RG analysis at highr ordrs in prturbativ QFTs in CMP Nikolai Zrf Institut für Thortisch Physik Univrsity of Hidlbrg Humboldt Univrsity, Brlin 2017 [arxiv:1605.09423] & [arxiv:1703.08801] Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 1 / 37
Ovrviw 1 Motivation 2 Suprconducting Landau-Ginzburg 3 Gross-Nvu-Yukawa Modl 4 Summary & Outlook Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 2 / 37
Motivation Obtain rliabl & prcis prdictions In HEP th SM (QFT with L SM ) provids collidr obsrvabls Nw physics L ral = L SM +L X? Nw physics includs ralization of SUSY? (MSSM, nmssm,...) Origin of L SM? Origin of QFTs? How to procd? Build and run LHC to find nw physics Calculat obsrvabls at highr ordr in PT Invstigat on various QFTs (may not hav HEP rlvancy) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 3 / 37
Work in collaboration with... Univrsity of Albrta (Edmonton) Josph Macijko Chin-Hung Lin Univrsity of Hidlbrg Michal Schrr ( Köln) Luminita Mihaila Brnhard Ihrig DESY Zuthn Ptr Marquard Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 4 / 37
Whr to find QFTs? On th blackboard at th offic of my boss in Edmonton 1 γ γ 2 γ γ 3 γ γ 4 γ γ * * 5 γ γ * 6 γ γ * 7 γ γ * 8 γ γ * 9 γ γ * 10 γ γ * A.P.: Som condnsd mattr physics guy askd m how to calculat ths diagrams... Its only two loops. This should b asy for you. You can probably do it in a wk or two. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 5 / 37
Whr to find QFTs? At th offic of Josph Macijko in Edmonton L =i ψ/ ψ + µ 2 + m 2 2 +λ 2 4 + h( ψ T iσ 2 ψ + h.c.). Imaginary tim Landau-Ginzburg Lagrangian with Lornzian-symmtry. ψ: 2-componnt Dirac frmion : complx Coopr pair scalar-fild / = γ µ µ. +Clifford algbra: {γ µ,γ ν } = 2g µν. (Ex.Rp.: γ 0 = σ 3,γ 1 = σ 1,γ 2 = σ 2 ) iσ2 ǫ! Invariant SU(2) tnsors:,, ( a T = σa 2 ),. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 6 / 37
LET for Suprconductor Landau-Ginzburg Lagrangian with Lornzian-symmtry L =i ψ/ ψ + µ 2 + m 2 2 +λ 2 4 + h( ψ T iσ 2 ψ + h.c.). Smimtal phas Global U(1) symmtry for m 2 > 0 ψ iθ ψ, 2iθ, 0 0 = 0 = 0. Phastransition at Quantum Critical Point (QCP) for m 2 = 0 Suprconducting phas Spontanously brokn global U(1) symmtry for m 2 < 0 0 0 = 0 0. alias non-vanishing ordr paramtr 0 " Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 7 / 37
LET for Suprconductor Landau-Ginzburg Lagrangian with Lornzian-symmtry L =i ψ/ ψ + µ 2 + m 2 2 +λ 2 4 + h( ψ T iσ 2 ψ + h.c.). Bhavior λ(µ), h(µ) for small scal µ/low nrgy limit in d = 2+1 = 3 dimnsions at th QCP? Rsults for MS β-function at 1-loop PT in d = 4 ǫ [Scott Thomas 05]: h 2 = h 2 /(4π) 2,λ 2 = λ 2 /(4π) 2 β h 2 = dh2 d lnµ = ǫh2 + 12h 4, β λ 2 = dλ2 d lnµ = ǫλ2 + 20λ 4 + 8h 2 λ 2 16h 4, γ ψ = d ln Z ψ d lnµ = 4h2, γ = d ln Z d lnµ = 4h2. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 8 / 37
Rnormalization Do MS fild and coupling rdfinitions: 0 = Z, ψ ψ 0 = Z ψ ψ, λ λ 0 =µ ǫ/2 Z λ λ, h h 0 =µ ǫ/2 Z h h. Rnormalizd Landau-Ginzburg Lagrangian L =iz ψ ψ/ ψ + Z µ 2 + Z 4λ 2 µ ǫ 4 + Z ψψ hµ ǫ/2 ( ψ T iσ 2 ψ + h.c.). Z 4 =Z 2 λ Z2, Z ψψ = Z h Z Z ψ. Bar paramtrs and filds do not dpnd on µ. β, γ. dx 0 dµ = 0, X {h2,λ 2,ψ,}. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 9 / 37
