2015 23 Vol. 232015 3 185 ~ 190 Chinese Journal of Synthetic Chemistry No. 3185 ~ 190 * 530008 3R 4R-4 7 7- -6-3 2 1-3 4-1 2 ⅠⅠ 4 3a ~ 3d 1 H NMR 13 C NMRFT-IR HR-MS rn2 n1 3a ~ 3d 1 5 mmolr = 7 7 h3a ~ 3d 21. 6% 15. 6% 37. 9% 24. 9% 1 5 mmolr = 4 7 h3a ~ 3d 50. 7% 36. 6% 7. 84% 4. 86% 1 3a ~ 3d 1 3a ~ 3d 5 mmol L - 1 1 3a ~ 3d 55. 1% 86. 0% 84. 2% 91. 3% 97. 5% 55. 1% 76. 5% 92. 8% 94. 8% 98. 4% 3R 4R-4 7 7- -6-3 2 1-3 4-623. 623TQ351 A DI10. 15952 /j. cnki. cjsc. 1005-1511. 2015. 03. 0185 Synthesis and Herbicidal Activities of Bifunctional Acetic Acid Ester Derivatives of Monoterpene xabicyclodiol HUANG Dao-zhanZHU Shou-jiLAN Hong-yun LEI Fu-hongHUANG Zhong-jing Guangxi Key Laboratory of Chemistry and Engineering of Forest Products College of Chemistry and Chemical EngineeringGuangxi University for NationalitiesNanning 530008China AbstractFour novel acetic acid ester derivatives3a ~ 3dwere synthesized by the reaction of 3R 4R-4 7 7-trimethyl-6-oxabicyclo 3. 2. 1octane-3 4-diol1with acetyl chloride2by one-pot method and then purified. The structures were characterized by 1 H NMR 13 C NMRFT-IR and HR-MS. Effects of material ratior n2 n1 and reaction time on the relative concentration of 3a ~ 3d were investigated. The resluts showed that the relative concentration of 3a ~ 3d were 21. 6% 15. 6% 37. 9% and 24. 9% under the condition of 1 5 mmol r = 7 and reflux for 7 h. The relative concentration of 3a ~ 3d were 55. 1% 86. 0% 84. 2% 91. 3% and 97. 5% under the condition of 1 5 mmolr = 4 and reflux for 7 h. The herbicidal activities of 1 and 3a ~ 3d were tested by dish dipping method. The results showed that 1 and 3a ~ 3d exhibited obvious inhibition activities against the growth of annual ryegrass root and shoot. The inhibition rate of 1 and 3a ~ 3d against root growth at 5 * 2014-04-03 2015-01-15 31460174 2011GXNSFA018057 1348006-10 1968 - E-mail huangdaozhan@ gxun. edu. cn
186 Vol. 232015 mmol L - 1 were 55. 1% 86. 0% 84. 2% 91. 3% and 97. 5% respectively. The inhibition rate of 1 and 3a ~ 3d against shoot elongation at 5 mmol L - 1 were 55. 1% 76. 5% 92. 8% 94. 8% and 98. 4% respectively. Keywords 3R 4R-4 7 7-trimethyl-6-oxabicyclo 3. 2. 1octane-3 4-diolacetyl chloridebifunctional monoterpene oxabicyclodiol derivativesynthesisherbicidal activity 1 1-4 1. 1 WRS-1B Bruker Avance 600 MHz CDCl 3 5-6 7-1 8-8 TMS Nicolet Magna KBr 2- Shimadzu GC-14B Perkin -1 4-2- -1 8-3- -1 Elmer Clarus500 MAT 95XP 8- LRH-250-GSI 14-1 15 6 8 9-12 3R 4R-4 7 7- -6-3 2 1 1. 