A)-C(3A)-N(4A) 170.6(6) C(5A)-N(4A)-C(3A)-N(2A) 1.0(7) C(5A)-N(4A)-C(3A)-N(8A) 177.2(6) N(2A)-N(1A)-C(5A)-N(4A) 0.1(7) C(6A)-N(1A)-C(5A)-N(4A) 177.3(6) C(3A)-N(4A)-C(5A)-N(1A) 0.5(7)

S22 of S23 C(5A)-N(1A)-C(6A)-C(7A) 113.2(8) N(2A)-N(1A)-C(6A)-C(7A) 69.5(8) C(3A)-N(8A)-C(9A)-P(14A) 88.7(6) C(3A)-N(8A)-C(9A)-P(10A) 143.5(5) O(16A)-P(14A)-C(9A)-N(8A) 176.6(4) O(15A)-P(14A)-C(9A)-N(8A) 58.3(5) O(17A)-P(14A)-C(9A)-N(8A) 53.7(5) Ca(1)-P(14A)-C(9A)-N(8A) 155.2(4) O(16A)-P(14A)-C(9A)-P(10A) 54.9(4) O(15A)-P(14A)-C(9A)-P(10A) 180.0(3) O(17A)-P(14A)-C(9A)-P(10A) 68.1(4) Ca(1)-P(14A)-C(9A)-P(10A) 33.4(4) O(11A)-P(10A)-C(9A)-N(8A) 29.1(5) O(13A)-P(10A)-C(9A)-N(8A) 156.7(4) O(12A)-P(10A)-C(9A)-N(8A) 85.3(5) Ca(1)#1-P(10A)-C(9A)-N(8A) 51.8(4) O(11A)-P(10A)-C(9A)-P(14A) 93.7(4) O(13A)-P(10A)-C(9A)-P(14A) 34.0(5) O(12A)-P(10A)-C(9A)-P(14A) 152.0(4) Ca(1)#1-P(10A)-C(9A)-P(14A) 70.9(4) N(1B)-N(2B)-C(3B)-N(8B) 178.8(6) N(1B)-N(2B)-C(3B)-N(4B) 0.9(7) C(9B)-N(8B)-C(3B)-N(2B) 6.8(10) C(9B)-N(8B)-C(3B)-N(4B) 173.5(6) C(5B)-N(4B)-C(3B)-N(2B) 1.3(7) C(5B)-N(4B)-C(3B)-N(8B) 178.5(6) N(2B)-N(1B)-C(5B)-N(4B) 0.5(7) C(6B)-N(1B)-C(5B)-N(4B) 179.7(6) C(3B)-N(4B)-C(5B)-N(1B) 1.0(7) C(5B)-N(1B)-C(6B)-C(7B) 115.6(8) N(2B)-N(1B)-C(6B)-C(7B) 64.6(8) C(3B)-N(8B)-C(9B)-P(10B) 128.0(5) C(3B)-N(8B)-C(9B)-P(14B) 105.4(6) O(12B)-P(10B)-C(9B)-N(8B) 169.4(4) O(11B)-P(10B)-C(9B)-N(8B) 43.7(6) O(13B)-P(10B)-C(9B)-N(8B) 66.6(5) Ca(1)-P(10B)-C(9B)-N(8B) 171.8(4) O(12B)-P(10B)-C(9B)-P(14B) 67.6(4) O(11B)-P(10B)-C(9B)-P(14B) 166.8(4) O(13B)-P(10B)-C(9B)-P(14B) 56.5(5) Ca(1)-P(10B)-C(9B)-P(14B) 48.7(3) O(17B)-P(14B)-C(9B)-N(8B) 46.7(5) O(16B)-P(14B)-C(9B)-N(8B) 172.3(4) O(15B)-P(14B)-C(9B)-N(8B) 72.1(5) O(17B)-P(14B)-C(9B)-P(10B) 78.0(4) O(16B)-P(14B)-C(9B)-P(10B) 47.6(5) O(15B)-P(14B)-C(9B)-P(10B) 163.2(4)

S23 of S23 Table S7. Hydrogen bonds for 121_a (compound 2) [Å]. Symmetry transformations used to generate equivalent atoms: #1 x + 2, y + 1, z + 1; #2 x + 3, y + 1, z + 1; #3 x + 1, y, z + 1. D-H A D(D-H) D(H A) D(D A) <(DHA) N(8A)-H(8AA) O(11A) 0.86 2.39 2.822(7) 111.3 O(17A)-H(17A) O(13A) #1 0.84 1.84 2.613(6) 151.8 O(20)-H(20A) O(21) #4 0.839(10) 2.25(17) 2.80(4) 124(16) O(20)-H(20A) O(22) #4 0.839(10) 1.89(14) 2.575(18) 138(19) O(20)-H(20B) O(20) #4 0.840(10) 1.78(15) 2.40(3) 129(18) O(20)-H(20B) O(21) 0.840(10) 1.71(18) 1.94(4) 92(13) O(20)-H(20B) O(22) 0.840(10) 2.5(2) 2.88(2) 106(16) O(21)-H(21D) O(20) 0.840(10) 1.23(18) 1.94(4) 137(29) O(22)-H(22A) N(2A) #5 0.841(10) 2.25(8) 2.818(10) 125(8) O(22)-H(22B) O(20) #4 0.844(10) 2.02(8) 2.575(18) 123(8) O(23)-H(23A) O(16A) #5 0.840(10) 2.25(16) 2.768(13) 120(16) C(5A)-H(5AB) O(12A) #6 0.93 2.39 3.280(9) 160