How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37
How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z ψ (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37
How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z ψψ (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37
How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z 4 (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37
How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z (L = 2) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37
How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z ψ (L = 2) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37
How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z ψψ (L = 2) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37
How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z 4 (L = 2) +18 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37
How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z (L = 3) +21 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37
How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z ψ (L = 3) +13 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37
How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z ψψ (L = 3) +18 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37
How to obtain Zs? Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z Z ψ Z ψψ Z 4 Exampl Diagrams Z 4 (L = 3) +362 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 10 / 37
How to obtain Zs? Chosing massiv tadpol kinmatics Us singl IR rgulator mass M in vry dnominator Expand in small xtrnal momnta pi /M 1 All intgrals ar 1-scal tadpol intgrals Us infrard rarrangmnt [Chtyrkin,Misiak,Munz] to consistntly subtract artificial trms M 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 11 / 37
How to obtain Zs? Chosing massiv tadpol kinmatics Us singl IR rgulator mass M in vry dnominator Expand in small xtrnal momnta pi /M 1 All intgrals ar 1-scal tadpol intgrals Us infrard rarrangmnt [Chtyrkin,Misiak,Munz] to consistntly subtract artificial trms M 2 Fully automatizd stup QGRAF [Noguira] q2 [Sidnstickr] xp [Sidnstickr] FORM [Vrmasrn & Co] MATAD [Stinhausr] OR CRUSHER [Marquard,Sidl] modifid majoranas.pl [Harlandr] RcalcPrfac [NZ] Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 11 / 37
Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ 0 â ( 1 2 ǫαβ ψ α ψ β ) ( 1 2 ǫ γδψ γ ψ δ ) â 0 S = + 1 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37
Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ 0 â ( 1 2 ǫαβ ψ α ψ β ) ( 1 2 ǫ γδψ γ ψ δ ) â 0 S = 1 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37
Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ Gnrat diagrams with quivalnt frmions S S = 1 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37
Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ Gnrat diagrams with quivalnt frmions S Chos a Dnnr currnt flow dirction & rcalculat sign of S * 0 â ( 1 2 ǫαβ ψ α ψ β ) ( 1 2 ǫ γδψ γ ψ δ ) â 0 S = 1 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37
Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ Gnrat diagrams with quivalnt frmions S Chos a Dnnr currnt flow dirction & rcalculat sign of S * 0 â ( 1 2 ǫαβ ψ α ψ β ) ( 1 2 ǫ γδψ γ ψ δ ) â 0 S = + 1 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37
Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ Gnrat diagrams with quivalnt frmions S Chos a Dnnr currnt flow dirction & rcalculat sign of S * 0 â ( 1 2 ǫαβ ψ α ψ β ) ( 1 2 ǫ γδψ γ ψ δ ) â 0 + using: S = + 1 2 S F = ψψ ( 1) S F. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37
Back in Wick s Gardn... Sign of Wick factor S is corrlatd with indx ordr in ǫ αβ Gnrat diagrams with quivalnt frmions S Chos a Dnnr currnt flow dirction & rcalculat sign of S * 0 â ( 1 2 ǫαβ ψ α ψ β ) ( 1 2 ǫ γδψ γ ψ δ ) â 0 + using: S = + 1 2 S F = ψψ ( 1) S F. How to trat ǫ αβ in amplituds with FORM? Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 12 / 37
How to ǫ αβ? Shorthands,,,. Ridr for sign controll Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37
How to ǫ αβ? Shorthands,,,. Ridr for sign controll Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37
How to ǫ αβ? Shorthands,,,. Ridr for sign controll Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37
How to ǫ αβ? Shorthands,,,. Ridr for sign controll Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37
How to ǫ αβ? Shorthands,,,. Ridr for sign controll Invarianc conditions [G(ω) = xp(i a Tω a )] ǫ α1 α 2 = G(ω) γ 1 α 1 G(ω) γ 2 α 2 ǫ γ1 γ 2, ǫ β 1β 2 = ǫ δ 1δ 2 G 1 (ω) β 1 δ 1 G 1 (ω) β 2 δ 2. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37
How to ǫ αβ? Shorthands,,,. Ridr for sign controll Invarianc condition ω 1,. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37
How to ǫ αβ? Shorthands,,,. Ridr for sign controll Invarianc condition ω 1,. Annihilation. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37
How to ǫ αβ? Shorthands,,,. Ridr for sign controll Invarianc condition ω 1,. Annihilation. ǫ can b mulatd by naiv anti-commuting γ 5 : {γ µ,γ 5 } = 0. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 13 / 37
β and γ @ 3 Loops β h 2 = ǫh 2 + 12h 4 +8h 2 λ 4 64h 4 λ 2 + 8h 6 h 2 = h 2 /(4π) 2,λ 2 = λ 2 /(4π) 2 40h 2 λ 6 + 300h 4 λ 4 + 1632h 6 λ 2 [1652 576ζ 3 ]h 8, β λ 2 = ǫλ 2 + 20λ 4 + 8h 2 λ 2 16h 4 80h 2 λ 4 + 16h 4 λ 2 + 256h 6 240λ 6 +904h 2 λ 6 +[3832+3264ζ 3 ]h 4 λ 4 [8664+2688ζ 3 ]h 6 λ 2 [768+3072ζ 3 ]h 8 +[4936+3072ζ 3 ]λ 8, γ = 4h 2 24h 4 + 8λ 4 40λ 6 60h 2 λ 4 + 160h 4 λ 2 +[20+192ζ 3 ]h 6, γ ψ = 4h 2 16h 4 44h 2 λ 4 + 128h 4 λ 2 +[192ζ 3 4]h 6. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 14 / 37
β and γ @ 3 Loops whn λ = h: h 2 = h 2 /(4π) 2 β h 2 = ǫh 2 + 12h 4 48h 6 + 48h 8 (5+12ζ 3 ), β λ 2 = ǫh 2 + 12h 4 48h 6 + 48h 8 (5+12ζ 3 ), γ = 4h 2 16h 4 + 16h 6 (5+12ζ 3 ), γ ψ = 4h 2 16h 4 + 16h 6 (5+12ζ 3 ). Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 14 / 37
β and γ @ 3 Loops whn λ = h: h 2 = h 2 /(4π) 2 β h 2 β h 2 = ǫh 2 + 12h 4 48h 6 + 48h 8 (5+12ζ 3 ), γ = 4h 2 16h 4 + 16h 6 (5+12ζ 3 ),? = ( ǫ+3γ )h 2. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 14 / 37
RG Fixd Points Sarching for IR fixd points (µ 0) at d = 3: ( ) h 2,λ 2 = (0, 0), (unstabl) ( ) h 2,λ2 = ( 0, ǫ 20 + 3ǫ2 100 384ζ 3 103 20000 h 2 = λ2 = ǫ 12 + ǫ2 36 4ζ 3 1 144 ǫ3. (stabl) ǫ 3 ), (unstabl) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 15 / 37