2-3 4-1 α- 1 50 mmol 500 mmol 13-14 320 ml 0. 5 h 2 500 2 3- -1 8-4 mmol 50 ml 7 1 h 1 mol 3-4- L - 1 100 ml 1. 5 mol L - 1 Na 2 C 3 100 ml 1 2 2 ⅠⅠ V V = 95 5 4 1 8- GC 3a ~ 3dScheme 1 1 H NMR 3a3b 13 C NMRFT-IR HR-MS A3c3d 3b 3a 1 3a ~ 3d Comp a b c d R 1 R 2 H - b' a' - b a - Scheme 1 - f' e' d' - b' a' c' e f d - b a c - b' a' 0. 5 ml 1 ml - 20 3R 4S-4- -4 7 7- -6-3. 2. 1-3- 3a 3R 4S-4 7 7- -6-3. 2. 1-3 4-3b A 200 mlv V = 95 5 3b 3R 4S-4- -4 7 7- -6-3. 2. 1-3- 3c 3R 4S-3- -4
3 187 7 7- -6-3. 2. 1-4- 82. 84 C 4 79. 40 C 5 73. 50 C 3 41. 43 3d 3a 22% m. p. 96. 2 ~ 97. 7 1 H NMR δ4. 99 ~ 5. 02ddJ = 4. 8 Hz3. 6 Hz 1H3-H 3. 93s1H4-H 2. 28 ~ 2. 30d J = 12. 0 Hz1H5-H 2. 10 ~ 2. 14m3H1- H2-H eq 8-H eq 2. 06s3Ha'-H 1. 93d J = 3. 0 Hz1H8-H ax 1. 44 ~ 1. 48m1H2-1 H NMR δ5. 66s 1Ha -H 5. 12 ~ 5. 15dd H ax 1. 39s3H4-H 1. 18s3H10-H J = 6. 0 Hz5. 4 Hz1H3-H 4. 86 ~ 4. 87d 1. 17s3H9-H 13 C NMR δ170. 31 C b' J = 6. 0 Hz1H5-H 2. 23 s3ha'-h 82. 88 C 7 82. 32 C 4 73. 77 C 5 72. 20 C 3 41. 39 C 1 31. 31 C 8 30. 26 C 10 d f -H 1. 95 ~ 1. 96 m1h1-h 1. 80 ~ 29. 89 C 9 25. 18 C 2 23. 38 C a' 21. 22 C 4 IR ν3 4342 9732 9301 738 cm - 1 HR-MS m /zcalcd for C 12 H 20 4 M + 228. 136 2 found 228. 136 1 3b 16% 1 H NMR δ5. 06 ~ 5. 09dd J = 6. 6 Hz4. 8 Hz1H3-H 4. 81 ~ 4. 82d J = 6. 0 Hz1H5-H 2. 13 ~ 2. 11 d1h8- H eq 2. 03s3Ha -H 2. 00 ~ 2. 02m1H 1-H 1. 92 ~ 1. 93d1H2-H eq 1. 76 ~ 1. 77 dj = 6. 0 Hz1H8-H ax 1. 49 ~ 1. 51 dd J = 2. 4 Hz9. 0 Hz1H2-H ax 1. 43s3H4- H1. 40 s3h10-h 1. 16 s3h9-h 13 C NMR δ170. 89 C a 170. 12 C a' 83. 26 C 7 82. 47 C 4 79. 31 C 5 73. 43 C 3 41. 45C 1 31. 58 C 8 29. 89 C 10 29. 79 C 9 22. 59 C a' 22. 15 C a 21. 16 C 4 3b ~ 3d 19. 05 C 2 IR ν2 9641 737 cm - 1 HR-MS m /zcalcd for C 14 H 22 5 M + 270. 146 7found 270. 145 6 3c 37. 92% m. p. 108. 1 ~ 111. 0 1 H NMR δ5. 68s 1Ha'-H 5. 12 ~ 5. 15dd m1h1-h 1. 96 ~ 1. 97d1HJ = 3. 0 Hz 2-H eq 1. 79 ~ 1. 83 t1hj = 13. 2 Hz8- H ax 1. 49 ~ 1. 54m1H2-H ax 1. 47s3H 4-H 1. 41s3H10-H 1. 17s3H9-H 13 C NMR δ170. 76168. 22 C c' 164. 76 C 1 31. 53 C 8 29. 9529. 80 C f' 22. 56 C 9 21. 16 C 10 21. 11 C 4 19. 14 C 2 18. 25C a IR ν2 9922 9371 7701 730 1 7161 668 cm - 1 HR-MS m /zcalcd for C 18 H 26 7 M + 354. 167 9 found 354. 167 5 3d 25% m. p. 109. 3 ~ 111. 8 2. 14 ~ 2. 17m1H8-H eq 2. 00 ~ 2. 08s6H 1. 82 dj = 12. 6 Hz1H2-H eq 1. 67s1H 8-H ax 1. 51 ~ 1. 55 m1h2-h ax 1. 45 s 3H4-H 1. 42s3H10-H 1. 