Magnetized plasma : About the Braginskii s 1 macroscopic model 2

Σχετικά έγγραφα
Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Multi-dimensional Central Limit Theorem

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Multi-dimensional Central Limit Theorem

α & β spatial orbitals in

8.324 Relativistic Quantum Field Theory II

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

1 Complete Set of Grassmann States

V. Finite Element Method. 5.1 Introduction to Finite Element Method

2 Lagrangian and Green functions in d dimensions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Quantum ElectroDynamics II

8.323 Relativistic Quantum Field Theory I

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Homework 8 Model Solution Section

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CRASH COURSE IN PRECALCULUS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

LECTURE 4 : ARMA PROCESSES

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Forced Pendulum Numerical approach

2 Composition. Invertible Mappings

The Simply Typed Lambda Calculus

Theory of the Lattice Boltzmann Method

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Example Sheet 3 Solutions

Higher Derivative Gravity Theories

Reminders: linear functions

ST5224: Advanced Statistical Theory II

A domain decomposition method for the Oseen-viscoelastic flow equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Homework 3 Solutions

Parametrized Surfaces

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Math221: HW# 1 solutions

1 String with massive end-points

Areas and Lengths in Polar Coordinates

Every set of first-order formulas is equivalent to an independent set

Srednicki Chapter 55

Phasor Diagram of an RC Circuit V R

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Congruence Classes of Invertible Matrices of Order 3 over F 2

Other Test Constructions: Likelihood Ratio & Bayes Tests

Journal of Theoretics Vol.4-5

Tridiagonal matrices. Gérard MEURANT. October, 2008

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Areas and Lengths in Polar Coordinates

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Lifting Entry (continued)

Matrices and Determinants

Solutions to Exercise Sheet 5

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

Numerical Analysis FMN011

Space-Time Symmetries

Finite Field Problems: Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 2. Soundness and completeness of propositional logic

derivation of the Laplacian from rectangular to spherical coordinates

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices

EE512: Error Control Coding

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Second Order Partial Differential Equations

Spherical Coordinates

4.6 Autoregressive Moving Average Model ARMA(1,1)

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Solution Series 9. i=1 x i and i=1 x i.

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Non polynomial spline solutions for special linear tenth-order boundary value problems

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

w o = R 1 p. (1) R = p =. = 1

Section 8.3 Trigonometric Equations

C.S. 430 Assignment 6, Sample Solutions

Stochastic Finite Element Analysis for Composite Pressure Vessel

PARTIAL NOTES for 6.1 Trigonometric Identities

LIGHT UNFLAVORED MESONS (S = C = B = 0)

A Class of Orthohomological Triangles

A Lie Symmetry Analysis of the Black-Scholes Merton Finance Model through modified Local one-parameter transformations

Statistical Inference I Locally most powerful tests

SPECIAL FUNCTIONS and POLYNOMIALS

Pricing of Options on two Currencies Libor Rates

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

[1] P Q. Fig. 3.1

Transcript:

Magnetzed plasma : About the Bragnsk s 1 macroscopc model 2 B. Nkonga JAD Unv. Nce/INRIA Sopha-Antpols 1 S. I. Bragnsk, n Revews of Plasma Physcs, edted by M. A. Leontovch Consultants Bureau, New York, 1965, Vol. I, p. 205. 2 Talk H. Gullard, 1st summer school of the Large Scale Intatve FUSION : September 15-18, 2009 n Strasbourg. http://www-math.u-strasbg.fr/ae fuson/ B. Nkonga. Flud Theory 1 / 56

Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 2 / 56

State of the matter : Plasma Temperature versus Number of charged partcles/m 3 B. Nkonga. Flud Theory 3 / 56

Models + Maxwell s Equatons for E and B 1 N-body : x k t : R R 3, k = O 10 20 /m 3 800m 3 Newton Equaton for each charged partcle dx k dt = v k and m k dv k dt = q k m k E + v k B + l C kl 2 Knetc : f k t, x, v : R 7 R, k = O10 t f k + v x f k + q k m k E + v B v f k = l C kl 3 Flud :ω k t, x : R 4 R N k, k = O10 t ω k + L, ω k, B, E = S k B. Nkonga. Flud Theory 4 / 56

Knetc equaton for Smple plasma D v t f e + qe m e L v v f e = C ee f e, f e + C e f e, f D v t f + q m L v v f = C e f, f e + C f, f where for electrons k = e and ons k = Moreover f k f k t, x, v s the dstrbuton functon. m k s the mass q k s the charge C kl are collsons operators. D v t = t + v x s the materal dervatve at the velocty v, D v t s the materal dervatve at the velocty v, L v = E + v B s the Lorenz force E and B are govern by Maxwell equatons. B. Nkonga. Flud Theory 5 / 56

Coulomb bnary scatterng law The Landau form of the Coulomb collson s Eq. 4.3 of Bragnsk: C kl f k, f l = Γ kl 2 [ ] v O kl f k, f l where, wth a = v v we have [ O kl f k, f l = dv mk B a f k v f l v R 3 m l v f l v ] f k v v where, for rgd spheres approxmaton, Cut-offs estmaton gves Γ kl = 4πq2 k q2 l ln Λ m 2 k and for any vector a B a = a 2 I a a a 3 ln Λ s the Coulomb logarthm. B. Nkonga. Flud Theory 6 / 56

Propertes of the scatterng tensor B = a 2 I a a a 3 a 1 B a s symmetrc B a T = B a and even B a = B a a 1 2 B a derve from a potental B a = a = a a a a 3 a t s n the kernel of B a B a a = 0 2 4 a B a = a = 2a 2 and Tr [B a ] = a a 3 a 5 v B a = 2a a 3 = v B a 1 6 2 [Tr a a B] = a 2 I 3a a a 5 7 In sphercal coordnatesvelocty space a B a 2 a 3 B θ, φ B θ, φ = 1 1 sn θ + 1 2 2 sn θ θ θ sn 2 θ θ 2 = 1 1 µ 2 + 2 µ µ s the angular part of 1 2 2 a 2 and s often wrtten n terms of the ptch angle varable : µ = cos θ 2 1 1 µ 2 θ 2 B. Nkonga. Flud Theory 7 / 56