RG Fixd Points Sarching for IR fixd points (µ 0) at d = 3: ( ) h 2,λ 2 = (0, 0), (unstabl) ( ) h 2,λ2 = ( 0, ǫ 20 + 3ǫ2 100 384ζ 3 103 20000 h 2 = λ2 = ǫ 12 + ǫ2 36 4ζ 3 1 144 ǫ3. (stabl) ǫ 3 ), (unstabl) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 15 / 37
RG Fixd Points Sarching for IR fixd points (µ 0) at d = 3: ( ) h 2,λ 2 = (0, 0), (unstabl) ( ) h 2,λ2 = ( 0, ǫ 20 + 3ǫ2 100 384ζ 3 103 20000 h 2 = λ2 = ǫ 12 + ǫ2 36 4ζ 3 1 144 ǫ3. (stabl) ǫ 3 ), (unstabl) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 15 / 37
RG Fixd Points Sarching for IR fixd points (µ 0) at d = 3: ( ) h 2,λ 2 = (0, 0), (unstabl) ( ) h 2,λ2 = ( 0, ǫ 20 + 3ǫ2 100 384ζ 3 103 20000 h 2 = λ2 = ǫ 12 + ǫ2 36 4ζ 3 1 144 ǫ3. (stabl) ǫ 3 ), (unstabl) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 15 / 37
Emrgnt SUSY PT 3-loop RG analysis around d = 4 ǫ supports dynamically mrgnt SUSY conjctur at d = 3 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 16 / 37
Emrgnt SUSY PT 3-loop RG analysis around d = 4 ǫ supports dynamically mrgnt SUSY conjctur at d = 3 At SUSY fixd point (λ 2 = h 2, m = 0) : ( L = d 2 θd 2 θφ Φ+ Φ(y) =(y)+ 2θψ(y)+θ 2 F(y), y µ =x µ iθγ µ θ. d 2 θ h ) 3 Φ3 + h.c., Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 16 / 37
Emrgnt SUSY PT 3-loop RG analysis around d = 4 ǫ supports dynamically mrgnt SUSY conjctur at d = 3 At SUSY fixd point (λ 2 = h 2, m = 0) : ( L = d 2 θd 2 θφ Φ+ Φ(y) =(y)+ 2θψ(y)+θ 2 F(y), y µ =x µ iθγ µ θ. d 2 θ h ) 3 Φ3 + h.c., SUSY non-rnormalization thorms Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 16 / 37
Emrgnt SUSY PT 3-loop RG analysis around d = 4 ǫ supports dynamically mrgnt SUSY conjctur at d = 3 At SUSY fixd point (λ 2 = h 2, m = 0) : ( L = d 2 θd 2 θφ Φ+ Φ(y) =(y)+ 2θψ(y)+θ 2 F(y), y µ =x µ iθγ µ θ. d 2 θ h ) 3 Φ3 + h.c., SUSY non-rnormalization thorms At th SUSY fixd point w chck: [Strasslr 03] γ = γ ψ = ǫ 3 +O(ǫ4 ). Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 16 / 37
Critical Exponnts Stability xponnt (ω 0 IR stabl/unstabl ) ω = dβ h 2(λ2 = h 2 ) dh 2 = ǫ 1 ( 1 h=h 3 ǫ2 + 18 + 2 ) 3 ζ 3 ǫ 3 +O(ǫ 4 ). Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 17 / 37
Critical Exponnts Stability xponnt (ω 0 IR stabl/unstabl ) ω = dβ h 2(λ2 = h 2 ) dh 2 = ǫ 1 ( 1 h=h 3 ǫ2 + 18 + 2 ) 3 ζ 3 ǫ 3 +O(ǫ 4 ). Corrlation lngth xponnt ν 1 =2+γ m 2, γ m 2 = d ln Z m 2 d lnµ, Z m 2m2 =m 2 0. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 17 / 37
Critical Exponnts Stability xponnt (ω 0 IR stabl/unstabl ) ω = dβ h 2(λ2 = h 2 ) dh 2 = ǫ 1 ( 1 h=h 3 ǫ2 + 18 + 2 ) 3 ζ 3 ǫ 3 +O(ǫ 4 ). Corrlation lngth xponnt ν 1 =2+γ m 2, γ m 2 = d ln Z m 2 d lnµ, Z m 2m2 =m 2 0. Using Grassmannian continuation of th SUSY Lagrangian γ m = dβ h 2(λ2 = h 2 ) 2 dh 2 = 3h 2 dγ h 2(λ 2 = h 2 ) h=h dh 2. h=h Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 17 / 37
Critical Exponnts Stability xponnt (ω 0 IR stabl/unstabl ) ω = dβ h 2(λ2 = h 2 ) dh 2 = ǫ 1 ( 1 h=h 3 ǫ2 + 18 + 2 ) 3 ζ 3 ǫ 3 +O(ǫ 4 ). Corrlation lngth xponnt ν 1 =2+γ m 2, γ m 2 = d ln Z m 2 d lnµ, Z m 2m2 =m 2 0. Using Grassmannian continuation of th SUSY Lagrangian γ m = dβ h 2(λ2 = h 2 ) 2 dh 2 = 3h 2 dγ h 2(λ 2 = h 2 ) h=h dh 2. h=h ν = 1 2 + 1 4 ǫ+ 1 ( 1 24 ǫ2 + 6 ζ 3 1 ) ǫ 3 +O(ǫ 4 ). 144 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 17 / 37
