ON THE GROUP OF TRANSFORMATIONS OF SYMMETRIC CONFORMAL METRICAL N-LINEAR CONNECTIONS ON A HAMILTON SPACE OF ORDER K.

Σχετικά έγγραφα
Congruence Classes of Invertible Matrices of Order 3 over F 2

2 Composition. Invertible Mappings

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Reminders: linear functions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homomorphism in Intuitionistic Fuzzy Automata

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Statistical Inference I Locally most powerful tests

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

Matrices and Determinants

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

EE512: Error Control Coding

On the conformal change of five-dimensional Finsler spaces

Example Sheet 3 Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Second Order Partial Differential Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

The k-α-exponential Function

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Lecture 13 - Root Space Decomposition II

Commutative Monoids in Intuitionistic Fuzzy Sets

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Every set of first-order formulas is equivalent to an independent set

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

derivation of the Laplacian from rectangular to spherical coordinates

A Note on Intuitionistic Fuzzy. Equivalence Relation

Homework 8 Model Solution Section

Tridiagonal matrices. Gérard MEURANT. October, 2008

R-COMPLEX FINSLER SPACES

Math221: HW# 1 solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

A note on Poisson-Lie algebroids (I)

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Space-Time Symmetries

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Section 8.3 Trigonometric Equations

Homomorphism of Intuitionistic Fuzzy Groups

If we restrict the domain of y = sin x to [ π 2, π 2

Monica PURCARU 1. Communicated to: Finsler Extensions of Relativity Theory, August 29 - September 4, 2011, Braşov, Romania

On a four-dimensional hyperbolic manifold with finite volume

C.S. 430 Assignment 6, Sample Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Strain gauge and rosettes

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Approximation of distance between locations on earth given by latitude and longitude

Homework 3 Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Concrete Mathematics Exercises from 30 September 2016

POISSON STRUCTURES ON LIE ALGEBROIDS

On the Galois Group of Linear Difference-Differential Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Parametrized Surfaces

CRASH COURSE IN PRECALCULUS

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Minimal Surfaces PDE as a Monge Ampère Type Equation

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Areas and Lengths in Polar Coordinates

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Higher Derivative Gravity Theories

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Symmetric Stress-Energy Tensor

Abstract Storage Devices

On a five dimensional Finsler space with vanishing v-connection vectors

SOME PROPERTIES OF FUZZY REAL NUMBERS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Srednicki Chapter 55

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

ST5224: Advanced Statistical Theory II

Generating Set of the Complete Semigroups of Binary Relations

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

dim(u) = n 1 and {v j } j i

Solution Series 9. i=1 x i and i=1 x i.

Lecture 15 - Root System Axiomatics

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

n=2 In the present paper, we introduce and investigate the following two more generalized

Areas and Lengths in Polar Coordinates

Uniform Convergence of Fourier Series Michael Taylor

Solutions to Exercise Sheet 5

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Lecture 10 - Representation Theory III: Theory of Weights

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

On the inverse problem of Lagrangian dynamics on Lie algebroids

5. Choice under Uncertainty

A summation formula ramified with hypergeometric function and involving recurrence relation

D Alembert s Solution to the Wave Equation

Fractional Colorings and Zykov Products of graphs

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Intuitionistic Fuzzy Ideals of Near Rings

F A S C I C U L I M A T H E M A T I C I

Transcript:

Bulletin of the Transilvania University of Braşov Vol 756 No. 1-2014 eries III: Mathematics Informatics Physics 57-72 ON THE GROUP OF TRANFORMATION OF YMMETRI ONFORMAL METRIAL N-LINEAR ONNETION ON A HAMILTON PAE OF ORDER Monica PURARU 1 Abstract In present paper we obtain in a Hamilton space of order k the transformation laws of the torsion and curvature tensor fields with respect to the transformations of the group T N of the transformations of N linear connections having the same nonlinear connection N. We also determine in a Hamilton space of order k the set of all metrical semisymmetric N linear connections ms T N in the case when the nonlinear connection is fixed and we prove that ms T N together with the composition of mappings s a group. We obtain some important invariants of group ms T N and give their properties. We also study the transformation laws of the torsion d tensor fields with respect to the transformations of the group ms T N. 2000 Mathematics ubject lassification: 53B05 ey words: Hamilton space of order k nonlinear connection N linear connection metrical N linear connection emetrical semisymmetric N linear connection transformations group subgroup torsion curvature invariants. 1 Introduction The notion of Hamilton space was introduced by R. Miron in [2] [3]. The Hamilton spaces appear as dual via Legendre transformation of the Lagrange spaces. Differential geometry of the dual bundle of k osculator bundle was introduced and studied by R. Miron [5]. In the present section we keep the general setting from R. Miron [5] and subsequently we recall only some needed notions. For more details see [5]. Let M be a real n dimensional manifold and let T k M π k M k 2 k N be the dual bundle of k osculator bundle or k cotangent bundle where the total space is: T k M = T k 1 M T M. 1.1 1 Transilvania University of Braşov Faculty of Mathematics and Informatics Iuliu Maniu 50 Braşov 500091 Romania e-mail: mpurcaru@unitbv.ro