18s3H9- H 13 C NMR δ170. 98168. 05 C c C e 162. 69C b' 160. 21C b 108. 98C a 83. 35 C 7 82. 58 C 4 79. 49 C 5 73. 54 C 3 41. 51 C 1 31. 49 C 8 29. 9429. 84 C d C f 22. 65 C 9 21. 80 C 10 21. 24 C 4 21. 21C 2 19. 16 C a' IR ν2 9811 768 1 7271 668 cm - 1 HR-MS m /zcalcd for C 18 H 26 7 M + 354. 167 9 found 354. 167 5 1. 3 1 3a 20 105210. 5 0. 1mmol L -1 DMF 80 1 3a ~ 3d 15 15 h = 9 cm 10 ml 3 J = 6. 6 Hz4. 8 Hz1H3-H 4. 90 ~ 4. 91d DMF 80 J = 6. 0 Hz1H5-H 2. 32 s3ha -H 10 2. 17 ~ 2. 18 ddj = 2. 4 Hz1. 8 Hz1H8-25 4 d H eq 2. 15 ~ 2. 04s 6Hc' d'-h 1. 98 ~ 1. 99 2 2. 1 1. 2GC r n2 n1 1 3a ~ C b 163. 95C b' 111. 3C a' 83. 31C 7 3d
188 Vol. 232015 GC 1r 1 5 mmol 1. 2 r 3a ~ 3d 1 Table 1 r 1 * r 3a ~ 3d Effects of r on relative concentration of 3a ~ 3d /% 3a 3b 3c 3d 1 100 0 0 0 2 72. 5 15. 0 7. 5 5. 0 3 66. 0 21. 2 7. 95 4. 85 4 50. 7 36. 6 7. 86 4. 84 7 21. 6 15. 6 37. 9 24. 9 2 0. 5 h * 1 5 mmolr = n2 n1 1. 2 3a 3b3c 3d 1 r 3a ~ 3d 3a 3b3c 3d r = 1 3ar = 2 7. 0 h3a ~ 3d 3a3b ~ 3d 16% 50. 7% 36. 6% 7. 84% 4. 86% r 3a 1 3-3b 3c 3d 2 3a r = 4 3a 3b 3-4- r 3c 3d 3b3b 2 3c 3d 3a 3b 1 4-3- 2. 2 1 1 H NMR 2 1 1 H NMR 3a ~ 3d 1 4-3- 2 3-4-CH 3 7-CH 3 7-CH 3 4-2 δ 1. 10 ~ 1. 41 3a3- δ 2. 00 4-3c 3d d f-hδ 2. 08 ~ 2. 33 3b 2 3b α- 5. 66 ~ 5. 68 4-4-Hδ 2 1. 49 1 3- δ 3. 93 ~ 5. 152 8-3- 5- δ 2 3c 3d 2 13 C NMR 3b 13 C NMR 3a ~ 3d α- r > 23c 3d 2 1 5 mmolr = 4 2. 11 t3a ~ 3d 2 2 t /h Table 2 * 3a ~ 3d Effects of reaction time on relative concentration of 3a ~ 3d /% 3a 3b 3c 3d 0. 5 97. 6 2. 4 0 0 1. 0 85. 7 11. 7 1. 6 1. 0 5. 0 58. 8 31. 6 6. 8 2. 8 7. 0 50. 7 36. 6 7. 8 4. 9 * 1 5 mmolr = 4 1 a -Hδ C b δ 170 C d C f δ 168 164 C b δ 163 160 C c
3 189 3 Table 3 1 3a ~ 3d Inhibition rate of 1 and 3a ~ 3d on annual ryegrass c / /% mmol L - 1 1 3a 3b 3c 3d 0. 1 8. 2 13. 9 20. 2 21. 1 26. 7 51. 7 18. 3 26. 9 29. 2 29. 7 0. 5 10. 8 14. 7 36. 8 37. 2 30. 7 53. 6 59. 6 57. 9 49. 1 72. 0 1. 0 29. 4 19. 7 44. 7 44. 3 34. 2 56. 5 87. 2 84. 7 62. 7 83. 0 2. 0 30. 2 28. 3 62. 7 52. 2 71. 3 82. 1 88. 7 85. 8 88. 8 97. 3 5. 0 55. 1 34. 6 86. 0 76. 5 84. 2 92. 8 91. 3 94. 8 97. 5 98. 4 10. 0 76. 2 41. 1 98. 4 87. 4 100 100 100 100 100 100 20. 0 94. 8 72. 6 100 100 100 100 100 100 100 100 δ 110 2. 3 3 1 3a ~ 3d 4-7- δ 82 ~ 835-3- δ 79 73 3IR IR 3a - H mmol L - 1 5 mmol L - 1 1 3a ~ 3d 3 400 cm - 1 3b ~ 3d - H 8. 2% 20. 2% 26. 7% 1 710 cm - 1 ~ 1 775 cm - 1 18. 3% 29. 2% 55. 1% 86. 0% 1 668 cm - 1 84. 2% 91. 3% 97. 5% 13. 