RG analysis at higher orders in perturbativ QFTs in CMP

Σχετικά έγγραφα
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Pairs of Random Variables

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Homework 8 Model Solution Section

Partial Differential Equations in Biology The boundary element method. March 26, 2013

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

Example Sheet 3 Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Reminders: linear functions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Higher spin gauge theories and their CFT duals

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Matrices and Determinants

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Higher Derivative Gravity Theories

2 Composition. Invertible Mappings

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Approximation of distance between locations on earth given by latitude and longitude

Section 8.3 Trigonometric Equations

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

TMA4115 Matematikk 3

Space-Time Symmetries

Differential equations

Non-Gaussianity from Lifshitz Scalar

4.6 Autoregressive Moving Average Model ARMA(1,1)

Code Breaker. TEACHER s NOTES

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

derivation of the Laplacian from rectangular to spherical coordinates

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

UV fixed-point structure of the 3d Thirring model

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Other Test Constructions: Likelihood Ratio & Bayes Tests

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Lecture 26: Circular domains

Lifting Entry (continued)

Κύµατα παρουσία βαρύτητας

From the finite to the transfinite: Λµ-terms and streams

Tridiagonal matrices. Gérard MEURANT. October, 2008

D-term Dynamical SUSY Breaking

Areas and Lengths in Polar Coordinates

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Solar Neutrinos: Fluxes

Areas and Lengths in Polar Coordinates

Statistical Inference I Locally most powerful tests

CRASH COURSE IN PRECALCULUS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

SPECIAL FUNCTIONS and POLYNOMIALS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007


Differentiation exercise show differential equation

Solutions to Exercise Sheet 5

ERG for a Yukawa Theory in 3 Dimensions

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Prey-Taxis Holling-Tanner

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

EE512: Error Control Coding

Srednicki Chapter 55

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Προβολές και Μετασχηματισμοί Παρατήρησης

DYNAMICAL BEHAVIORS OF A DELAYED REACTION-DIFFUSION EQUATION. Zhihao Ge

MathCity.org Merging man and maths

Every set of first-order formulas is equivalent to an independent set

Spherical Coordinates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Notes on the Open Economy

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Η Ομάδα SL(2,C) και οι αναπαραστάσεις της

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Math 6 SL Probability Distributions Practice Test Mark Scheme

Homework 3 Solutions

Second Order Partial Differential Equations

þÿ»±íº »¹ Áà  : É º±¹ Ä þÿ Á³ Ä Å : ¼¹± ºÁ¹Ä¹º ±À Ä ¼

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

8.324 Relativistic Quantum Field Theory II

6. MAXIMUM LIKELIHOOD ESTIMATION

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

CE 530 Molecular Simulation

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Local Approximation with Kernels

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

The ε-pseudospectrum of a Matrix

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ Β ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ: ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ. Θέµα:

The Finite Element Method

The challenges of non-stable predicates

Fractional Colorings and Zykov Products of graphs

Hartree-Fock Theory. Solving electronic structure problem on computers

Models for Probabilistic Programs with an Adversary

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Transcript:

RG analysis at highr ordrs in prturbativ QFTs in CMP Nikolai Zrf Institut für Thortisch Physik Univrsity of Hidlbrg Humboldt Univrsity, Brlin 2017 [arxiv:1605.09423] & [arxiv:1703.08801] Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 1 / 37

Ovrviw 1 Motivation 2 Suprconducting Landau-Ginzburg 3 Gross-Nvu-Yukawa Modl 4 Summary & Outlook Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 2 / 37

Motivation Obtain rliabl & prcis prdictions In HEP th SM (QFT with L SM ) provids collidr obsrvabls Nw physics L ral = L SM +L X? Nw physics includs ralization of SUSY? (MSSM, nmssm,...) Origin of L SM? Origin of QFTs? How to procd? Build and run LHC to find nw physics Calculat obsrvabls at highr ordr in PT Invstigat on various QFTs (may not hav HEP rlvancy) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 3 / 37

Work in collaboration with... Univrsity of Albrta (Edmonton) Josph Macijko Chin-Hung Lin Univrsity of Hidlbrg Michal Schrr ( Köln) Luminita Mihaila Brnhard Ihrig DESY Zuthn Ptr Marquard Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 4 / 37

Whr to find QFTs? On th blackboard at th offic of my boss in Edmonton 1 γ γ 2 γ γ 3 γ γ 4 γ γ * * 5 γ γ * 6 γ γ * 7 γ γ * 8 γ γ * 9 γ γ * 10 γ γ * A.P.: Som condnsd mattr physics guy askd m how to calculat ths diagrams... Its only two loops. This should b asy for you. You can probably do it in a wk or two. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 5 / 37