58 Monica Purcaru Let x i y 1i... y k 1i p i i = 1 2... n be the local coordinates of a point u = x y 1... y k 1 p T k M in a local chart on T k M. The change of coordinates on the manifold T k M is: x i = x i x 1... x n det x i 0 x j ỹ 1i = xi y 1j x j... k 1 ỹ k 1i = ỹk 2i y 1j +... + k 1 ỹk 2i y k 1j x j y k 2j p i = xj p x i j. 1.2 We denote by T k M = T k M \ 0 where 0 : M T k M is the null section of the projection π k. Let us consider the tangent bundle of the differentiable manifold T k M : T T k M dπ k T k M where dπ k is the canonical projection and the vertical distribution V : u T k M V u T u T k M locally generated by the vector y k 1i fields:... at every point u T k M. y 1i The following F T k M linear mapping: J : χ T k M χ T k M defined by: J p i x i = y 1i J = y k 1i J y k 1i y 1i =... J y 2i y k 2i = = 0 J = 0 u T p k M 1.3 i is a tangent structure on T k M. We denote with N a nonlinear connection on the manifold T k M with the coefficients: j N i 1 x y 1... y k 1 p j... N i x y 1... y k 1 p N ij x y 1... y k 1 p k 1 i j = 1 2... n. The tangent space of T k M in the point u T k M is given by the direct sum of vector spaces: T u T k M = N 0u N 1u... N k 2u V k 1u W ku u T k M 1.4 A local adapted basis to the direct decomposition 1.4 is given by: x i... y 1i y k 1i i = 1 2... n 1.5 p i

On the group of transformations 59 where: = x i N j x i i... 1 y 1j N k 1 j i = y N j 1i y 1 i i... N j 1 y 2j i k 2... = y k 1i y k 1i p i = p i. y k 1j + N ij y k 1j p j 1.6 Under a change of local coordinates on T k M the vector fields of the adapted basis transform by the rule: x i = xj x i x j xj = y 1i x i... ỹ 1j xj = y k 1i x i The dual basis of the adapted basis 1.5 is given by: where: ỹ k 1j = xi p i x j p j. 1.7 x i y 1i... y k 1i p i 1.8 dx i = x i dy 1i = y 1i N i j x j 1... dy k 1i = y k 1i N i j y k 2j... N i j y 1j N i j x j 1 k 2 k 1 dp i = p i + N ji x j. 1.9 With respect to 1.2 the covector fields 1.8 are transformed by the rules: x i = xi x j ỹ 1i = xi y 1j... ỹ k 1i = xi y k 1j x j x j x j p i = xj p x i j. 1.10 Let D be an N linear connection on T k M with the local coefficients in the adapted basis 1.5 : DΓ N = H i i jh jh jh i α = 1... k 1. 1.11 An N linear connection D is uniquely represented in the adapted basis in the following form:

60 Monica Purcaru D x j D x j D D = H s x i ij x D s p i = Hsj i p s = y j y j D p j D p j x i p i s ij = i sj x j x s D x i = i js x s D p j p i = ij s p s. y i y j = H s ij α = 1... k 1 y s y βi s ij y βs = p s α β = 1... k 1 y i = i js y s α = 1... k 1 1.12 2 The transformations of the d tensors of torsion and curvature In the following we shall study the Abelian group T N. Its elements are the transformations t : DΓ N D Γ N given by see2.11-p.131 [6]: i i N j = N j α = 1... k 1 N ij = N ij H i jh = H i jh B i jh i i i jh = jh D jh α = 1... k 1 jh i = jh i D jh i i j h = 1 2... n. 2.1 Firstly we shall study the transformations of the d tensors of torsion of DΓ N. Proposition 2.1. The transformations of the Abelian group T N given by 2.1 lead to the transformations of the d tensors of torsion in the following way: r i jh = r i i i jh B jh = B jh B ijh = B ijh B h h ij = B ij 01 01 0 0 B ijh = B ijh B i jh R 0k 1 i jh = = B jh i R i jh = R i jh R i jh = R i jh... 01 01 02 02 R i jh R ijh = R ijh α β α β = 1... k 1 0k 1 0 0 T i jh = T i jh + B i hj B i jh i i i i jh = jh + D hj D jh jh i = jh i + 2.2 2.3 D hj jh i D i 2.4 γ i jh = γ i jh α β α β γ = 1... k 1 i jh α1 = i jh α1... i jh αk 1 = i jh αk 1 α = 1... k 1. 2.5

On the group of transformations 61 Proof. Using 5.3 5.3 5.3 p.131 [5] 5.12 p.135 [5] 6.3 p.161 [5] and 2.1 we have the results. Now we shall study the transformations of the d tensors of curvature of DΓ N. We get: Proposition 2.2. The transformations of the Abelian group T N given by 2.1 lead to the transformations of the d tensors of curvature in the following way: R i m jh = R i m jh D i ms R s jh... D i ms R s jh D is m R sjh 1 01 k 1 0k 1 0 B i mst s jh + A jh B s mj B i sh B i 2.6 mj h P mi jh = P m i jh B i mj h + D i mh j B i ms s jh + D i ms Hhj s + Bs mj D i sh D s mh B i sj D i ms B s jh... 1 α1 D B i ms k 1 αk 1 α = 1... k 1 P m i j h = P m i j h B i mj h +D ih m j Bi ms sh j D sh m B i sj D 1i ms B 1 j sh... D k 1 i ms s jh D is m B sjh D is mh h sj + Bs mj Dih s B j sh Dm is B h sj k 1 0 mi jh = m i β jh D i mj h + D i mh j D i ms s jh + D i ms s jh + β β β +D s mj D β i sh D β s mh D i sj D 1 i ms 1 mi j h = m i j h D i mj h + D ih m s jh... D is m B sjh α β α β = 1... k 1. j sh j Dm sh D i sj D i ms j sh... D i ms 1 α1 k 1 αk 1 jsh Dm is α = 1... k 1 k 1 D i ms s jh k 1 2.7 2.8 2.9 D i ms h sj D is m + D s mj D ih s h sj 2.10 m ijh = m ijh + D m is s jh + A jh D m ij h +D m sj D s ih 2.11 where A ij denotes the alternate summation and m m and m denote the h- covariant derivative the v α -covariant derivative and the w k -covariant derivative with respect to DΓN respectively α = 1... k 1. Proof. Using 6.4-p.161 [5] 2.1 and 5.2 -p.156 [5] we have the results. We shall consider the tensor fields: i m jh = R i m jh i 1 ms R s 01 jh... i k 1 ms R s 0k 1 jh is m R 0 sjh 2.12

62 Monica Purcaru P mi jh = A jh P m i jh i 1 ms B s α1 jh... i α = 1... k 1 k 1 ms B s αk 1 jh is m B sjh 2.13 P mi jh = P m i jh i 1 ms B s α1 jh... i k 1 ms B s αk 1 jh m is B sjh 2.14 α = 1... k 1 i P h i m j = A jh P h m j i 1 ms B sh 1 j... i k 1 ms B sh k 1 j mb is h 0 sj 2.15 P m i j h = P m i j h i 1 ms B sh 1 j... i k 1 ms B sh k 1 j is mb h 0 sj 2.16 mi jh = A jh mi jh = m i jh i m i j h = A jh mi jh i 1 1 ms 1 1 ms s jh i k 1 ms k 1 α β α β = 1... k 1 s jh... i k 1 ms k 1 α β α β = 1... k 1 i h m j i 1 ms sh α1 j... i α = 1... k 1 mi j h = m i j h i 1 ms sh α1 j... i s jh is m B sjh s jh is m B sjh k 1 ms sh αk 1 j m is h sj k 1 ms sh αk 1 j m is h 2.17 2.18 2.19 sj α = 1... k 1. 2.20 Proposition 2.3. By a transformation of the Abelian group T N given by 2.1 the tensor fields m i jh P mi jh P mi jh P i h m j P m i j h are transformed according to the following laws: m i jh mi jh m i j h mi j h i i m jh = m jh B i mst s jh + A jh B s mjb i sh B i mj h 2.21 P mi jh = P m i jh + D i ms T s jh Bi ms +B s mj D i sh D s mh B i sj B i mj s jh + A jh α = 1... k 1 h + D i mh j + 2.22 P mi jh = P mi jh Bmj i h + D i mh j B i ms s jh D i ms Hjh s + 2.23 +B s mj D i sh D s mh Bsj i α = 1... k 1