Other formulatons of Coulomb bnary scatterng law O kl f k, f l = dv R 3 [ mk B a f k v f l v m l v 1 Fokker-Planck form, wth D l v = O kl f k, f l = f l v ] f k v v [ dv fl v ] B a and P5 R 3 f k v D l v 1 + m k f k v m l v D l v v 2 Rosenbluth57-Trubnkov58 form : O kl f k, f l = 2 1 + m k m k f k v H l v v v f k v v v G l v Rosenbluth potentals H l v and G l v: H l v = dv f l v wth G l v = dv a f l v R 3 a R 3 B. Nkonga. Flud Theory 8 / 56

Other formulatons of Coulomb bnary scatterng law [ 1 Fokker-Planck form, wth D l v = dv fl v ] B a and P5 R 3 O kl f k, f l = 1 + m k f k v m l v D l v v f k v D l v O kl f k, f l = D l v f k v v 2 Rosenbluth57-Trubnkov58 form : O kl f k, f l = 1 + m k m k f k v H l v v v + m k m l f k v v D l v f k v H l v v D l v = H l v v D l v s the dffuson tensor and H l v = 1 2 v v G l v B. Nkonga. Flud Theory 8 / 56

Macroscopc equatons : D u t = t + u x D u k t n k + n k x u k = 0 m k n k D u k t u k + x p k q k n k E + u k B = x π k + R k n k D u k t p k γ k p k x u k γ k 1 = x q k π k : x u k + Q k t B + x E = 0 q k and γ k 5 3 are constants parameters. T k = n k p k Statc constrant : t x B s constant. Addtonal relaton to defne E V V = x B = µ 0 J = µ 0 q k n k u k k n k u k p k B B. Nkonga. Flud Theory 9 / 56

Macroscopc equatons : Transport π k = q k = R k = Q k = dv [m k f k v u k v u k v u k 2 ] I R 3 3 v u k dv [m 2 ] k f k v R 3 2 [ dv m k v u k ] C kl R 3 l [ ] v u k 2 dv m k C kl R 3 2 l Scalng and asymptotc expansons of knetc equatons : Defne π k, R k, q k and Q k as functons of V B. Nkonga. Flud Theory 10 / 56

Knetc Transport theory : Strategy 1 Defne an approprate frame and scalng. 2 Evaluate non-dmensonal coeffcent n term of a small parameter. 3 Proceed to an expansons accordng to these terms 4 Obtaned approxmatons of probablty densty functons. 5 Use these approxmatons to evaluate transport terms. B. Nkonga. Flud Theory 11 / 56

Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 12 / 56

Knetc equaton n a non nertal frames Coordnate transformaton : κ t, x, v = v u t, x and κ t, x, v = v u t, x Let us defne f k t, x, κ = f k t, x, v v=κ+u and g k t, x, κ = f k t, x, v v=κ+ue There are 4 possbles formulatons for smple plasma knetc equatons: Electrons and ons n mean electrons velocty frame [ ] D u t g e + κ x g e + qe m e E + u + κ B D u t u κ x u κ g e = C ee g e, g e + C e g e, g [ ] D u t g + κ x g + q m E + u + κ B D u t u κ x u κ g = C e g, g e + C g, g The Coulomb collson operator s nvarant under Gallean transformaton. κ = v, κ = v, B v v = B κ κ B. Nkonga. Flud Theory 13 / 56

Knetc equaton n a non nertal frames Coordnate transformaton : κ t, x, v = v u t, x and κ t, x, v = v u t, x Let us defne f k t, x, κ = f k t, x, v v=κ+u and g k t, x, κ = f k t, x, v v=κ+ue There are 4 possbles formulatons for smple plasma knetc equatons: Electrons and ons n the opposte mean velocty frame D u t fe + κ f [ ] x e + qe m e E + u + κ B D u t u κ x u f κ e = C ee fe, f e + C e fe, f [ ] D u t g + κ x g + q m E + u + κ B D u t u κ x u κ g = C e g, g e + C g, g The Coulomb collson operator s nvarant under Gallean transformaton. κ = v, κ = v, B v v = B κ κ B. Nkonga. Flud Theory 13 / 56

Knetc equaton n a non nertal frames Coordnate transformaton : κ t, x, v = v u t, x and κ t, x, v = v u t, x Let us defne f k t, x, κ = f k t, x, v v=κ+u and g k t, x, κ = f k t, x, v v=κ+ue There are 4 possbles formulatons for smple plasma knetc equatons: Electrons and ons n ther mean velocty frame Bragnsk... [ ] D u t g e + κ x g e + qe m e E + u + κ B D u t u κ x u κ g e = C ee g e, g e + C e g e, g D u t f + κ f [ ] x + q m E + u + κ B D u t u κ x u f κ = C e f, f e + C f, f The Coulomb collson operator s nvarant under Gallean transformaton. κ = v, κ = v, B v v = B κ κ B. Nkonga. Flud Theory 13 / 56

Knetc equaton n a non nertal frames Coordnate transformaton : κ t, x, v = v u t, x and κ t, x, v = v u t, x Let us defne f k t, x, κ = f k t, x, v v=κ+u and g k t, x, κ = f k t, x, v v=κ+ue There are 4 possbles formulatons for smple plasma knetc equatons: Electrons and ons n mean ons velocty frame Gralle... D u t fe + κ f [ ] x e + qe m e E + u + κ B D u t u κ x u f κ e = C ee fe, f e + C e fe, f D u t f + κ f [ ] x + q m E + u + κ B D u t u κ x u f κ = C e f, f e + C f, f The Coulomb collson operator s nvarant under Gallean transformaton. κ = v, κ = v, B v v = B κ κ B. Nkonga. Flud Theory 13 / 56

Dmensonless equatons D u t fe + κ f [ ] x e + qe m e E + u + κ B D u t u κ x u f κ e = C ee fe, f e + C e fe, f Dmensonless where D u t fk + [t 0] [κ k ] κ x [x 0 ] f k [u k ] [κ k ] + q k [t 0 ] [E 0 ] m k [κ k ] E + [B 0 ] [u k ] [E 0 ] = [t 0] [C kk ] C kk fk, [f k ] f k D u t u + [t 0] [κ k ] [x 0 ] u + [κ k ] [u k ] κ D u t = t + [t 0] [u k ] u x [x 0 ] κ x u f κ k B f κ k + [t 0] [C kl ] C kl fk, [f k ] f l B. Nkonga. Flud Theory 14 / 56