Whr to find QFTs? At th offic of Josph Macijko in Edmonton L =i ψ/ ψ + µ 2 + m 2 2 +λ 2 4 + h( ψ T iσ 2 ψ + h.c.). Imaginary tim Landau-Ginzburg Lagrangian with Lornzian-symmtry. ψ: 2-componnt Dirac frmion : complx Coopr pair scalar-fild / = γ µ µ. +Clifford algbra: {γ µ,γ ν } = 2g µν. (Ex.Rp.: γ 0 = σ 3,γ 1 = σ 1,γ 2 = σ 2 ) iσ2 ǫ! Invariant SU(2) tnsors:,, ( a T = σa 2 ),. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 6 / 37

LET for Suprconductor Landau-Ginzburg Lagrangian with Lornzian-symmtry L =i ψ/ ψ + µ 2 + m 2 2 +λ 2 4 + h( ψ T iσ 2 ψ + h.c.). Smimtal phas Global U(1) symmtry for m 2 > 0 ψ iθ ψ, 2iθ, 0 0 = 0 = 0. Phastransition at Quantum Critical Point (QCP) for m 2 = 0 Suprconducting phas Spontanously brokn global U(1) symmtry for m 2 < 0 0 0 = 0 0. alias non-vanishing ordr paramtr 0 " Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 7 / 37

LET for Suprconductor Landau-Ginzburg Lagrangian with Lornzian-symmtry L =i ψ/ ψ + µ 2 + m 2 2 +λ 2 4 + h( ψ T iσ 2 ψ + h.c.). Bhavior λ(µ), h(µ) for small scal µ/low nrgy limit in d = 2+1 = 3 dimnsions at th QCP? Rsults for MS β-function at 1-loop PT in d = 4 ǫ [Scott Thomas 05]: h 2 = h 2 /(4π) 2,λ 2 = λ 2 /(4π) 2 β h 2 = dh2 d lnµ = ǫh2 + 12h 4, β λ 2 = dλ2 d lnµ = ǫλ2 + 20λ 4 + 8h 2 λ 2 16h 4, γ ψ = d ln Z ψ d lnµ = 4h2, γ = d ln Z d lnµ = 4h2. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 8 / 37

Rnormalization Do MS fild and coupling rdfinitions: 0 = Z, ψ ψ 0 = Z ψ ψ, λ λ 0 =µ ǫ/2 Z λ λ, h h 0 =µ ǫ/2 Z h h. Rnormalizd Landau-Ginzburg Lagrangian L =iz ψ ψ/ ψ + Z µ 2 + Z 4λ 2 µ ǫ 4 + Z ψψ hµ ǫ/2 ( ψ T iσ 2 ψ + h.c.). Z 4 =Z 2 λ Z2, Z ψψ = Z h Z Z ψ. Bar paramtrs and filds do not dpnd on µ. β, γ. dx 0 dµ = 0, X {h2,λ 2,ψ,}. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 9 / 37

How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37

How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z ψ (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37

How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z ψψ (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37

How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z 4 (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37

How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z (L = 2) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37

How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z ψ (L = 2) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37

How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z ψψ (L = 2) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37

How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z 4 (L = 2) +18 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37

How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z (L = 3) +21 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37

How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z ψ (L = 3) +13 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37

How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z ψψ (L = 3) +18 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37

How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z 4 (L = 3) +362 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37

How to obtain Zs? Chosing massiv tadpol kinmatics Us singl IR rgulator mass M in vry dnominator Expand in small xtrnal momnta pi /M 1 All intgrals ar 1-scal tadpol intgrals Us infrard rarrangmnt [Chtyrkin,Misiak,Munz] to consistntly subtract artificial trms M 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 11 / 37

How to obtain Zs? Chosing massiv tadpol kinmatics Us singl IR rgulator mass M in vry dnominator Expand in small xtrnal momnta pi /M 1 All intgrals ar 1-scal tadpol intgrals Us infrard rarrangmnt [Chtyrkin,Misiak,Munz] to consistntly subtract artificial trms M 2 Fully automatizd stup QGRAF [Noguira] q2 [Sidnstickr] xp [Sidnstickr] FORM [Vrmasrn & Co] MATAD [Stinhausr] OR CRUSHER [Marquard,Sidl] modifid majoranas.pl [Harlandr] RcalcPrfac [NZ] Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 11 / 37

Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ 0 â ( 1 2 ǫαβ ψ α ψ β ) ( 1 2 ǫ γδψ γ ψ δ ) â 0 S = + 1 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37

Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ 0 â ( 1 2 ǫαβ ψ α ψ β ) ( 1 2 ǫ γδψ γ ψ δ ) â 0 S = 1 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37

Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ Gnrat diagrams with quivalnt frmions S S = 1 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37

Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ Gnrat diagrams with quivalnt frmions S Chos a Dnnr currnt flow dirction & rcalculat sign of S * 0 â ( 1 2 ǫαβ ψ α ψ β ) ( 1 2 ǫ γδψ γ ψ δ ) â 0 S = 1 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37

Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ Gnrat diagrams with quivalnt frmions S Chos a Dnnr currnt flow dirction & rcalculat sign of S * 0 â ( 1 2 ǫαβ ψ α ψ β ) ( 1 2 ǫ γδψ γ ψ δ ) â 0 S = + 1 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37

Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ Gnrat diagrams with quivalnt frmions S Chos a Dnnr currnt flow dirction & rcalculat sign of S * 0 â ( 1 2 ǫαβ ψ α ψ β ) ( 1 2 ǫ γδψ γ ψ δ ) â 0 + using: S = + 1 2 S F = ψψ ( 1) S F. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37

Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ Gnrat diagrams with quivalnt frmions S Chos a Dnnr currnt flow dirction & rcalculat sign of S * 0 â ( 1 2 ǫαβ ψ α ψ β ) ( 1 2 ǫ γδψ γ ψ δ ) â 0 + using: S = + 1 2 S F = ψψ ( 1) S F. How to trat ǫ αβ in amplituds with FORM? Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37

How to ǫ αβ? Shorthands,,,. Ridr for sign controll Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37

How to ǫ αβ? Shorthands,,,. Ridr for sign controll Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37

How to ǫ αβ? Shorthands,,,. Ridr for sign controll Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37

How to ǫ αβ? Shorthands,,,. Ridr for sign controll Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37

How to ǫ αβ? Shorthands,,,. Ridr for sign controll Invarianc conditions [G(ω) = xp(i a Tω a )] ǫ α1 α 2 = G(ω) γ 1 α 1 G(ω) γ 2 α 2 ǫ γ1 γ 2, ǫ β 1β 2 = ǫ δ 1δ 2 G 1 (ω) β 1 δ 1 G 1 (ω) β 2 δ 2. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37

How to ǫ αβ? Shorthands,,,. Ridr for sign controll Invarianc condition ω 1,. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37

How to ǫ αβ? Shorthands,,,. Ridr for sign controll Invarianc condition ω 1,. Annihilation. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37

How to ǫ αβ? Shorthands,,,. Ridr for sign controll Invarianc condition ω 1,. Annihilation. ǫ can b mulatd by naiv anti-commuting γ 5 : {γ µ,γ 5 } = 0. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37

β and γ @ 3 Loops β h 2 = ǫh 2 + 12h 4 +8h 2 λ 4 64h 4 λ 2 + 8h 6 h 2 = h 2 /(4π) 2,λ 2 = λ 2 /(4π) 2 40h 2 λ 6 + 300h 4 λ 4 + 1632h 6 λ 2 [1652 576ζ 3 ]h 8, β λ 2 = ǫλ 2 + 20λ 4 + 8h 2 λ 2 16h 4 80h 2 λ 4 + 16h 4 λ 2 + 256h 6 240λ 6 +904h 2 λ 6 +[3832+3264ζ 3 ]h 4 λ 4 [8664+2688ζ 3 ]h 6 λ 2 [768+3072ζ 3 ]h 8 +[4936+3072ζ 3 ]λ 8, γ = 4h 2 24h 4 + 8λ 4 40λ 6 60h 2 λ 4 + 160h 4 λ 2 +[20+192ζ 3 ]h 6, γ ψ = 4h 2 16h 4 44h 2 λ 4 + 128h 4 λ 2 +[192ζ 3 4]h 6. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 14 / 37

β and γ @ 3 Loops whn λ = h: h 2 = h 2 /(4π) 2 β h 2 = ǫh 2 + 12h 4 48h 6 + 48h 8 (5+12ζ 3 ), β λ 2 = ǫh 2 + 12h 4 48h 6 + 48h 8 (5+12ζ 3 ), γ = 4h 2 16h 4 + 16h 6 (5+12ζ 3 ), γ ψ = 4h 2 16h 4 + 16h 6 (5+12ζ 3 ). Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 14 / 37