On the group of transformations 63 P i h m j = P i h m j + A jh Bmj i h + D ih m j B i msj sh DmH is sj h + +Bmj s Dih s Dm sh Bsj i α = 1... k 1 2.24 P m i j h = P m i j h B i mj h + D m ih j B i ms sh j m i jh = i m jh D i ms s β jh D i +D s mj D i β sh D s β mh D i sj β ms s D is mh h sj + Bs mj Dih s D i mj jh + A jh α β α β = 1... k 1 D sh m B i sj β h + D i β mh j + 2.25 2.26 m i jh = i m jh D i mj β h + D i β mh j D i ms s β jh + D i β ms s hj + +D s mj D i β sh D s β mh D i sj α β α β = 1... k 1 2.27 m i j h = m i j h + A jh +D s mj Ds ih D i mj h + Dm ih D sh m D i sj j j shdi ms h sj Dm+ is α = 1... k 1 2.28 i m h j = i m h j D i mj h + Dm ih j j shdi ms h sj Dm+ is +D s mj Ds ih Dm sh D i sj α = 1... k 1 2.29 Proof. From 2.7 we get: i i A jh P m jh = A jh P m jh + A jh +A jh B i mj D i ms H s hj Bi ms s jh + i h + D mh j + B s i s mj D sh D mh B i i s sj D ms B jh... 1 α1 s D B jh Dm is B sjh i ms k 1 αk 1

64 Monica Purcaru Using 2.306.3 -p.161[5] and 2.1 we have: i i i A jh P m jh = A jh P m jh D ms Tjh s Bi ms +A jh B i mj s jh + h + D i mh j + B s mj D i sh D s mh B i sj + +A jh i i s ms ms B jh +... + 1 1 α1 + m is m is B sjh. i i s ms ms B jh + k 1 k 1 αk 1 If we separate the terms and using 2.13 we get 2.22. Analogous we obtain the other formulas. 3 Metrical semisymmetric N linear connections of the space H kn Let H kn = M H be a Hamilton space of order k and let N be the canonical nonlinear connection of space H kn = M H [5] p.192. x i We consider the adapted basis... and its dual basis y 1i x i y 1i... y k 1i p i determined by N and by the distribution Wk. Let y k 1i p i g ij x y 1... y k 1 p = 1 2 H 3.1 2 p i p j be the fundamental tensor of the space H kn. The d-tensor field g ij being nonsingular on T k M there is a d-tensor field g ij covariant of order 2 symmetric uniquely determined at every point u T k M by g ij g jk = k i. 3.2 Definition 3.1. [5] An N linear connection D is called compatible to the fundamental tensor g ij of the Hamiltonian space of order k H kn = M H or it is metrical if g ij is covariant constant or absolutelyy parallel with respect to D i.e. g ij ij h = 0 g h = 0 g ij h = 0 α = 1... k 1. 3.3 The tensorial equations 3.3 imply: g ij h = 0 ij g h = 0 g ij h = 0 α = 1... k 1. 3.4