Scalng Hypotheses 3 4 5 [ρ] s the on Larmor radus, [r] s characterstc short length ɛ = [ρ] [r] me m 2 10 2 1 Ions and electrons are of the same scale for 1 Denstes n 0 2 Temperatures T 0 3 Cross-sectons σ 0 4 Macroscopc veloctes u 0 [κ k ] = k B [T 0 ] m k = [κ ] [κ e ] = ɛ [l k ] [τ k ] [κ k ] = 1 [σ 0 ] [n 0 ] = [τ e] [τ ] = ɛ [u k ] [u 0 ] = [u e ] [u ] = ɛ0 1 Note that u e u 3 P. Degond, B. Lucqun-Desreux, Transport coeffcents of plasmas and dsparate mass bnary gases. Transp. Theory and Stat. Phys. 25 pp. 595-633, 1996. 4 J.J. Ramos, Flud Theory of Magnetzed Plasma Dynamcs at Low Collsonalty. Physcs of plasmas vol. 14 1 2007. MIT Report PSFC/JA-06-29 5 B. Gralle, T. Mangn, and M. Massot. Knetc theory of plasmas: translatonal energy. Math. Models Methods Appl. Sc. M3AS 527-599, 194 2009. B. Nkonga. Flud Theory 15 / 56

Scalng Hypotheses Other mportant parameters are : 1 The collsonalty [ν ] = [R] [l k ] 2 The pressure rato [β] = 2µ 0 [p] [B B] For ITER we have [T 0 ] 10keV, [n 0 ] 10 20 m 3 and [l k ] 100m a. a R.V. Budny, Fuson alpha parameters n tokamak wth hgh DT fuson rates Nucl. Fuson 42 2002 1382-1392 Therefore [κ e ] 1.3 10 6 ms 1, [κ ] 3.1 10 4 ms 1 [τ e ] 10 4 s, [τ ] 0.8 10 2 s B. Nkonga. Flud Theory 16 / 56

Scalng Hypotheses :: ɛ me m [τ e] [τ ] 1 1 Collsons scales [C ee ] [C e ] [f e] [τ e ], [C e] m e [f ] m [τ e ] [f ] [τ ] ɛ3 and [C ] [f ] [τ ] Indeed m e m = ɛ 2 and [τ e ] [τ ] = ɛ B. Nkonga. Flud Theory 17 / 56

Veloctes dstrbutons for onsred and electrons blue. [u ] [κ ] [u e ] [κ e ] 1 [u e ] = [u 0 ] 2 [u ] = [u 0 ] 3 M = [u ] [κ ] 1 Therefore M e = [u e ] [κ e ] = [u ] [κ ] wth ε = ɛm Indeed [κ ] [κ e ] = ε [κ e ] = 1 ɛ [κ ] 1 ɛ [u 0 ] B. Nkonga. Flud Theory 18 / 56

Veloctes dstrbutons for onsred and electrons blue. 1 [u e ] = [u 0 ] [u ] [κ ] [u e ] [κ e ] 2 [u ] = [u 0 ] 3 M = [u ] [κ ] ɛ < 1 Therefore M e = [u e ] [κ e ] = [u ] [κ ] [κ ] [κ e ] = ε wth ε = ɛm Indeed [κ e ] = 1 ɛ [κ ] 1 ɛ [u 0 ] B. Nkonga. Flud Theory 18 / 56

Scalng Hypotheses :: ɛ = me m 1, ε = ɛm 2 Large observaton tme and space length scales : Hydrodynamc [t 0 ] = [τ ] ε = M [τ e ] ε 2 and [x 0 ] = [l ] ε = [l e] ε = [l 0] ε = [t 0] [x 0 ] = 1 [κ ] Electrcal and thermal energes are of the same scale q e [x 0 ] [E 0 ] = m [κ ] 2 = m e [κ e ] 2 Strongly magnetzed plasma [B 0 ] [u ] [E 0 ] = 1 B. Nkonga. Flud Theory 19 / 56

Electrons : ε = ɛm, u u e, κ κ e D u t = t + [t 0] [u e ] u x, [x 0 ] [t 0 ] [u e ] [x 0 ] = 1, D u t g e + [t 0] [κ e ] κ x g e [u e ] [x 0 ] [κ e ] + q e [t 0 ] [E 0 ] m e [κ e ] E + [B 0 ] [u e ] [E 0 ] = [t 0] [C ee ] [f e ] D u t u + [t 0] [κ e ] [x 0 ] u + [κ e ] [u e ] κ κ x u κ g e B κ g e C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56

Electrons : ε = ɛm, u u e, κ κ e D u t = t + u x, [t 0 ] [κ e ] [x 0 ] = [κ e ] [u e ] = 1 ɛm D u t g e + [t 0] [κ e ] κ x g e [u e ] [x 0 ] [κ e ] + q e [t 0 ] [E 0 ] m e [κ e ] E + [B 0 ] [u e ] [E 0 ] = [t 0] [C ee ] [f e ] D u t u + [t 0] [κ e ] [x 0 ] u + [κ e ] [u e ] κ κ x u κ g e B κ g e C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56

Electrons : ε = ɛm, u u e, κ κ e D u t = t + u x, D u t g e + 1 ε κ x g e ε q e [t 0 ] [E 0 ] m e [κ e ] q e [t 0 ] [E 0 ] = [t 0] [κ e ] = 1 m e [κ e ] [x 0 ] ɛm D u t u + 1 ε κ x u κ g e E + [B 0 ] [u e ] u + 1 [E 0 ] ε κ B κ g e = [t 0] [C ee ] [f e ] C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56

Electrons : ε = ɛm, u u e, κ κ e D u [B 0 ] [u e ] t = t + u x, = [B 0 ] [u ] = 1 [E 0 ] [E 0 ] D u t g e + 1 ε κ x g e ε D u t u + 1 ε κ x u κ g e 1 E + [B 0 ] [u e ] u + 1 ε [E 0 ] ε κ B κ g e = [t 0] [C ee ] [f e ] C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56

Electrons : ε = ɛm, u u e, κ κ e D u t = t + u x, D u t g e + 1 ε κ x g e ε 1 ε = [t 0] [C ee ] [f e ] [t 0 ] [C ee ] [ g e ] = [t 0] [C e ] [ g e ] D u t u + 1 ε κ x u = [t 0] [τ e ] = M ε 2 κ g e E + u + 1 ε κ B κ g e C ee g e, g e + [t 0] [C e ] C e g e, g [f e ] B. Nkonga. Flud Theory 20 / 56

Electrons : ε = ɛm, u u e, κ κ e D u t = t + u x, D u t g e + 1 ε κ x g e ε D u t u + 1 ε κ x u κ g e 1 E + u + 1 ε ε κ B κ g e = M ε 2 C ee g e, g e + M ε 2 C e g e, g B. Nkonga. Flud Theory 20 / 56