β and γ @ 3 Loops whn λ = h: h 2 = h 2 /(4π) 2 β h 2 β h 2 = ǫh 2 + 12h 4 48h 6 + 48h 8 (5+12ζ 3 ), γ = 4h 2 16h 4 + 16h 6 (5+12ζ 3 ),? = ( ǫ+3γ )h 2. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 14 / 37

RG Fixd Points Sarching for IR fixd points (µ 0) at d = 3: ( ) h 2,λ 2 = (0, 0), (unstabl) ( ) h 2,λ2 = ( 0, ǫ 20 + 3ǫ2 100 384ζ 3 103 20000 h 2 = λ2 = ǫ 12 + ǫ2 36 4ζ 3 1 144 ǫ3. (stabl) ǫ 3 ), (unstabl) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 15 / 37

RG Fixd Points Sarching for IR fixd points (µ 0) at d = 3: ( ) h 2,λ 2 = (0, 0), (unstabl) ( ) h 2,λ2 = ( 0, ǫ 20 + 3ǫ2 100 384ζ 3 103 20000 h 2 = λ2 = ǫ 12 + ǫ2 36 4ζ 3 1 144 ǫ3. (stabl) ǫ 3 ), (unstabl) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 15 / 37

RG Fixd Points Sarching for IR fixd points (µ 0) at d = 3: ( ) h 2,λ 2 = (0, 0), (unstabl) ( ) h 2,λ2 = ( 0, ǫ 20 + 3ǫ2 100 384ζ 3 103 20000 h 2 = λ2 = ǫ 12 + ǫ2 36 4ζ 3 1 144 ǫ3. (stabl) ǫ 3 ), (unstabl) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 15 / 37

RG Fixd Points Sarching for IR fixd points (µ 0) at d = 3: ( ) h 2,λ 2 = (0, 0), (unstabl) ( ) h 2,λ2 = ( 0, ǫ 20 + 3ǫ2 100 384ζ 3 103 20000 h 2 = λ2 = ǫ 12 + ǫ2 36 4ζ 3 1 144 ǫ3. (stabl) ǫ 3 ), (unstabl) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 15 / 37

Emrgnt SUSY PT 3-loop RG analysis around d = 4 ǫ supports dynamically mrgnt SUSY conjctur at d = 3 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 16 / 37

Emrgnt SUSY PT 3-loop RG analysis around d = 4 ǫ supports dynamically mrgnt SUSY conjctur at d = 3 At SUSY fixd point (λ 2 = h 2, m = 0) : ( L = d 2 θd 2 θφ Φ+ Φ(y) =(y)+ 2θψ(y)+θ 2 F(y), y µ =x µ iθγ µ θ. d 2 θ h ) 3 Φ3 + h.c., Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 16 / 37

Emrgnt SUSY PT 3-loop RG analysis around d = 4 ǫ supports dynamically mrgnt SUSY conjctur at d = 3 At SUSY fixd point (λ 2 = h 2, m = 0) : ( L = d 2 θd 2 θφ Φ+ Φ(y) =(y)+ 2θψ(y)+θ 2 F(y), y µ =x µ iθγ µ θ. d 2 θ h ) 3 Φ3 + h.c., SUSY non-rnormalization thorms Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 16 / 37

Emrgnt SUSY PT 3-loop RG analysis around d = 4 ǫ supports dynamically mrgnt SUSY conjctur at d = 3 At SUSY fixd point (λ 2 = h 2, m = 0) : ( L = d 2 θd 2 θφ Φ+ Φ(y) =(y)+ 2θψ(y)+θ 2 F(y), y µ =x µ iθγ µ θ. d 2 θ h ) 3 Φ3 + h.c., SUSY non-rnormalization thorms At th SUSY fixd point w chck: [Strasslr 03] γ = γ ψ = ǫ 3 +O(ǫ4 ). Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 16 / 37

Critical Exponnts Stability xponnt (ω 0 IR stabl/unstabl ) ω = dβ h 2(λ2 = h 2 ) dh 2 = ǫ 1 ( 1 h=h 3 ǫ2 + 18 + 2 ) 3 ζ 3 ǫ 3 +O(ǫ 4 ). Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 17 / 37

Critical Exponnts Stability xponnt (ω 0 IR stabl/unstabl ) ω = dβ h 2(λ2 = h 2 ) dh 2 = ǫ 1 ( 1 h=h 3 ǫ2 + 18 + 2 ) 3 ζ 3 ǫ 3 +O(ǫ 4 ). Corrlation lngth xponnt ν 1 =2+γ m 2, γ m 2 = d ln Z m 2 d lnµ, Z m 2m2 =m 2 0. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 17 / 37