On the group of transformations 65 Theorem 3.1. [5] 1. In a Hamilton space of order k H kn = M H there is a unique N-linear connection D with the coefficients DΓ N = H i i i jh jh... jh jh i verifying the axioms: 1 k 1 1. N is the canonical nonlinear connection of H kn. 2. The fundamental tensor g ij is h v α and w k - covariant constant: g ij h = 0 gij h = 0 g ij h = 0. 3. DΓN is h v α and w k - torsion free T i jh = i jh = i jh = 0. α = 1... k 1 2. The connection DΓN has the coefficients given by the generalized hristoffel symbols: H i jh = 1 2 gis gsh x j i jh = 1 2 gis gsh i jh = 1 2 g is + g js x h g jh x s + g js g jh y j y h y s g sh p j + gjs p h gjh p s α = 1... k 1 3.5 3. This connection depends only on the fundamental function H of the space H kn and on the canonical nonlinear connection N. Definition 3.2. [5] The connection DΓN with the coefficients 3.5 will be denoted by ΓN and called canonical for the space H kn. The canonical metrical N-linear connection: ΓN has zero torsions Tjh i i jh jh i α = 1... k 1. The Obata s operators are given by: There is inferred: Ω ij hk = 1 h i 2 j k g hkg ij Ω ij hk = 1 h i 2 j k + g hkg ij. 3.6 Proposition 3.1. The Obata s operators have the following properties: Ω ir sj + Ω ir sj = i s r j 3.7 Ω ir sjω sn mr = Ω in mj Ω ir sjω sn mr = Ω in mj Ω ir sjω sn mr = Ω ir sjω sn mr = 0 3.8 Ω ir rj = Ω ir si = 0 Ω ir ij = 1 2 n 1 r j Ω ir ij = 1 2 n + 1 r j. 3.9 Theorem 3.2. [4] [5] There is a unique metrical connection DΓ N = H i jh i jh jh i α = 1... k 1 metrical with respect to the fundamental tensor g ij of space H kn having as torsion d tensor fields T i jh i jh i jh apriori given.

66 Monica Purcaru The coefficients of DΓ N have the following expressions: H i jh = 1 2 gis gsh + g js g jh x j x h x + s + 1 2 gis g sm T m jh g jm T m sh + g hm T m js i jh = 1 2 gis gsh + g js g jh + y j y h y s + 1 2 g gis sm m jh g jm m sh + g hm m jh i = 1 2 g g sh is p j + gjs p h gjh p s g sm jh m g jm sh m + g hm js m 1 2 g is js. 3.10 A class of metrical N-linear connections which has interesting properties is that of metrical semisymmetric N-linear connection. Definition 3.3. [1] An N linear connection on T k M is called semisymmetric if: T i jh = 1 i 2 j σ h + h i σ j i jh = 1 j i τ h + h i 2 τ j jh i = 1 j i 2 vh + i h v j α = 1... k 1 3.11 where σ τ χ T k M and v χ T k M. Theorem 3.3. The set of all metrical semisymmetric N linear connections with local coefficients DΓ N = H i i i jh jh... jh jh i is given by: 1 k 1 gjh g is σ s + σ j h i H i jh = 0 H i jh + 1 2 i jh = 0 where Γ N = i jh + 1 2 i jh = 0 i jh + 1 2 g jh g is τ s + τ g jh g is v s + v j i h 0H i jh 0 i jh... 1 0 k 1 α = 1... k 1 3.12 j i h i jh 0 jh i are the local coefficients of the canonical metrical N linear connection and σ τ χ T k M α = 1... k 1 and v χ T k M. Proof. Using Theorem 3.2 and Definition 3.3 we obtain the results by direct calculation. 4 The group of transformations of metrical semisymmetric N linear connections Let N be a given nonlinear connection on T k M.

On the group of transformations 67 Remark 4.1. The relations 3.12 give the transformations of metrical semisymmetric N linear connections of space H kn corresponding to the same nonlinear connection N. We shall denote a transformation of this form by: tσ τ v : DΓN DΓN α = 1... k 1. It is given by: H i jh = H i jh + 1 2 gjh g is σ s + σ j i h i jh = i jh + 1 2 g jh g is τ s + τ jh i α = 1... k 1 4.1 jh i = jh i + 1 2 g jh g is v s + v j i h. Thus we have: Theorem 4.1. The set ms T N of all transformations tσ τ v : DΓN DΓN α = 1... k 1 of metrical semisymmetric N linear connections given by 4.1 is an Abelian group together with the mapping product. This group acts on the set of all metrical semisymmetric N linear connections corresponding to the same nonlinear connection N transitively. Theorem 4.2. By means of a transformation 4.1 the tensor fields: i m jh P i m jh α = 1... k 1 P i h m j i m jh α β α β = 1... k 1 ijh m given in 2.12 2.13 2.15 2.17 and 2.11 are changed by the laws: i i m jh = m jh + A jh Ω ir jm σ rh 4.2 P m i jh = P m i jh + A jh Ω ir jm γ rh α = 1... k 1 4.3 i P h i m j = P h m j + A jh Ω ir jmσ r h +Ω ij rmv r h + Ω is rm H h sjv r + rh j σ s + 4.4 + 1 2 Ωij hm σ rv r + 1 4 h mg jr g is σ s v r + 1 4 i h g rmg js σ s v r 1 4 g jsg ih σ m v s 1 4 g jmg rh σ r v i m i i jh = m jh + A jh Ω ir τ jm rh α β α β = 1... k 1 4.5 where: γ m ijh = h ijh + A jh Ω ij rmv rh 4.6 σ rh = σ r σ h + σ r h + 1 4 g rh σ σ = g rs σ r σ s 4.7 rh = σ r τ h + σ h τ r γ = g σ rs r τ s + σ s τ r + σ r h + τ r h + 1 4 g rh γ α = 1... k 1 4.8