Ions : ε = ɛm D u t = t + [t 0] [u ] u x, [x 0 ] D u t f + [t 0] [κ ] κ x [x 0 ] f [u ] [κ ] + q [t 0 ] [E 0 ] m [κ ] E + [B 0 ] [u ] [E 0 ] [t 0 ] [u ] [x 0 ] = 1, D u t u + [t 0] [κ ] [x 0 ] u + [κ ] [u ] κ = [t 0] [C e ] C e f, [f ] f e κ x u f κ B f κ + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56

Ions : ε = ɛm D u [t 0 ] [κ ] t = t + u x, = [κ ] [x 0 ] [u ] = 1 M D u t f + [t 0] [κ ] κ x [x 0 ] f [u ] D u [κ ] t u + [t 0] [κ ] κ x u κ [x 0 ] f + q [t 0 ] [E 0 ] E + [B 0 ] [u ] u + [κ ] m [κ ] [E 0 ] [u ] κ B f κ = [t 0] [C e ] C e f, [f ] f e + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56

Ions : ε = ɛm + q [t 0 ] [E 0 ] m [κ ] q [t 0 ] [E 0 ] Z m [κ ] = [t 0] [κ ] [x 0 ] = Z M D u t f + 1 κ M f x M D u t u + 1 κ x u M f κ E + [B 0 ] [u ] u + 1 κ B [E 0 ] M f κ = [t 0] [C e ] C e f, [f ] f e + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56

Ions : ε = ɛm [B 0 ] [u ] [E 0 ] = [B 0 ] [u ] [E 0 ] = 1 D u t f + 1 κ M f x M D u t u + 1 κ x u M f κ + Z E + [B 0 ] [u ] u + 1 κ B M [E 0 ] M f κ = [t 0] [C e ] C e f, [f ] f e + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56

Ions : ε = ɛm [t 0 ] [C e ] = [t 0] m e = 1 [t 0 ] [C ] and = [t 0] [f ] [τ e ] m M [f ] [τ ] = 1 ε D u t f + 1 κ M f x M D u t u + 1 κ x u M f κ + Z E + u + 1 κ B M M f κ = [t 0] [C e ] C e f, [f ] f e + [t 0] [C ] C f, [f ] f B. Nkonga. Flud Theory 21 / 56

Ions : ε = ɛm D u t f + 1 κ M f x M D u t u + 1 κ x u M f κ + Z E + u + 1 κ B M M f κ = 1 C e f, M f e + 1 ε C f, f B. Nkonga. Flud Theory 21 / 56

Dmensonless smple plasma system M < 1 Electrons : u u e, κ κ e ε2 M [ t u + u x u κ g e ] + ε M [ t g e + u x g e κ x u κ g e ] + 1 M [κ x g e E + u B κ g e ] = 1 ε [ κ B κ g e + C ee g e, g e + C e g e, g ] Ions: u u, κ κ [ M t u + u x u f ] κ + [ t f + u f x κ x u f ] κ + 1 [ C e f, M f e + κ f x + Z E + u B f ] κ + Z M 2 κ B κ f = 1 ε [C f, f ] B. Nkonga. Flud Theory 22 / 56

Fast dynamcs M 1 and ε = ɛ : Sonc Electrons : u u e, κ κ e ε 2 [ t u + u x u κ g e ] + ε [ t g e + u x g e κ x u κ g e ] + [κ x g e E + u B κ g e ] = 1 ε [ κ B κ g e + C ee g e, g e + C e g e, g ] Ions: u u, κ κ [ t u + u x u f ] κ + [ t f + u f x κ x u f ] κ + [ C e f, f e + κ f x + Z E + u B f ] κ + Z κ B f κ = 1 [C f, ε f ] B. Nkonga. Flud Theory 22 / 56

Slow dynamcs M ɛ and ε = ɛ 2 : Drft Electrons : u u e, κ κ e ε ε [ t u + u x u κ g e ] + ε [ t g e + u x g e κ x u κ g e ] + 1 ε [κ x g e E + u B κ g e ] = 1 ε [ κ B κ g e + C ee g e, g e + C e g e, g ] Ions: u u, κ κ ε [ t u + u x u f ] κ + [ t f + u f x κ x u f ] κ + 1 [ C e f, f e + κ f x + Z E + u B f ] κ ε = 1 ε [ Z κ B κ f + C f, f ] B. Nkonga. Flud Theory 22 / 56

Slow dynamcs of Bragnsk. Electrons : u u e, κ κ e [ t u + u x u κ g e ] + [ t g e + u x g e κ x u κ g e ] + [κ x g e E + u B κ g e ] = 1 ε [ κ B κ g e + C ee g e, g e + C e g e, g ] Ions: u u, κ κ [ t u + u x u f ] κ + [ t f + u f x κ x u f ] κ + [ C e f, f e + κ f x + Z E + u B f ] κ = 1 [ Z κ B κ ε f + C f, f ] B. Nkonga. Flud Theory 22 / 56

Relatons δu = u e u g e κ = f e κ + u e = f e κ + u + u e u = f e κ + δu g κ = f κ + u e = f κ + u + u e u = f κ + δu B. Nkonga. Flud Theory 23 / 56

Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 24 / 56

Taylor s and Hlbert s expansons : ε = ɛm B κ ɛκ B κ ɛκ κ B κ + ɛ2 2 κ κ : κ κ B κ + ɛ 3 Then, wth σ = n T I τ n T I. In the ons frame we have : [ D κ = dκ f κ B κ ɛκ ] R 3 and = n B κ ɛ 0 + ɛ 2 n T 3κ κ κ 2 I κ 5 + ɛ 3 O e fe, f = D κ f e κ + ɛ 2 m e fe κ κ m κ D κ = n B κ f e κ 0 ɛ m e 2κ ɛ2 m κ f 3κ κ κ 2 I fe 3 e κ + n T κ 5 + ɛ 3 κ B. Nkonga. Flud Theory 25 / 56

m 2 e Note that we have Γ e = Γ e m 2 B. Nkonga. Flud Theory 26 / 56 Taylor s and Hlbert s expansons : ε = ɛm B κ e ɛκ B κ e ɛκ κ B κ ɛ e e 2 + 2 κ κ : κ e κ e B κ e +ɛ 3 κ κ B κ e e = κ κ e κ κ e 5 e 2 I 3κ e κ κ κ e e + κ e κ κ e 3 In the electrons frame we have D e ɛκ = dκ e [ ge κ e B κ e ɛκ ] R 3 = dκ e [ ge κ e B κ ] e + ɛ dκ e [ ge κ e κ κ B κ ] R 3 R 3 e e + ɛ 2 Case of g e κ e M e κ e O e g, g e 4n e 3 me 2πT e g κ κ + m κ g κ T e