Critical Exponnts Stability xponnt (ω 0 IR stabl/unstabl ) ω = dβ h 2(λ2 = h 2 ) dh 2 = ǫ 1 ( 1 h=h 3 ǫ2 + 18 + 2 ) 3 ζ 3 ǫ 3 +O(ǫ 4 ). Corrlation lngth xponnt ν 1 =2+γ m 2, γ m 2 = d ln Z m 2 d lnµ, Z m 2m2 =m 2 0. Using Grassmannian continuation of th SUSY Lagrangian γ m = dβ h 2(λ2 = h 2 ) 2 dh 2 = 3h 2 dγ h 2(λ 2 = h 2 ) h=h dh 2. h=h Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 17 / 37

Critical Exponnts Stability xponnt (ω 0 IR stabl/unstabl ) ω = dβ h 2(λ2 = h 2 ) dh 2 = ǫ 1 ( 1 h=h 3 ǫ2 + 18 + 2 ) 3 ζ 3 ǫ 3 +O(ǫ 4 ). Corrlation lngth xponnt ν 1 =2+γ m 2, γ m 2 = d ln Z m 2 d lnµ, Z m 2m2 =m 2 0. Using Grassmannian continuation of th SUSY Lagrangian γ m = dβ h 2(λ2 = h 2 ) 2 dh 2 = 3h 2 dγ h 2(λ 2 = h 2 ) h=h dh 2. h=h ν = 1 2 + 1 4 ǫ+ 1 ( 1 24 ǫ2 + 6 ζ 3 1 ) ǫ 3 +O(ǫ 4 ). 144 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 17 / 37

Critical Exponnts Naiv xtrapolation to d = 2+1 (ǫ = 1): ν 1 loop = 0.75, ν 2 loop 0.792, ν 3 loop 0.985. Bootstrap rsult [Bobv,El-Showk,Mazac,Paulos 15]: ν 0.917. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 18 / 37

Whr to find SUSY? @ LHC Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 19 / 37

Whr to find SUSY? @ LHC As EFT on th surfac of topological insulator @ th smimtal-suprconductor QCP [S.-S.L 07] Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 19 / 37

Gauging U(1) What happns to SUSY whn thr is a dynamical photon? µ D µ = µ + ia µ : L = i ψ/dψ + D µ 2 + m 2 2 + h( ψ T iσ 2 ψ + h.c.) +λ 2 4 + 1 4 F2 µν + 1 2ξ ( µa µ ) 2, F µν = µ A ν ν A µ, Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 20 / 37

Gauging U(1) What happns to SUSY whn thr is a dynamical photon? loops 1 2 3 3 27 502 4 27 455 2 17 301 5 107 3084 3 69 1996 3 64 1814 20 683 26961 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 20 / 37

Gauging U(1) What happns to SUSY whn thr is a dynamical photon? 2 G 0 h 2 = 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 20 / 37

W can do for... NEW: 4-loop rsult for β and γ @ = 0 (hr for λ = h): β h 2 = β λ 2 = ǫh 2 + 12h 4 48h 6 + 48h 8 (5+12ζ 3 ) 192h 10 (9+60ζ 3 18ζ 4 + 80ζ 5 ), γ ψ = γ = 4h 2 16h 4 + 16h 6 (5+12ζ 3 ) 64h 8 (9+60ζ 3 18ζ 4 + 80ζ 5 ). h 2 = λ 2 limit in agrmnt with Wss-Zumino modl [Avdv,Goroshni 82] Stability? ν = 0.5+0.25ǫ+0.042ǫ 2 + 0.193ǫ 3 0.494ǫ 4. Asymptotic Sris: Mor sophisticatd xtrapolations to d = 3 rquird! Padé: ν [2,3] 0.918... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 21 / 37

Intrmission Upcoming nxt: Gross-Nvu-Yukawa Modl Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 22 / 37

Whr to find QFTs? In Hidlbrg, on th way to lunch @ Marstall with Michal Schrr Th Gross-Nvu-Yukawa Modl: chiral Ising Univrsality Class (UC) L = ψ(/ + g)ψ + 1 2 (m2 2 µ )+λ4. chiral Hisnbrg UC (T a F = 1 2 σa su(2) ) L = ψ α (/ + g[t a F ]α β a)ψ β + 1 2 a(m 2 2 µ ) a +λ( a a ) 2. Lornzian-symmtry ψ: Dirac frmions. Rsult of lattic structur : ral spin-coupling scalar-fild / = γ µ µ. +Clifford algbra: {γ µ,γ ν } = 2g µν. Chiral symmtry (masslss frmions!) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 23 / 37

Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z, Z m 2 (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37

Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z ψ (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37

Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z ψψ (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37

Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z 4 (L = 1) +2 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37

Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z, Z m 2 (L = 2) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37

Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z ψ (L = 2) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37

Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z ψψ (L = 2) +4 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37

Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z 4 (L = 2) +86 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37

Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z, Z m 2 (L = 3) +29 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37

Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z ψ (L = 3) +24 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37

Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z ψψ (L = 3) +138 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37

Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z 4 (L = 3) +1469 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37

Ising vs Hisnbrg Hisnbrg diagrams factoriz: Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 25 / 37

Ising vs Hisnbrg Hisnbrg diagrams factoriz: Calculat color amplituds for gnric Li algbra with FORM packag COLOR [Ritbrgn,Schllkns,Vrmasrn 98] Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 25 / 37

Ising vs Hisnbrg Hisnbrg diagrams factoriz: Calculat color amplituds for gnric Li algbra with FORM packag COLOR [Ritbrgn,Schllkns,Vrmasrn 98] Color structur of 4 -vrtx: L 4 = λ( a a ) 2 = λ 3 a b c d (δ ab δ cd +δ ac δ bd +δ ad δ cb ). Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 25 / 37

What dos COLOR do? Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 26 / 37

What dos COLOR do? Exploits th Li algbra (adjoint rp.: Jacobi ID),. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 26 / 37

What dos COLOR do? Exploits th Li algbra (adjoint rp.: Jacobi ID),. to xprss scalar color amplituds ( us projctors) via,,,,,. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 26 / 37

What dos COLOR do? Exploits th Li algbra (adjoint rp.: Jacobi ID),. to xprss scalar color amplituds ( us projctors) via,,,,,. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 26 / 37

What dos COLOR do? Exploits th Li algbra (adjoint rp.: Jacobi ID),. to xprss scalar color amplituds ( us projctors) via,,,, & stuff that is irrducibl w.r.t to it,. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 26 / 37

What dos COLOR do? Explicit xampls,,. It dos not us,,... Not: d aab =0, daabc =0, I 3(A) =0. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 27 / 37

Rnormalizability Is th QFT with L = ψ α (/ + g[t a R] α β a)ψ β 1 2 a 2 µ a +λ( a a ) 2, a rnormalizabl thory in d = 4 whn w assum that T R oby a finit dimnsional simpl Li algbra? Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 28 / 37

Rnormalizability Is th QFT with L = ψ α (/ + g[t a R] α β a)ψ β 1 2 a 2 µ a +λ( a a ) 2, a rnormalizabl thory in d = 4 whn w assum that T R oby a finit dimnsional simpl Li algbra? Li algbra Btti numbrs A r SU(r+ 1) 2, 3,..., r+ 1 B r SO(2r+ 1) 2, 4, 6,..., 2r C r Sp(2r) 2, 4, 6,..., 2r D r SO(2r) 2, 4, 6,..., 2r 2, r G 2 2, 6 F 4 2, 6, 8, 12 E 6 2, 5, 6, 8, 9, 12 E 7 2, 6, 8, 10, 12, 14, 18 E 8 2, 8, 12, 14, 18, 20, 24, 30 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 28 / 37

Rnormalizability Just calculat th Zs and s what happns... 1-loop: Z x = 1+ n=1 δz (n) x δz (1) x = ( g 2 (4π) 2 i+j=1 ) i ( ) j λ 1 (4π) 2 ǫ N(1,1) x,i,j, N R. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 29 / 37

Rnormalizability Just calculat th Zs and s what happns... 2-loop: δz (2) x = ( g 2 (4π) 2 i+j=2 Z x = 1+ n=1 δz (n) x ) i ( ) j ( λ 1 (4π) 2 ǫ N(2,1) x,i,j + 1 ) ǫ 2 N(2,2) x,i,j, N R Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 29 / 37

Rnormalizability Just calculat th Zs and s what happns... Z x = 1+ n=1 δz (n) x 3-loop: δz (3) 4 = 1 ǫ ( g 2 (4π) 2 N (3,1) 4,4, 1 =N log(µ2 /M 2 )+... ) 4 ( ) 1 λ (4π) 2 N (3,1) 4,4, 1 +, Rnormalization constant Z 4 is non-local Thory is not rnormalizabl for a gnric simpl Li algbra Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 29 / 37