68 Monica Purcaru τ rh = τ τ = grs r τ β h + τ h τ r β τ r τ β s + τ s τ β r β + τ r h + τ r h + 1 4 g rh τ β α β α β = 1... k 1 4.9 v rh = v r v h + v r h 1 4 grh v v = g rs v r v s. 4.10 Proof. Using 2.1 and 4.1 we get: B i jh = 1 σj h i 2 + g jhg is σ s = Ω is i hj σ s D jh = 1 τ jh i 2 + g jhg is τ s = 4.11 Ω is hj τ s α = 1... k 1 D jh i = 1 v j i h + g jh g is v s = Ω jh si 2 vs. By applying Proposition 2.3 relations 3.11 and 4.11 we obtain the results. Using these results we can determine some invariants of group ms T N. To this end we eliminate σ ij γ ij τ ij and v ij from 4.2 4.3 4.5 and 4.6 and we obtain: Theorem 4.3. For n > 2 the following tensor fields: H m i jh N m i jh α = 1... k 1 M i m jh M ijh m are invariants of group ms N m i jh = P m i jh + 2 T N : i i H m jh = m jh + 2 n 2 A jh Ω ir jm n 2 A jh Ωir jm P rh rh g rh 4.12 2 n 1 g rh P α = 1 k 1 4.13 2 n 1 M m i i jh = m jh + 2 n 2 A jh Ωir jm rh g rh α β; α β = 1 k 1 2 n 1 4.14 M ijh m = ijh m + 2 n 2 A jh Ω ij rm rh grh 4.15 2 n 1 where: mj = i m ji = g mj mj P mj = P i m ji P = g mj P mj α = 1 k 1 mj = i m ji = g mj mj α β α β = 1 k 1 ij = ijm m = g ij ij.

On the group of transformations 69 In order to find other invariants of group ms T N let us consider the transformation formulas of the torsion d tensor fields by a transformation tσ τ v : DΓN DΓN α = 1... k 1 of metrical semisymmetric N linear connections of the space H kn corresponding to the same nonlinear connection N given by 4.1. Proposition 4.1. By a transformation 4.1 of metrical semisymmetric N linear connections corresponding to the same nonlinear connection N : tσ τ v : DΓN DΓN α = 1... k 1 the torsion tensor fields: r i i h jh B jh B ijh B ij B 01 0 ijh B jh i R 0α i jh T i jh R 0 ijh i jh i jh γ i jh α1 ijh... αk 1 ijh α β α β γ = 1... k 1 are transformed as follows: r i jh = r i i i jh B jh = B jh B h ij = B h ij B ijh = B ijh 0α 0α 0 0 B ijh = B ijh B jh i = B jh i α β α β = 1... k 1 i i R jh = R jh α = 1... k 1 R ijh = R ijh 0α 0α γ i jh = γ i jh α β α β = 1... k 1 α1 ijh = i jh... α1 αk 1 ijh = αk 1 ijh α = 1... k 1 T i jh = T i jh + 1 2 A jh σj i h i i jh = jh + 1 2 A jh τ jh i = jh i + 1 2 A jh v j i h i i h 4.16 We denote with: t i jh = A jh N i j t i jh = A jh y βh N jh p i t ih j α β = 1... k 1 N i j = A jh p h α = 1... k 1 4.17