Taylor s and Hlbert s expansons : ε = ɛm g e = g e 0 + ε g e 1 + ε2 M M 2 g e 2 + f = f 0 + ε f 1 M + ε2 f 2 + M 2 B e = B 0 e + ε B 1 e + ε2 M M 2 B 2 e + B e = B 0 e + ε B 1 e + ε2 M M 2 B 2 e + C e = Ce 0 + ε Ce 1 + ε2 Ce 2 + M M 2 C e = C 0 e + ε M C 1 e + B. Nkonga. Flud Theory 27 / 56

Expanson of electron-on collsons wth C e fe, f = Γ e 2 κ O e = Ce 0 fe, f + ε Ce 1 fe, M f + ε2 M 2 O e = D κ κ f e + m e m fe κ κ D Wtchng the ons frame we have [ D κ = dκ f κ B κ κ ] = n B κ + 0 + ɛ 2 R 3 Therefore C 0 e fe, f = n Γ e 2 v B κ f κ e B. Nkonga. Flud Theory 28 / 56

Thermalzaton of dstrbutons functons { κ B κ g e 0 0 + C ee g e, g e 0 + C 0 0 e g e, g 0 = 0 κ B f 0 κ + C f 0, f 0 = 0 g e 0 0 = M e κ and f = M κ where M e κ = M e,0 exp m e κ 2 and M κ = M,0 exp m κ 2 2T e 2T For any change of varable κ = κ ± ɛδu :: g e 0 κ M e κ ± ɛδu κ B κ g0 0 e + C ee g e, g e 0 + C 0 0 e g e, g 0 ε = 0 + M 1 Whch thermalzaton s consstent wth physcal applcatons? 2 What s the defnton of g 0? Is g0 κ = f 0 κ + δu? B. Nkonga. Flud Theory 29 / 56

Frst order correcton : ε = M ɛ g e κ = M e κ 1 + Φ 1 e κ + ɛ 2 f κ = M e κ 1 + Φ 1 κ + ɛ 2 Expanson of the collsons C e = Γ e 2 v O e wth n ons frame O e = D κ f κ e + m e fe κ κ D = n B κ m f κ e + ɛ 2 where, wth σ = [ n T I + τ, D κ = dκ f κ B κ κ ] 1 = n B κ + R 3 2 [σ : κ κ B κ ] Then, as δu = v e v ɛ, we have the followng estmaton f e κ = f e κ + v = f e κ δu + v e = g e κ δu = M e κ δu 1 + Φ 1 e κ δu + ɛ 2 = M e κ 1 + m e δu κ + T Φ 1 e κ + ɛ 2 e B. Nkonga. Flud Theory 30 / 56

Frst order correcton : ε = M ɛ g e κ = M e κ f e κ = M e κ 1 + Φ 1 e κ 1 + m e δu κ + T Φ 1 e κ e + ɛ 2, f κ = M e κ + ɛ 2 1 + Φ 1 κ + ɛ 2, O e = n B κ f κ e + ɛ 2 Expanson of the collsons B κ [ κ M e κ ] = βb κ κ = 0 C e = Γ e 2 κ O e = n Γ e 2 κ B κ f κ k + ɛ 2 = n Γ e 2 me κ M e κ B κ δu + B κ T Φ 1 κ e κ e [ me + ɛ 2 B κ κ Φ 1 e κ ] + ɛ 2 = n Γ e 2 M e κ κ B κ δu + κ T e = n [ Γ e 2 M e κ 2m e T e κ 3 κ δu + κ B κ Φ ] 1 κ e κ + ɛ 2 = 0 + M e κ C e Φ1 e, f 0 2n Γ e m e 2T e κ 3 κ δu + ɛ 2 B. Nkonga. Flud Theory 30 / 56

Frst order correcton : ε = M ɛ g e κ = M e κ f e κ = M e κ Expanson of the collsons 1 + Φ 1 e κ 1 + m e δu κ + T Φ 1 e κ e + ɛ 2, f κ = M e κ + ɛ 2 1 + Φ 1 κ + ɛ 2, O e = n B κ f κ e + ɛ 2 C e = 0 ɛ 0 +C e g e 0 Φ 1 e, f 0 g e 0 2n Γ e m e 2T e κ 3 κ δu +ɛ 2 0 C ee = C ee g e, g e 0 +C ee g e 0 Φ 1 e, g e 0 + C ee g e, 0 g e 0 Φ 1 e +ɛ 2 C = C f 0, f 0 +C f 0 Φ1, f 0 + C f 0, f 0 Φ 1 +ɛ 2 C e = 0 ɛ 0 +ɛ B. Nkonga. Flud Theory 30 / 56

Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 31 / 56

Frst order correcton for Slow dynamcs of Bragnsk. Electrons : u u e, κ κ e and g 1 e g 1 e κ = Φ 1 e κ M e κ t u + u x u κ g e 0 + t g e 0 + u x g e 0 κ x u κ g e 0 +κ x g e 0 E + u B κ g e 0 = κ B κ g 1 e + C ee g 1 e, g e 0 + Cee g 0 e, g 1 e +C e g 1 e, f 0 2n Γ e m e 2T e κ 3 κ δum e κ Ions: u u, κ κ and f 1 f 1 κ = Φ 1 κ M κ t u + u x u f 0 κ + t f 0 + u f 0 x κ x u f 0 κ C e f 0, f e 0 + κ f 0 x + Z E + u B f 0 κ = Z κ B f 1 κ + C f 1, f 0 + C f 0, f 1 B. Nkonga. Flud Theory 32 / 56

Transport contrbuton for frst order approxmaton C e = Γ e 2 κ O 1 e + ɛ 2 where O 1 me e κ = n M e κ B κ δu + B κ κ T Φ 1 e κ e Frcton contrbuton s R 1 e = Γ e m e κ δu κ O 1 Γ e e dκ = m e O 1 2 R 3 2 edκ R 3 Accordng to ntegraton formulas of polynomals functons over balls 6 R 1 e = m en e τ e δu + R e where τ e = 3 m e T 3 2 e 4n 2πq 2 e q 2 ln Λ and R e R e Φ1 e = n Γ e M e κ B κ 2 Φ 1 κ e κdκ R 3 6 John A. Baker. Integraton Over Spheres and the Dvergence Theorem for Balls. The Amercan Mathematcal Monthly, Vol. 104, No. 1. Jan., 1997, pp. 36-47. B. Nkonga. Flud Theory 33 / 56