Rnormalizability Origin of th N (3,1) 4,4, 2 + d 44(R, R) log(µ 2 /M 2 ) trms @ 3-loop: + +... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 30 / 37

Rnormalizability Origin of th N (3,1) 4,4, 2 + d 44(R, R) log(µ 2 /M 2 ) trms @ 3-loop: + +... Alrady at 1-loop color structur d abcd divrgnt: + x 1 +x 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 30 / 37

Rnormalizability For simpl Li algbras which can mak up a fully symmtric d abcd th thory is not rnormalizabl Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 31 / 37

Rnormalizability For simpl Li algbras which can mak up a fully symmtric d abcd th thory is not rnormalizabl Li algbra Btti numbrs A r SU(r+ 1) 2, 3, 4,..., r+ 1 B r SO(2r+ 1) 2, 4, 6,..., 2r C r Sp(2r) 2, 4, 6,..., 2r D r SO(2r) 2, 4, 6,..., 2r 2, r G 2 2, 6 F 4 2, 6, 8, 12 E 6 2, 5, 6, 8, 9, 12 E 7 2, 6, 8, 10, 12, 14, 18 E 8 2, 8, 12, 14, 18, 20, 24, 30 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 31 / 37

Rnormalizability For simpl Li algbras which can mak up a fully symmtric d abcd th thory is not rnormalizabl Li algbra Btti numbrs A r SU(r+ 1) 2, 3, 4,..., r+ 1 B r SO(2r+ 1) 2, 4, 6,..., 2r C r Sp(2r) 2, 4, 6,..., 2r D r SO(2r) 2, 4, 6,..., 2r 2, r G 2 2, 6 F 4 2, 6, 8, 12 E 6 2, 5, 6, 8, 9, 12 E 7 2, 6, 8, 10, 12, 14, 18 E 8 2, 8, 12, 14, 18, 20, 24, 30 For all xcptional algbras th thory is rnormalizabl Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 31 / 37

Rnormalizability For simpl Li algbras which can mak up a fully symmtric d abcd th thory is not rnormalizabl Li algbra Btti numbrs A r SU(r+ 1) 2, 3, 4,..., r+ 1 B r SO(2r+ 1) 2, 4, 6,..., 2r C r Sp(2r) 2, 4, 6,..., 2r D r SO(2r) 2, 4, 6,..., 2r 2, r G 2 2, 6 F 4 2, 6, 8, 12 E 6 2, 5, 6, 8, 9, 12 E 7 2, 6, 8, 10, 12, 14, 18 E 8 2, 8, 12, 14, 18, 20, 24, 30 For all xcptional algbras th thory is rnormalizabl For SU(N), Sp(N), SO(N) with N < 4, 4, 5 th thory is rnormalizabl. Th numbr of indpndnt fully symmtric tnsors is th rank of a simpl Li algbra Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 31 / 37

Rnormalizability Can w fix Rnormalizability for SU(4+), Sp(4+), SO(5+)? Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 32 / 37

Rnormalizability Can w fix Rnormalizability for SU(4+), Sp(4+), SO(5+)? Ys, w can! L = ψ α (/ + g[t a R ]α β a)ψ β 1 2 a 2 µ a +λ( a a ) 2 +λ d abcd a b c d. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 32 / 37

Rnormalizability Can w fix Rnormalizability for SU(4+), Sp(4+), SO(5+)? Ys, w can! L = ψ α (/ + g[t a R ]α β a)ψ β 1 2 a 2 µ a +λ( a a ) 2 +λ d abcd a b c d. Calculat Zs in dp. of and for nw coupling 2-loop: Z 4 Non-trivial log(µ 2 /M 2 ) cancllation Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 32 / 37

Rnormalizability Can w fix Rnormalizability for SU(4+), Sp(4+), SO(5+)? Ys, w can! L = ψ α (/ + g[t a R ]α β a)ψ β 1 2 a 2 µ a +λ( a a ) 2 +λ d abcd a b c d. Calculat Zs in dp. of and for nw coupling 2-loop: Z 4 Non-trivial log(µ 2 /M 2 ) cancllation 3-loop: Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 32 / 37

Rnormalizability Can w fix Rnormalizability for SU(4+), Sp(4+), SO(5+)? Ys, w can! L = ψ α (/ + g[t a R ]α β a)ψ β 1 2 a 2 µ a +λ( a a ) 2 +λ d abcd a b c d. Calculat Zs in dp. of and for nw coupling 2-loop: Z 4 Non-trivial log(µ 2 /M 2 ) cancllation 3-loop: Condnsd mattr physics: T R SU(2). Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 32 / 37