Critical Exponnts Naiv xtrapolation to d = 2+1 (ǫ = 1): ν 1 loop = 0.75, ν 2 loop 0.792, ν 3 loop 0.985. Bootstrap rsult [Bobv,El-Showk,Mazac,Paulos 15]: ν 0.917. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 18 / 37
Whr to find SUSY? @ LHC Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 19 / 37
Whr to find SUSY? @ LHC As EFT on th surfac of topological insulator @ th smimtal-suprconductor QCP [S.-S.L 07] Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 19 / 37
Gauging U(1) What happns to SUSY whn thr is a dynamical photon? µ D µ = µ + ia µ : L = i ψ/dψ + D µ 2 + m 2 2 + h( ψ T iσ 2 ψ + h.c.) +λ 2 4 + 1 4 F2 µν + 1 2ξ ( µa µ ) 2, F µν = µ A ν ν A µ, Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 20 / 37
Gauging U(1) What happns to SUSY whn thr is a dynamical photon? loops 1 2 3 3 27 502 4 27 455 2 17 301 5 107 3084 3 69 1996 3 64 1814 20 683 26961 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 20 / 37
Gauging U(1) What happns to SUSY whn thr is a dynamical photon? 2 G 0 h 2 = 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 20 / 37
W can do for... NEW: 4-loop rsult for β and γ @ = 0 (hr for λ = h): β h 2 = β λ 2 = ǫh 2 + 12h 4 48h 6 + 48h 8 (5+12ζ 3 ) 192h 10 (9+60ζ 3 18ζ 4 + 80ζ 5 ), γ ψ = γ = 4h 2 16h 4 + 16h 6 (5+12ζ 3 ) 64h 8 (9+60ζ 3 18ζ 4 + 80ζ 5 ). h 2 = λ 2 limit in agrmnt with Wss-Zumino modl [Avdv,Goroshni 82] Stability? ν = 0.5+0.25ǫ+0.042ǫ 2 + 0.193ǫ 3 0.494ǫ 4. Asymptotic Sris: Mor sophisticatd xtrapolations to d = 3 rquird! Padé: ν [2,3] 0.918... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 21 / 37
Intrmission Upcoming nxt: Gross-Nvu-Yukawa Modl Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 22 / 37
Whr to find QFTs? In Hidlbrg, on th way to lunch @ Marstall with Michal Schrr Th Gross-Nvu-Yukawa Modl: chiral Ising Univrsality Class (UC) L = ψ(/ + g)ψ + 1 2 (m2 2 µ )+λ4. chiral Hisnbrg UC (T a F = 1 2 σa su(2) ) L = ψ α (/ + g[t a F ]α β a)ψ β + 1 2 a(m 2 2 µ ) a +λ( a a ) 2. Lornzian-symmtry ψ: Dirac frmions. Rsult of lattic structur : ral spin-coupling scalar-fild / = γ µ µ. +Clifford algbra: {γ µ,γ ν } = 2g µν. Chiral symmtry (masslss frmions!) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 23 / 37
Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z, Z m 2 (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37
Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z ψ (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37
Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z ψψ (L = 1) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37
Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z 4 (L = 1) +2 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37
Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z, Z m 2 (L = 2) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37
Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z ψ (L = 2) Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37
Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z ψψ (L = 2) +4 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37
Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z 4 (L = 2) +86 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37
Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z, Z m 2 (L = 3) +29 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37
Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z ψ (L = 3) +24 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37
Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z ψψ (L = 3) +138 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37
Rlvant Diagrams Using DREG gt pols in small ǫ = 4 d of 1-PI n-point functions at L = 1, 2, 3,... loops for any kinmatics Z, Z m 2 Z ψ Z ψψ Z 4 Exampl Diagrams Z 4 (L = 3) +1469 mor... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 24 / 37
Ising vs Hisnbrg Hisnbrg diagrams factoriz: Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 25 / 37
Ising vs Hisnbrg Hisnbrg diagrams factoriz: Calculat color amplituds for gnric Li algbra with FORM packag COLOR [Ritbrgn,Schllkns,Vrmasrn 98] Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 25 / 37
Ising vs Hisnbrg Hisnbrg diagrams factoriz: Calculat color amplituds for gnric Li algbra with FORM packag COLOR [Ritbrgn,Schllkns,Vrmasrn 98] Color structur of 4 -vrtx: L 4 = λ( a a ) 2 = λ 3 a b c d (δ ab δ cd +δ ac δ bd +δ ad δ cb ). Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 25 / 37
What dos COLOR do? Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 26 / 37
What dos COLOR do? Exploits th Li algbra (adjoint rp.: Jacobi ID),. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 26 / 37
What dos COLOR do? Exploits th Li algbra (adjoint rp.: Jacobi ID),. to xprss scalar color amplituds ( us projctors) via,,,,,. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 26 / 37
What dos COLOR do? Exploits th Li algbra (adjoint rp.: Jacobi ID),. to xprss scalar color amplituds ( us projctors) via,,,,,. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 26 / 37
What dos COLOR do? Exploits th Li algbra (adjoint rp.: Jacobi ID),. to xprss scalar color amplituds ( us projctors) via,,,, & stuff that is irrducibl w.r.t to it,. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 26 / 37
What dos COLOR do? Explicit xampls,,. It dos not us,,... Not: d aab =0, daabc =0, I 3(A) =0. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 27 / 37
Rnormalizability Is th QFT with L = ψ α (/ + g[t a R] α β a)ψ β 1 2 a 2 µ a +λ( a a ) 2, a rnormalizabl thory in d = 4 whn w assum that T R oby a finit dimnsional simpl Li algbra? Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 28 / 37
Rnormalizability Is th QFT with L = ψ α (/ + g[t a R] α β a)ψ β 1 2 a 2 µ a +λ( a a ) 2, a rnormalizabl thory in d = 4 whn w assum that T R oby a finit dimnsional simpl Li algbra? Li algbra Btti numbrs A r SU(r+ 1) 2, 3,..., r+ 1 B r SO(2r+ 1) 2, 4, 6,..., 2r C r Sp(2r) 2, 4, 6,..., 2r D r SO(2r) 2, 4, 6,..., 2r 2, r G 2 2, 6 F 4 2, 6, 8, 12 E 6 2, 5, 6, 8, 9, 12 E 7 2, 6, 8, 10, 12, 14, 18 E 8 2, 8, 12, 14, 18, 20, 24, 30 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 28 / 37
Rnormalizability Just calculat th Zs and s what happns... 1-loop: Z x = 1+ n=1 δz (n) x δz (1) x = ( g 2 (4π) 2 i+j=1 ) i ( ) j λ 1 (4π) 2 ǫ N(1,1) x,i,j, N R. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 29 / 37
Rnormalizability Just calculat th Zs and s what happns... 2-loop: δz (2) x = ( g 2 (4π) 2 i+j=2 Z x = 1+ n=1 δz (n) x ) i ( ) j ( λ 1 (4π) 2 ǫ N(2,1) x,i,j + 1 ) ǫ 2 N(2,2) x,i,j, N R Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 29 / 37