Transport contrbuton for frst order approxmaton Frcton contrbuton s R 1 e = m en e δu + R e Heat τ e Q 1 e = Γ R3 e κ δu 2 m e κ O 1 2 2 e dκ = Γ e m e κ δu O 1 2 edκ R 3 Γ e = m e B 2 T κ κ ÕO 1 e dκ δu R 1 e R 3 = 0 + Q 2δu e = ɛ 2 B. Nkonga. Flud Theory 33 / 56

Transport : second order contrbutons There s also an other second order term assocated to O 2 e κ = n m e m g 0 e κ κ B κ 1 2m [σ : κ κ B κ ] κ g 0 e κ where σ = n T I τ n T I Indeed, we have R 2 e = Γ e 2 R 3 m e O 2 edκ = 0 κ B = 2κ κ 3, 1 2 [ κ κ B] = κ 2 I 3κ κ κ 5 and S 2 [ σ : s s s s ] 3 I sds = 0 B. Nkonga. Flud Theory 34 / 56

Transport contrbuton for frst order approxmaton Q 2δT e Q 2δT e = m eγ e 2 = m eγ e 2 = m eγ e 2 = m eγ e 2 m eγ e 2 κ δu 2 κ O 2 e κ dκ = m eγ e dκ κ δu O 2 e κ dκ 2 2 R 3 R3 κ δu 2 κ O 2 2 edκ = m eγ e κ δu O 2 2 edκ [ R 3 n m e κ g R m e 0 κ B 1 ] [σ : κ κ B] κ g e 0 dκ 3 2m [ 2 κ 2 n m e R κ 3 g e 0 1 ] κ [σ : κ κ B] κ g e 0 dκ m 3 [ 2m 2 n m e + 2n ] m e T g edκ 0 m2 en Γ e T R3 dκ R 3 m2 en Γ e m 3m en e m τ e κ 1 T T e m m T e κ 4πTe m e n e T e T = 3m en e δt m τ e Q 2 e = Q 2δT e + Q 2δu e π 2T e m e 3 1 m T e 2 as g 0 e = n e π 2T e m e = δu R 1 e 3m en e m τ e δt 3 g e 0 R 3 2 e x κ dκ B. Nkonga. Flud Theory 35 / 56

Transport frst and second order contrbutons 1 Frcton 2 Heat R e R 1 e + R 2 e = m en e τ e δu + R e and R e = R e Q e Q 1 e + Q 2 e = δu R 1 e 3m en e m τ e δt = m en e δu δu δu R e 3m en e δt τ e m τ e and Q e = 3m en e m τ e δt Where δu = u e u and δt = T e T B. Nkonga. Flud Theory 36 / 56

Solublty condtons for L k, Φ 1 k = b k For example, wth f 1 = M κ Φ 1 κ = g 0 f 1, we have L, Φ = κ B f 1 κ + C f 1, f 0 + C f 0, f 1 Note that γ 0 + γ 2 κ 2 s always n the kernel of L. The requrement that correcton must not change macroscopc parameters : 1 κ M k κ Φ 1 k κ dκ = 0 R 3 κ 2 contans also the assumed requrement for exstence and unqueness of the soluton B. Nkonga. Flud Theory 37 / 56

Therefore D u k t n k = n k x u k m e n e D u e t u e = x p e E + u e B + R e x π k = x p + Z E + u B R e D u k t T k = 2 3 T k x u k + 2 3 x q k π k : x u k + Q kl m n D u t u Dervatves wth respect to tme and space of the Maxwellan are [ g e 0 ne 3 = n e 2 m ] eκ κ Te g e 0 2T e T e Then the left hand sde of electrons correcton equaton can be estmated [ me κ 2 2T e 5 2 x T e κ T e [ = D u e t u e κ g e 0 + t g e 0 + u e x g e 0 κ x u e κ g e 0 +κ x g e 0 E + u e B κ g e 0 = + R1 e κ + m e m e T e T e L e κ κ + R e κ L e m e T e ] κ [ x u e ] T κ κ 2 3 x u e + L e κ : κ κ κ 2 3 g 0 e ] g 0 e B. Nkonga. Flud Theory 38 / 56

Equaton for frst order correctons g 1 e Φ 1 e κ M e κ and f 1 Φ 1 κ M κ [ meκ κ 2T e 5 2 xt e κ T e + R 1 e ] κ + me ] T κ [ κ 2 xu e κ m et e T e 3 x u e M e κ = κ B κ g 1 e g + Cee 1 e, g0 e + C ee g e 0, g1 e + C e g 1 e, f 0 2n Γ e m e 2T e κ 3 κ δum e κ Integro-dfferental lnear equaton for Φ 1 e usng L e κ B κ g 1 e + C ee g 1 e, g e 0 + Cee g 0 e, g 1 e + C e = g el 0 L e κ κ + g el 0 L e Lnear partal dfferental equaton for Φ 1 κ B f 1 κ + C f 1, f 0 + C f 0, f 1 L e = L e + 2n Γ e me δu: 2Te κ 3 L e κ : g 1 e, f 0 = f 0 L κ κ + f 0 L κ : g e 0 R e κ m e T e κ κ κ 2 3 κ κ κ 2 3 B. Nkonga. Flud Theory 39 / 56

Resoluton of frst order correctons equatons Accordng to symmetres of the RHS, Φ 1 e κ and Φ 1 κ are found under the followng form : Φ 1 k κ = P k κ κ + P k κ : κ κ κ 2 3 Moreover, RHS operators L k κ and L k κ can be expanded wth Laguerre-Sonne polynomals. For example, let us denote by x = m e κ 2 me κ 2 L e κ = 5 x T e + 2n Γ e m e 2T e 2 T e [ 2T e κ 3 δu ] = xt e Y δt T e,1l 3 2 1 x + δu Y δu e,l L 3 2 l x e L 3 2 l x functons gves very smple expanson for the frst term : Y δt e,1 = 1. B. Nkonga. Flud Theory 40 / 56 l>0 2T e