β for Ising Numbr of Frmion flavours = N, g 2 8π 2 y, λ 8π 2 λ β y = ǫy+(3+2n)y 2 +24yλ(λ y) ( 9 8 + 6N) y 3 + y ( 1152(7+5N)y 2 λ+192(91 30N)yλ 2 64 + ( 912ζ 3 697+2N(67+112N + 432ζ 3 ) ) y 3 13824λ 3), β λ = ǫλ+36λ 2 + 4Nyλ Ny 2 +4Ny 3 + 7Ny 2 λ 72Nyλ 2 816λ 3 + 1 ( 6912(145 + 96ζ 3 )λ 4 32 + 49536Nyλ 3 48N(72N 361 648ζ 3 )y 2 λ 2 + 2N(1736N 4395 1872ζ 3 )y 3 λ + N(5 628N 384ζ 3 )y 4), 2-loop rsults [Rosnstin,Kovnr,Yu 93] Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 33 / 37

Fixd Point Analysis Numbr of frmion gnrations N = 2: Ising Hisnbrg g 2 PRELIMINARY λ [from Brnhard Ihrig s dsk] Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 34 / 37

Critical Exponnts (Chiral Ising) η x = γ x (y,λ ) N = 2 : ν 1 2 0.952ǫ+0.00723ǫ 2 0.0949ǫ 3 η ψ 0.0714ǫ 0.00671ǫ 2 0.0243ǫ 3 η 0.571ǫ+0.124ǫ 2 0.0278ǫ 3 N = 1 : ν 1 2 0.835ǫ 0.00571ǫ 2 0.0603ǫ 3 η ψ 0.1ǫ+0.0102ǫ 2 0.033ǫ 3 η 0.4ǫ+0.102ǫ 2 0.0632ǫ 3 N = 1/4 : ν 1 2 0.571ǫ 0.0204ǫ 2 + 0.024ǫ 3 η ψ 0.143ǫ+0.0408ǫ 2 0.048ǫ 3 η 0.143ǫ+0.0408ǫ 2 0.048ǫ 3 N = 0 : ν 1 2 0.333ǫ 0.117ǫ 2 + 0.125ǫ 3 η ψ 0.167ǫ+0.0478ǫ 2 0.0469ǫ 3 η 0.0185ǫ 2 + 0.0187ǫ 3 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 35 / 37

Critical Exponnts (Chiral Ising) N = 2 1/ν η η ψ this work (Padé [2/1]) 1.048 0.672 0.0740 (2+ǫ), (ǫ 4, Padé)[Gracy,Luth,Schrodr 16] 0.931 0.745 0.082 functional RG[Knorr 16] 0.994(2) 0.7765 0.0276 Mont Carlo[Chandraskharan,Li 13] 1.20(1) 0.62(1) 0.38(1) N = 1 1/ν η η ψ this work (Padé [2/1]) 1.166 0.463 0.102 functional RG[Knorr 16] 1.075(4) 0.5506 0.0645 Mont Carlo[Li,Jiang, Yao 15] 1.30 0.45(3) N = 1/4 1/ν η η ψ this work (Padé [2/1]) 1.419 0.162 0.162 functional RG[Hilmann,a 15] 1.408 0.180 0.180 conformal bootstrap[ilisiu,a 16] 0.164 0.164 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 36 / 37

Summary & Outlook Summary QFTs ar ETs If SUSY is not found at LHC on may tak a closr look at condnsd mattr systm on a dsk Kinmatics Symmtry Dp undrstanding of symmtris is rquird Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 37 / 37

Summary & Outlook Summary Outlook QFTs ar ETs If SUSY is not found at LHC on may tak a closr look at condnsd mattr systm on a dsk Kinmatics Symmtry Dp undrstanding of symmtris is rquird Hisnbrg Mor sophisticatd RG analysis (larg ordr bhavior?) Z m 2 for GNY at 4-loop XY-Modl Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 37 / 37

To backup slids Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 38

Suprspac d 2 θ 1 4 dθα dθ β ε αβ, d 2 θ 1 4 d θ α d θ β ε αβ, θ 2 θ α θ α = θ α ε αβ θ β, d 2 θd 2 θφ Φ = i ψ/ ψ + µ 2 + F 2. d 2 θ h 3 Φ3 = h 2 F + hψ T iσ 2 ψ. kintic trms supr potntial trms Auxiliary filds ar liminatd using EQM: F = h 2, F = h 2. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 39