Rnormalizability Just calculat th Zs and s what happns... Z x = 1+ n=1 δz (n) x 3-loop: δz (3) 4 = 1 ǫ ( g 2 (4π) 2 N (3,1) 4,4, 1 =N log(µ2 /M 2 )+... ) 4 ( ) 1 λ (4π) 2 N (3,1) 4,4, 1 +, Rnormalization constant Z 4 is non-local Thory is not rnormalizabl for a gnric simpl Li algbra Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 29 / 37
Rnormalizability Origin of th N (3,1) 4,4, 2 + d 44(R, R) log(µ 2 /M 2 ) trms @ 3-loop: + +... Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 30 / 37
Rnormalizability Origin of th N (3,1) 4,4, 2 + d 44(R, R) log(µ 2 /M 2 ) trms @ 3-loop: + +... Alrady at 1-loop color structur d abcd divrgnt: + x 1 +x 2 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 30 / 37
Rnormalizability For simpl Li algbras which can mak up a fully symmtric d abcd th thory is not rnormalizabl Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 31 / 37
Rnormalizability For simpl Li algbras which can mak up a fully symmtric d abcd th thory is not rnormalizabl Li algbra Btti numbrs A r SU(r+ 1) 2, 3, 4,..., r+ 1 B r SO(2r+ 1) 2, 4, 6,..., 2r C r Sp(2r) 2, 4, 6,..., 2r D r SO(2r) 2, 4, 6,..., 2r 2, r G 2 2, 6 F 4 2, 6, 8, 12 E 6 2, 5, 6, 8, 9, 12 E 7 2, 6, 8, 10, 12, 14, 18 E 8 2, 8, 12, 14, 18, 20, 24, 30 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 31 / 37
Rnormalizability For simpl Li algbras which can mak up a fully symmtric d abcd th thory is not rnormalizabl Li algbra Btti numbrs A r SU(r+ 1) 2, 3, 4,..., r+ 1 B r SO(2r+ 1) 2, 4, 6,..., 2r C r Sp(2r) 2, 4, 6,..., 2r D r SO(2r) 2, 4, 6,..., 2r 2, r G 2 2, 6 F 4 2, 6, 8, 12 E 6 2, 5, 6, 8, 9, 12 E 7 2, 6, 8, 10, 12, 14, 18 E 8 2, 8, 12, 14, 18, 20, 24, 30 For all xcptional algbras th thory is rnormalizabl Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 31 / 37
Rnormalizability For simpl Li algbras which can mak up a fully symmtric d abcd th thory is not rnormalizabl Li algbra Btti numbrs A r SU(r+ 1) 2, 3, 4,..., r+ 1 B r SO(2r+ 1) 2, 4, 6,..., 2r C r Sp(2r) 2, 4, 6,..., 2r D r SO(2r) 2, 4, 6,..., 2r 2, r G 2 2, 6 F 4 2, 6, 8, 12 E 6 2, 5, 6, 8, 9, 12 E 7 2, 6, 8, 10, 12, 14, 18 E 8 2, 8, 12, 14, 18, 20, 24, 30 For all xcptional algbras th thory is rnormalizabl For SU(N), Sp(N), SO(N) with N < 4, 4, 5 th thory is rnormalizabl. Th numbr of indpndnt fully symmtric tnsors is th rank of a simpl Li algbra Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 31 / 37
Rnormalizability Can w fix Rnormalizability for SU(4+), Sp(4+), SO(5+)? Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 32 / 37
Rnormalizability Can w fix Rnormalizability for SU(4+), Sp(4+), SO(5+)? Ys, w can! L = ψ α (/ + g[t a R ]α β a)ψ β 1 2 a 2 µ a +λ( a a ) 2 +λ d abcd a b c d. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 32 / 37
Rnormalizability Can w fix Rnormalizability for SU(4+), Sp(4+), SO(5+)? Ys, w can! L = ψ α (/ + g[t a R ]α β a)ψ β 1 2 a 2 µ a +λ( a a ) 2 +λ d abcd a b c d. Calculat Zs in dp. of and for nw coupling 2-loop: Z 4 Non-trivial log(µ 2 /M 2 ) cancllation Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 32 / 37