Vector splttng n strongly magnetzed plasma In strongly magnetzed plasma, macroscopc vectors are often splt nto parallel, perpendcular and components. For example : x T e = M x T e + M x T e + M x T e = xt e + x T e + x T e where M = b b, M = I b b, M x T e = b x T e 0 b z b y M = b z 0 b x b y b x 0 These matrces are lnearly ndependent when b 0 stable under multplcaton. What about tensors? B. Nkonga. Flud Theory 41 / 56

Tensor splttng n strongly magnetzed plasma We have L k κ L k = m k [ x u k ] + [ x u k ] T 2 2T k 3 x u k I For ths symmetrc tensor, Bragnsk propose the followng splttng: 4 L k = Π l b : L k l=0 Π 0 = M 1 2 M 2 3 M 1 3 M Π 1 = M M 1 2 M M Π 2 = M M M M Π 3 = 1 2 M M + 1 2 [M ] T M Π 4 = M M + [M ] T M [A B : W ] j = A j B kl W kl k l [A B : W ] j = A k B jl W kl k l B. Nkonga. Flud Theory 42 / 56

Splttng of the frst order approxmaton Accordng to prevous splttng n strongly magnetzed plasma 1 The vector P k κ s found under the form [ ] P k κ = L 3 2 l x X δt k,l M + X δt k,l M + X δt k,l M x T k T k l>0[ ] + L 3 2 l x X δu k,l M + X k,l δu M + X δu k,l M δu l>0 wth the constran that 1 R 3 κ κ 2 M k κ Φ 1 k κ dκ = 0 = l > 0 2 and P k κ under the form P k κ = 4 L 3 2 l x X δτζ Π l u k, b : L k l>0 ζ=0 k,l Π l B. Nkonga. Flud Theory 43 / 56

Systems to be solved Φ 1 k κ = P k κ κ + We have κ B Φ 1 κ e = κ B P k κ + x = B B 2 B x x = x x B x = x B, and κ B x = 0 κ B x = B κ x κ B x = B κ x ndeed κ B B x = κ B B x B B κ x. We have P k κ = L 3 2 l x X δt xt e k,l + X δt x T e k,l + X δt x T e T k T k,l + k T k l>0 and therefore, as κ B Φ 1 κ e = κ BPP k κ + κ B Φ 1 κ e = B L 3 2 l x X δt k,l κ x T e X δt T k,l κ x T e + k T k l>0 Systems for X δt k,l and X δt k,l are coupled B. Nkonga. Flud Theory 44 / 56 P k,

Systems to be solved :: Φ 1 k κ = P k κ κ + L e κ κ = Y δt 3 e,1 L 21 x x κ Te Y δt 3 e,1 T L 21 x x κ Te k T k κ B Φ 1 κ e = 3 L 2 l l>0 x X δt k,l B κ x Te 3 L 2 l T k l>0 x B X δt k,l κ x Te + T k Compacted form. Usng dot product wth κ and the relaton κ κ = x 2T e m e l>0 where xe x L 3 2 l x X δt e,l X θ k,l = X θ θ k,l + ıx k,l Y θ k,l = Yθ k,l + ıyθ k,l ı B + C x : [s s] xc C x s a tensor assocated to lnearzed collsons. = Y δt e,1xe x L 3 2 1 x + B. Nkonga. Flud Theory 45 / 56

Systems to be solved :: Φ 1 k κ = P k κ κ + Compacted form. Usng dot product wth κ and the relaton κ κ = x 2T e m e l>0 xe x L 3 2 l x X δt e,l ı B + C x : [s s] = Y δt e,1xe x L 3 2 1 x + Varatonal prncples Onsager symmetry formulated as L 2 -projecton for any q > 0. + [ X δt e,l x 3 2 e x L 3 2 q x L 3 2 l x ı B + C x : s s ds ] 8dx l>0 0 S 2 4π 15 π + [ ] = Y δt e,1 x 3 2 e x L 3 2 q x L 3 2 8dx 1 x 15 π + 15 π 8 = 3 2 + 1! = 5 2 3 2 1 2 0! = 5 3 π 2 2 2 B. Nkonga. Flud Theory 45 / 56

Systems to be solved :: Φ 1 k κ = P k κ κ + Compacted form. Usng dot product wth κ and the relaton κ κ = x 2T e m e l>0 xe x L 3 2 l x X δt e,l ı B + C x : [s s] = Y δt e,1xe x L 3 2 1 x + Varatonal prncples as L 2 -projecton for any q > 0. + [ X δt e,l x 3 2 e x L 3 2 q x L 3 2 l x ı B + 23 ] Tr 8dx C x 15 π = YδT e,1δ q,1 + l>0 0 X are solutons of a lnear system of the followng form : A θ ex θ e = C θ ey θ e and A θ X θ = C θ Y θ B. Nkonga. Flud Theory 45 / 56

Fnal When prevous systems are solved, we obtan analytcal formula for g e κ M e κ 1 + P e κ κ + P e κ : κ κ κ 2 3 f κ M e κ 1 + P κ κ + P κ : κ κ κ 2 3 Then they are used to compute transport contrbutons. B. Nkonga. Flud Theory 46 / 56

Overvew 1 Knetc and macroscopc equatons for Smple plasma 2 Flud Theory : Scalng and dmensonal analyss 3 Flud Theory : Hlbert s expanson and asymptotc analyss 4 Flud Theory : Frst order correcton of Bragnsk. 5 Bragnsk transport Coeffcents B. Nkonga. Flud Theory 47 / 56

Bragnsk Transport Coeffcents : An example R 1 e = m en e τ e P k κ = Therefore α m en e τ e δu n Γ e R 3 2 M e κ B κ Φ 1 κ e κdκ = m en e n Γ e δu τ e R 3 2 M e κ B κ κ [P P k κ κ] = m en e n Γ e δu τ e R 3 2 M e κ B κp P k κ dκ [ ] L 3 2 l x X δt k,l M + X δt k,l M + X δt k,l M x T k T k l>0[ ] + L 3 2 l x X δu k,l M + X k,l δu M + X δu k,l M δu l>0 + n Γ e 2 N l l=1 X δu e,l dκ R 3 [M e κ L 3 2l me κ 2 2T e ] B κ B. Nkonga. Flud Theory 48 / 56

Bragnsk Transport Coeffcents : An example α m en e τ e + n Γ e 2 N l l=1 X δu e,l dκ R 3 B κ = 1 κ B s where r = κ, s = r κ The ntegral part of α can be computed as R 3 dκ [G r B κ ] = + 0 l=1 [M e κ L 3 2l me κ 2 and [ r 2 G r 1 ] dr B s ds = 8π r S 3 2 0 2T e ] B κ S 2 B s ds = 8π 3 I + Therefore α s equvalent to a scalar. α m en e + n Γ e 8π N l + X δu τ e 2 3 e,l r [M e r L 3 me r 2l 2 ] dr 2T e 0 rg rdr B. Nkonga. Flud Theory 49 / 56