9% 21. 1% 51. 7% 26. 9% 29. 7% 4GC 55. 1% 76. 5% 92. 8% 94. 8% 98. 4% c 1 Figure 1 R t /min 3a ~ 3d GC GC spectra of 3a ~ 3d 3 1 3a ~ 3d c c 0. 1 20 mmol L - 1 3a ~ 3d 100% 3 1 3a ~ 3d 1 2 1 2 3a ~ 3d 3a ~ 3d 15 3d 3c 3d 3c 3 4 3a ~ 3d 1 5 mmolr = 7 7 h3a ~ 3d 21. 6% 15. 6% 37. 9% 24. 9% 1 3a ~ 3d GC 1 1 5 mmolr = 4 7 h 5 min 3a ~ 3d 50. 7% 36. 6% 2 5 min 7. 84% 4. 86% 1 3a ~ 3d 8. 85 3a ~ 3d min11. 19 min19. 55 min 20. 30 min
190 Vol. 232015 5 mmol L - 1 1 3a ~ 3d 55. 1% 86. 0% 84. 2% 91. 3% 97. 5% 55. 1% 8Barton ADell BKnight A. Herbicidal activity of cineole derivatives J. Journal of agricultural and food 76. 5% 92. 8% 94. 8% 98. 4% chemistry 2010 5818 10147-10155. 2 3- -1 8-41 9. 4 J. 2011 503 192-196. 1 3a ~ 3d 10. 4 1 J. 2012 324 12-15. 3a ~ 3d 11Chaskopoulou ALatham M DPereira R Met al. Efficacy of aerial ultra-low volume applications of two novel water-based formulations of unsynergized pyrethroids against riceland mosquitoes in GreeceJ. Journal of the American Mosquito Control Associa- 1Ghosh R KJana P KNongmaithem Det al. Prospects of botanical herbicides in system of crop intensification in the gangetic inceptisols of IndiaC. HangzhouProceedings of 6th International Workshop on Software Clones 2012. 2. J. 2010 426 91-93. 3Duke S Dayan F ERomagni J Get al. Natural products as sources of herbicidescurrent status and future trendsj. Weed Research-xford 2000 40 1 99-112. 4Dayan F EDuke S. Plant-derived Natural Products M. New YorkSpringer 2009. 5Grayson B TWilliams K SFreehauf P A et al. The physical and chemical properties of the herbicide cinmethylin J. Pestic Sci 1987 21143-153. 6. J. 2007 273 385-390. J. 1995 3412 41-42. 7Barton AClarke BDell B et al. Post-emergent herbicidal activity of cineole derivativesj. Journal of Pest Science 2014 873 531-541. tion 2011 274 414-422. 12ElShafei GElSaid M MAttia Het al. Environmentally friendly pesticidesessential oil-based w/o/w multiple emulsions for anti-fungal formulations J. Industrial crops and products 2010 311 99-106. 13Popova L ABiba V IPrishchenpenko V Met al. Synthesis of monoterpene oxabicyclodiols starting from alpha-pinene J. Journal of General Chemistry of the USSR in English translation 1992 621346-1350 1639-1645. 14Costa V VRocha K ASousa L F et al. Isomerization of α-pinene oxide over cerium and tin catalysts Selective synthesis of trans-carveol and trans-sobrerol P. CN 201 210 190 109 2012. 15. 3- -2 4-2015 1 20