Rnormalizability Can w fix Rnormalizability for SU(4+), Sp(4+), SO(5+)? Ys, w can! L = ψ α (/ + g[t a R ]α β a)ψ β 1 2 a 2 µ a +λ( a a ) 2 +λ d abcd a b c d. Calculat Zs in dp. of and for nw coupling 2-loop: Z 4 Non-trivial log(µ 2 /M 2 ) cancllation 3-loop: Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 32 / 37
Rnormalizability Can w fix Rnormalizability for SU(4+), Sp(4+), SO(5+)? Ys, w can! L = ψ α (/ + g[t a R ]α β a)ψ β 1 2 a 2 µ a +λ( a a ) 2 +λ d abcd a b c d. Calculat Zs in dp. of and for nw coupling 2-loop: Z 4 Non-trivial log(µ 2 /M 2 ) cancllation 3-loop: Condnsd mattr physics: T R SU(2). Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 32 / 37
β for Ising Numbr of Frmion flavours = N, g 2 8π 2 y, λ 8π 2 λ β y = ǫy+(3+2n)y 2 +24yλ(λ y) ( 9 8 + 6N) y 3 + y ( 1152(7+5N)y 2 λ+192(91 30N)yλ 2 64 + ( 912ζ 3 697+2N(67+112N + 432ζ 3 ) ) y 3 13824λ 3), β λ = ǫλ+36λ 2 + 4Nyλ Ny 2 +4Ny 3 + 7Ny 2 λ 72Nyλ 2 816λ 3 + 1 ( 6912(145 + 96ζ 3 )λ 4 32 + 49536Nyλ 3 48N(72N 361 648ζ 3 )y 2 λ 2 + 2N(1736N 4395 1872ζ 3 )y 3 λ + N(5 628N 384ζ 3 )y 4), 2-loop rsults [Rosnstin,Kovnr,Yu 93] Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 33 / 37
Fixd Point Analysis Numbr of frmion gnrations N = 2: Ising Hisnbrg g 2 PRELIMINARY λ [from Brnhard Ihrig s dsk] Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 34 / 37
Critical Exponnts (Chiral Ising) η x = γ x (y,λ ) N = 2 : ν 1 2 0.952ǫ+0.00723ǫ 2 0.0949ǫ 3 η ψ 0.0714ǫ 0.00671ǫ 2 0.0243ǫ 3 η 0.571ǫ+0.124ǫ 2 0.0278ǫ 3 N = 1 : ν 1 2 0.835ǫ 0.00571ǫ 2 0.0603ǫ 3 η ψ 0.1ǫ+0.0102ǫ 2 0.033ǫ 3 η 0.4ǫ+0.102ǫ 2 0.0632ǫ 3 N = 1/4 : ν 1 2 0.571ǫ 0.0204ǫ 2 + 0.024ǫ 3 η ψ 0.143ǫ+0.0408ǫ 2 0.048ǫ 3 η 0.143ǫ+0.0408ǫ 2 0.048ǫ 3 N = 0 : ν 1 2 0.333ǫ 0.117ǫ 2 + 0.125ǫ 3 η ψ 0.167ǫ+0.0478ǫ 2 0.0469ǫ 3 η 0.0185ǫ 2 + 0.0187ǫ 3 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 35 / 37
Critical Exponnts (Chiral Ising) N = 2 1/ν η η ψ this work (Padé [2/1]) 1.048 0.672 0.0740 (2+ǫ), (ǫ 4, Padé)[Gracy,Luth,Schrodr 16] 0.931 0.745 0.082 functional RG[Knorr 16] 0.994(2) 0.7765 0.0276 Mont Carlo[Chandraskharan,Li 13] 1.20(1) 0.62(1) 0.38(1) N = 1 1/ν η η ψ this work (Padé [2/1]) 1.166 0.463 0.102 functional RG[Knorr 16] 1.075(4) 0.5506 0.0645 Mont Carlo[Li,Jiang, Yao 15] 1.30 0.45(3) N = 1/4 1/ν η η ψ this work (Padé [2/1]) 1.419 0.162 0.162 functional RG[Hilmann,a 15] 1.408 0.180 0.180 conformal bootstrap[ilisiu,a 16] 0.164 0.164 Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 36 / 37
Summary & Outlook Summary QFTs ar ETs If SUSY is not found at LHC on may tak a closr look at condnsd mattr systm on a dsk Kinmatics Symmtry Dp undrstanding of symmtris is rquird Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 37 / 37
Summary & Outlook Summary Outlook QFTs ar ETs If SUSY is not found at LHC on may tak a closr look at condnsd mattr systm on a dsk Kinmatics Symmtry Dp undrstanding of symmtris is rquird Hisnbrg Mor sophisticatd RG analysis (larg ordr bhavior?) Z m 2 for GNY at 4-loop XY-Modl Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 37 / 37
To backup slids Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 38
Suprspac d 2 θ 1 4 dθα dθ β ε αβ, d 2 θ 1 4 d θ α d θ β ε αβ, θ 2 θ α θ α = θ α ε αβ θ β, d 2 θd 2 θφ Φ = i ψ/ ψ + µ 2 + F 2. d 2 θ h 3 Φ3 = h 2 F + hψ T iσ 2 ψ. kintic trms supr potntial trms Auxiliary filds ar liminatd using EQM: F = h 2, F = h 2. Nikolai Zrf (ITP UHD) RG @ CMP HUB 2017 39