Bragnsk transport closure : quas neutral plasma n = n e Electrons β t R e = en e αj β t x T e Q e = Q + J R e n e e Q e = κ e x T e + en e β j ej 4 η el Π l u e, b π e where l=0 Ions R = R Q = 3m en e T e T m τ e Q = κ e x T + en e β j J 4 η l Π l u, b α = α M +α M α M κ k = κ k M +κ k M +κ k M β t = β t M +βt M +β M t β j k = β j k M +βj k M +β j k M See [Bragnsk, 1965] for numercal values of theses parameters. Some numercal examples α = β j π m e e 2 n e τ e, α = 1.96α, β t = l=0 3 2ω coll e τ e, β t = 0.71 B. Nkonga. Flud Theory 50 / 56

Appendx κ κ = r 2 = x 2T e m e α m en e τ e m en e τ e m en e τ e and rdr = T e m e dx + n Γ e 2 + n Γ e 2 + m en e τ e 8π 3 8π 3 N l l=1 X δu e,l T e M e 0 m e T e N l m 2 e l=1 X δu e,l r [M e r L 2l 3 me r 2 ] dr 0 2T e N l + [ exp x L 3 2 l x + l=1 + [ 0 X δu e,l 0 exp x L 3 2 l x ] dx ] dx Γ kl = 4πq2 k q2 l ln Λ m 2 k and τ e = 3 m e T 3 2 e 4n 2πq 2 e q 2 ln Λ τ e = 3π m e T 3 2 e = n 2πm 2 e Γ e 3 4πn Γ e 2πTe m e 3 2 = 3n e 4πn Γ e M e 0 B. Nkonga. Flud Theory 51 / 56

Appendx As s 2 k s homogeneous of degree two. Then corollary 1 page 39 6 S 2 s 2 k 1 ds = 3 + 2 x 2 k dx k dx l dx p = 10 1 1 = 10π 3 1 = 10π 2 5 15 = 4π 3 Therefore, as B s = I s s, we have B s ds = 4π 4π S 2 3 and S 2 1 0 I = 8π 3 I s s s s 3 I ds = 0 x 2 k π1 x2 k dx k 6 John A. Baker. Integraton Over Spheres and the Dvergence Theorem for Balls. The Amercan Mathematcal Monthly, Vol. 104, No. 1. Jan., 1997, pp. 36-47. B. Nkonga. Flud Theory 52 / 56

Appendx :: fk κ M k κ 1 + P e κ κ r = x 2T 1 2 k T k, rdr = dx, m k m k M k r = n k π 2T 3 2 k e x m k [ v u k 2 ] [ κ q k = m k v f k v 2 ] dv = m k R 3 2 R 3 2 κ f k κ dκ [ κ 2 [ ] κ ] 0 + m k R 3 2 M k κ κ κ P k dκ + + r 2 r [m 2 [ k 0 2 M k r r 2 ] r ] + r 6 4π r s s dsp P k dr m k [M k r ] S 2 0 2 3 P k dr + 4πm kn k + x 2T 5 k 2 π 2T 3 k 2 x e Pk P k x T k dx + 6 0 m k m k m k 4n k 3 T 2 + [ k x 2 3 xe x P k x ] dx 4n k π m k 0 3 T 2 [ + k x 2 3 5 3 3 π m k 0 2 L 20 + L 2 1 x e x x ] P k dx + 4n k 3 T 2 k 15 π X δt xt e + X δt x Te k,1 k,1 + X δt x Te k,1 π m k 8 T k T k T k 4n k 3 T 2 k 15 π X δu k,1 π m k 8 xδu + X δu k,1 δu x δu + X k,1 x δu + 5n ktk 2 X δt xt e + X δt x Te k,1 k,1 + X δt x Te k,1 + X δu k,1 2m k T k T k T δu xδu + X k,1 δu x δu + X k,1 x δu + k B. Nkonga. Flud Theory 53 / 56

Appendx :: fk κ M k κ 1 + P e κ κ We have + [ [κ κ]p P k κ M k κ = r 2 [ P k r M k r r 2 s s ] ] ds dr R 3 0 S 2 = 4π + r 3 P k r M k r rdr = 4π 3 2Tk 2 T + k x 3 2 e x P k x dx 3 0 3 m k m k 0 = 4π 3 2Tk 2 T k + P kl x 3 2 e x L 3 2 3 m k m 0 x L 3 2 l x dx k l 0 1 Therefore the constran κ M k κ Φ 1 k κ dκ = 0 s acheved when R 3 κ 2 l > 0, accordng to orthogonalty of Laguerre-Sonne polynomals and zero ntegral on sphere for monomal wth an odd component of the mult-ndex : 1 + κ M k κ Φ rs 1 R 3 r 2 k κ dκ = r 2 M k rp P k r r 2 s s ds dr 0 S 2 r 2 rs + + r 2 M k rp P k r : 1 rs r 2 s s s s 3 I ds dr = 0 0 S 2 r 2 B. Nkonga. Flud Theory 54 / 56

Appendx :: D e ɛκ = [ = dκ e fe κ e B κ e ɛκ ] R[ 3 dκ e fe κ e B κ ] e + ɛ R 3 Case of f e κ e = g 0 e κ e R 3 dκ e [ fe κ e κ κ B κ ] e e + ɛ 2 D e ɛκ [ = dκ e fe κ e B κ e ɛκ ] = 8π R 3 3 + 0 r g 0 e r dr + ɛ 2 @ Case of f e κ e = δu κ e g 0 e κ e D e ɛκ [ = dκ e fe κ e B κ e ɛκ ] = 8π R 3 3 + 0 r g 0 e r dr + ɛ 2 B. Nkonga. Flud Theory 55 / 56

Appendx :: [ D e ɛκ = dκ e fe κ e B κ e ɛκ ] R[ 3 = dκ e fe κ e B κ ] [ e + ɛ dκ e fe κ e κ κ B κ ] R 3 R 3 e e + ɛ 2 Case of f e κ e = δu κ e g 0 e κ e D e ɛκ = ɛ dκ [ e δu κ e g 0 e κ e κ κ B κ ] 8π R 3 e e = 3 + 0 r g 0 e r dr + B. Nkonga. Flud Theory 56 / 56