70 Monica Purcaru t ijh = Σ ijh g im t t ijh = Σ ijh g im t m jh r ijh = Σ ijh g im r 0α 0α T ijh = Σ ijh g im T m jh m jh t h ij = Σ ijh g im t jmh α β α β = 1... k 1 m jh R ijh = Σ ijh g im R m jh 0α 0α ijh = Σ ijh γ α = 1... k 1 α = 1... k 1 R i jh = Σ ijh g im R mjh γ gim m jh α β α β = 1... k 1 4.18 h ij = Σ ijh g im mh j α1 α1 B 1 B i ijh = Σ ijh g im B m jh jh = Σ ijh g im B mjh m g im B jh 0 B ijh = Σ ijh 0 2 B... h ij = Σ ijh g im mh j αk 1 αk 1 α β α β = 1 k 1 α = 1 k 1 B i jh = Σ ijh g im B mjh α = 1 k 1 α β α β = 1 k 1 h ij = Σ ijh g im B mh j α = 1... k 1 m ijh = Σ ijh g im jh α = 1 k 1 ijh = Σ ijh g im jh m H ijh = Σ ijh A jh g jm H m jh ijh = Σ ijh A jh g jm m ih α = 1 k 1 ijh = Σ ijh A jh g jm ih m where Σ ijh... denotes the cyclic summation and with:

On the group of transformations 71 1 ijh = g im T m jh A jh g hm H m ij 2 ijh = g im m m jh A jh g hm ij α = 1... k 1 2 γ γ ijh m = A jh g hm ij 3 γ ijh = g mj γ m γ m ih + g im jh α β α β γ = 1... k 1 4.19 3 ijh = g im m jh A jh g hm m ij 1 ijh m = A ij g im B jh 2 ijh m = A jh g mj A ih B ih α β α β γ = 1... k 1. Remark 4.2. It is noted that are alternate 1 ijh 2 t 2 γ ijh ijh 3 ijh t h ij t ijh r ijh T ijh Rjh i ijh ijh 0α ijh 2 ijh H ijh ijh ijh are alternate with respect to: j h and 1 ijh are alternate with respect to i j. Theorem 4.4. The tensor fields: i R jh R ijh γ i jh 0α α1 i jh... r i jh 0α αk 1 ijh r ijh T γ ijh R ijh ijh Rjh i 0α 0α α1 B i jh 2 B h ij ijh ijh 1 ijh 2 ijh are invariants of the group ms T N. i h B jh B ijh B ij 0 t i jh t i jh t ih j h ij... 2 γ ijh ijh h ij B αk 1 3 γ ijh 3 B ijh B jh i t ijh t h ij t ijh ijh 1 B i ijh 1 ijh 2 jh B 0 ijh Proof. By means of transformations of the torsion given in 4.16 and using the notations: 4.17 4.18 and 4.19 from 4.1 we obtain the results by direct calculation.

72 Monica Purcaru Theorem 4.5. Between the invariants in Theorem 4.4 there exist the following relations: 1 Σ ijh ijh = T ijh + H 2 ijh = 0 Σ ijh ijh = ijh + ijh = 0 2 γ Σ ijh ijh = γ ijh γ Σ ijh 3 ijh = ijh + ijh = 0 Σ ijh ihj α β α β γ = 1... k 1 3 γ ijh = γ ijh + γ ihj α β α β γ = 1... k 1 1 Σ ijh ijh = B ijh B jih α β α β γ = 1... k 1 2 Σ ijh = A ih jih A ij B hij α β α β = 1... k 1 Σ ij ijh 3 γ B = 0 α β α β γ = 1... k 1. 4.20 Proof. Using notations 4.18 4.19 relations 4.1 and the definitions of the torsion d tensor fields given in [5] - p.161 we obtain the results. References [1] Atanasiu Gh. and Târnoveanu M. New aspects in the differential geometry of the second order cotangent bundle Univ. de Vest din Timişoara 90 2005 1-64. [2] Miron R. ur la geometrie des espaces Hamilton.R. Acad. ci. Paris er II 306 1988 no. 4 195-198. [3] Miron R. Hamilton Geometry Analele Şt. Univ. Iaşi s. I Mat. 35 1989 35-85. [4] Miron R. Hrimiuc D. himada H. and abău V.. The geometry of Hamilton and Lagrange spaces luwer Academic Publisher FTPH 118 2001. [5] Miron R.The Geometry of Higher- Order Hamilton paces. Applications to Hamiltonian Mechanics luwer Acad. Publ. FTPH. 2003. [6] Purcaru M. and Târnoveanu M. On the transformations groups of N-linear connections on teh dual bundle of k-tangent bundle. tudia Univ. Babeş Bolyai Math. 57 2012 no. 1 121-134.